1
|
A Comparative Genomic Approach to Determine the Virulence Factors and Horizontal Gene Transfer Events of Clinical Acanthamoeba Isolates. Microbiol Spectr 2022; 10:e0002522. [PMID: 35416714 PMCID: PMC9045148 DOI: 10.1128/spectrum.00025-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acanthamoeba species are among the most ubiquitous protists that are widespread in soil and water and act as both a replicative niche and vectors for dispersal. They are the most important human intracellular pathogens, causing Acanthamoeba keratitis (AK) and severely damaging the human cornea. The sympatric lifestyle within the host and amoeba-resisting microorganisms (ARMs) promotes horizontal gene transfer (HGT). However, the genomic diversity of only A. castellanii and A. polyphaga has been widely studied, and the pathogenic mechanisms remain unknown. Thus, we examined 7 clinically pathogenic strains by comparative genomic, phylogenetic, and rhizome gene mosaicism analyses to explore amoeba-symbiont interactions that possibly contribute to pathogenesis. Genetic characterization and phylogenetic analysis showed differences in functional characteristics between the "open" state of T3 and T4 isolates, which may contribute to the differences in virulence and pathogenicity. Through comparative genomic analysis, we identified potential genes related to virulence, such as metalloprotease, laminin-binding protein, and HSP, that were specific to the genus Acanthamoeba. Then, analysis of putative sequence trafficking between Acanthamoeba and Pandoraviruses or Acanthamoeba castellanii medusaviruses provided the best hits with viral genes; among bacteria, Pseudomonas had the most significant numbers. The most parsimonious evolutionary scenarios were between Acanthamoeba and endosymbionts; nevertheless, in most cases, the scenarios are more complex. In addition, the differences in exchanged genes were limited to the same family. In brief, this study provided extensive data to suggest the existence of HGT between Acanthamoeba and ARMs, explaining the occurrence of diseases and challenging Darwin's concept of eukaryotic evolution. IMPORTANCE Acanthamoeba has the ability to cause serious blinding keratitis. Although the prevalence of this phenomenon has increased in recent years, our knowledge of the underlying opportunistic pathogenic mechanism maybe remains incomplete. In this study, we highlighted the importance of Pseudomonas in the pathogenesis pathway using comprehensive a whole genomics approach of clinical isolates. The horizontal gene transfer events help to explain how endosymbionts contribute Acanthamoeba to act as an opportunistic pathogen. Our study opens up several potential avenues for future research on the differences in pathogenicity and interactions among clinical strains.
Collapse
|
2
|
Potgieter N, van der Loo C, Barnard TG. Co-Existence of Free-Living Amoebae and Potential Human Pathogenic Bacteria Isolated from Rural Household Water Storage Containers. BIOLOGY 2021; 10:biology10121228. [PMID: 34943143 PMCID: PMC8698325 DOI: 10.3390/biology10121228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022]
Abstract
Simple Summary In many households in rural communities, water needed for drinking and cooking is fetched from rivers, fountains, or boreholes shared by the community. The water is then stored in various storage containers for several days without treatment and exposed to several conditions that could potentially contaminate the water and cause diseases. If the storage containers are not regularly and properly cleaned, biofilms can form inside the containers. Several microorganisms can be found inside the biofilm that can potentially cause diseases in humans. One such group of organisms is called free-living amoebae, which graze on the bacteria found inside the biofilm. Several of these potentially harmful bacteria have adapted and can survive inside these free-living amoebae and potentially cause diseases when ingested by humans. Abstract This study investigated the co-existence of potential human pathogenic bacteria and free-living amoebae in samples collected from stored water in rural households in South Africa using borehole water as a primary water source. Over a period of 5 months, a total of 398 stored water and 392 biofilm samples were collected and assessed. Free-living amoebae were identified microscopically in 92.0% of the water samples and 89.8% of the biofilm samples. A further molecular identification using 18S rRNA sequencing identified Vermamoeba vermiformis, Entamoeba spp., Stenamoeba spp., Flamella spp., and Acanthamoeba spp. including Acanthamoeba genotype T4, which is known to be potentially harmful to humans. Targeted potential pathogenic bacteria were isolated from the water samples using standard culture methods and identified using 16S rRNA sequencing. Mycobacterium spp., Pseudomonas spp., Enterobacter spp., and other emerging opportunistic pathogens such as Stenotrophomonas maltophilia were identified. The results showed the importance of further studies to assess the health risk of free-living amoebae and potential human pathogenic bacteria to people living in rural communities who have no other option than to store water in their homes due to water shortages.
Collapse
Affiliation(s)
- Natasha Potgieter
- One Health Research Group, Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, Limpopo Province, South Africa
- Correspondence:
| | - Clarissa van der Loo
- Water and Health Research Centre, Doornfontein Campus, University of Johannesburg, Johannesburg 2112, Gauteng, South Africa; (T.G.B.); (C.v.d.L.)
| | - Tobias George Barnard
- Water and Health Research Centre, Doornfontein Campus, University of Johannesburg, Johannesburg 2112, Gauteng, South Africa; (T.G.B.); (C.v.d.L.)
| |
Collapse
|
3
|
The key factors contributing to the risk, diagnosis and treatment of non-tuberculous mycobacterial opportunistic infections. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The incidence and prevalence of diseases caused by non-tuberculous mycobacteria (NTM) have been steadily increasing worldwide. NTM are environmental saprophytic organisms; however, a few strains are known to produce diseases in humans affecting pulmonary and extra-pulmonary sites. Although the environment is a major source of NTM infection, recent studies have shown that person-to-person dissemination could be an important transmission route for these microorganisms. Structural and functional lung defects and immunodeficiency are major risk factors for acquiring NTM infections. Diagnosis of NTM diseases is very complex owing to the necessity of distinguishing between a true pathogen and an environmental contaminant. Identification at the species level is critical due to differences in the antibiotic susceptibility patterns of various NTM strains. Such identification is mainly achieved by molecular methods; additionally, mass spectrometry (e.g., MALDI-TOF) is useful for NTM species determination. Natural resistance of NTM species to a wide spectrum of antibiotics makes prescribing treatment for NTM diseases very difficult. NTM therapy usually takes more than one year and requires multi-drug regimens, yet the outcome often remains poor. Therefore, alternatives to antibiotic therapy treatment methods is an area under active exploration. NTM infections are an active global health problem imposing the necessity for better diagnostic tools and more effective treatment methods.
Collapse
|
4
|
van der Loo C, Bartie C, Barnard TG, Potgieter N. Detection of Free-Living Amoebae and Their Intracellular Bacteria in Borehole Water before and after a Ceramic Pot Filter Point-of-Use Intervention in Rural Communities in South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3912. [PMID: 33917870 PMCID: PMC8068299 DOI: 10.3390/ijerph18083912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022]
Abstract
Free-living amoebae (FLA) are ubiquitous in nature, whereas amoeba-resistant bacteria (ARB) have evolved virulent mechanisms that allow them to resist FLA digestion mechanisms and survive inside the amoeba during hostile environmental conditions. This study assessed the prevalence of FLA and ARB species in borehole water before and after a ceramic point-of-use intervention in rural households. A total of 529 water samples were collected over a five-month period from 82 households. All water samples were subjected to amoebal enrichment, bacterial isolation on selective media, and molecular identification using 16S PCR/sequencing to determine ARB species and 18S rRNA PCR/sequencing to determine FLA species present in the water samples before and after the ceramic pot intervention. Several FLA species including Acanthamoeba spp. and Mycobacterium spp. were isolated. The ceramic pot filter removed many of these microorganisms from the borehole water. However, design flaws could have been responsible for some FLA and ARB detected in the filtered water. FLA and their associated ARB are ubiquitous in borehole water, and some of these species might be potentially harmful and a health risk to vulnerable individuals. There is a need to do more investigations into the health risk of these organisms after point-of-use treatment.
Collapse
Affiliation(s)
- Clarissa van der Loo
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2094, South Africa; (C.v.d.L.); (T.G.B.)
| | | | - Tobias George Barnard
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2094, South Africa; (C.v.d.L.); (T.G.B.)
| | - Natasha Potgieter
- Environmental Health, Domestic Hygiene and Microbial Pathogens Research Group, Department of Microbiology, University of Venda, Thohoyandou 1950, South Africa
| |
Collapse
|
5
|
Rayamajhee B, Subedi D, Peguda HK, Willcox MD, Henriquez FL, Carnt N. A Systematic Review of Intracellular Microorganisms within Acanthamoeba to Understand Potential Impact for Infection. Pathogens 2021; 10:pathogens10020225. [PMID: 33670718 PMCID: PMC7922382 DOI: 10.3390/pathogens10020225] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
Acanthamoeba, an opportunistic pathogen is known to cause an infection of the cornea, central nervous system, and skin. Acanthamoeba feeds different microorganisms, including potentially pathogenic prokaryotes; some of microbes have developed ways of surviving intracellularly and this may mean that Acanthamoeba acts as incubator of important pathogens. A systematic review of the literature was performed in order to capture a comprehensive picture of the variety of microbial species identified within Acanthamoeba following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Forty-three studies met the inclusion criteria, 26 studies (60.5%) examined environmental samples, eight (18.6%) studies examined clinical specimens, and another nine (20.9%) studies analysed both types of samples. Polymerase chain reaction (PCR) followed by gene sequencing was the most common technique used to identify the intracellular microorganisms. Important pathogenic bacteria, such as E. coli, Mycobacterium spp. and P. aeruginosa, were observed in clinical isolates of Acanthamoeba, whereas Legionella, adenovirus, mimivirus, and unidentified bacteria (Candidatus) were often identified in environmental Acanthamoeba. Increasing resistance of Acanthamoeba associated intracellular pathogens to antimicrobials is an increased risk to public health. Molecular-based future studies are needed in order to assess the microbiome residing in Acanthamoeba, as a research on the hypotheses that intracellular microbes can affect the pathogenicity of Acanthamoeba infections.
Collapse
Affiliation(s)
- Binod Rayamajhee
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; (H.K.P.); (M.D.W.); (N.C.)
- Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences (KRIBS), Lalitpur 44700, Nepal
- Correspondence: or
| | - Dinesh Subedi
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia;
| | - Hari Kumar Peguda
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; (H.K.P.); (M.D.W.); (N.C.)
| | - Mark Duncan Willcox
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; (H.K.P.); (M.D.W.); (N.C.)
| | - Fiona L. Henriquez
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland (UWS), Paisley PA1 2BE, UK;
| | - Nicole Carnt
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; (H.K.P.); (M.D.W.); (N.C.)
| |
Collapse
|
6
|
Lanzoni O, Plotnikov A, Khlopko Y, Munz G, Petroni G, Potekhin A. The core microbiome of sessile ciliate Stentor coeruleus is not shaped by the environment. Sci Rep 2019; 9:11356. [PMID: 31388025 PMCID: PMC6684585 DOI: 10.1038/s41598-019-47701-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/22/2019] [Indexed: 12/29/2022] Open
Abstract
Microbiomes of multicellular organisms are one of the hottest topics in microbiology and physiology, while only few studies addressed bacterial communities associated with protists. Protists are widespread in all environments and can be colonized by plethora of different bacteria, including also human pathogens. The aim of this study was to characterize the prokaryotic community associated with the sessile ciliate Stentor coeruleus. 16S rRNA gene metabarcoding was performed on single cells of S. coeruleus and on their environment, water from the sewage stream. Our results showed that the prokaryotic community composition differed significantly between Stentor cells and their environment. The core microbiome common for all ciliate specimens analyzed could be defined, and it was composed mainly by representatives of bacterial genera which include also potential human pathogens and commensals, such as Neisseria, Streptococcus, Capnocytophaga, Porphyromonas. Numerous 16S rRNA gene contigs belonged to endosymbiont “Candidatus Megaira polyxenophila”. Our data suggest that each ciliate cell can be considered as an ecological microniche harboring diverse prokaryotic organisms. Possible benefits for persistence and transmission in nature for bacteria associated with protists are discussed. Our results support the hypothesis that ciliates attract potentially pathogenic bacteria and play the role of natural reservoirs for them.
Collapse
Affiliation(s)
| | - Andrey Plotnikov
- Center of Shared Scientific Equipment, Institute for Cellular and Intracellular Symbiosis, Ural Division of RAS, Orenburg, Russia
| | - Yuri Khlopko
- Center of Shared Scientific Equipment, Institute for Cellular and Intracellular Symbiosis, Ural Division of RAS, Orenburg, Russia
| | - Giulio Munz
- Department of Civil and Environmental Engineering, University of Florence, Florence, Italy
| | | | - Alexey Potekhin
- Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia.
| |
Collapse
|
7
|
Hsu CC. Dendrite-like anterior stromal keratitis coinfected with Acanthamoeba and Pseudomonas in an orthokeratology contact lens wearer. Taiwan J Ophthalmol 2019; 9:131-133. [PMID: 31198674 PMCID: PMC6557072 DOI: 10.4103/tjo.tjo_114_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Acanthamoeba species can cause a keratitis misdiagnosed as herpes keratitis or fungal keratitis. We report an unusual dendrite-like anterior stromal keratitis coinfected with Acanthamoeba and Pseudomonas aeruginosa in an orthokeratology contact lens wearer in Taiwan. Topical 1% voriconazole and 0.5% levofloxacin were prescribed because besides Acanthamoeba keratitis, fungal keratitis was also highly suspected initially. Topical 0.02% chlorhexidine was added after the culture of the scraped cornea showed positive results of Acanthamoeba and P. aeruginosa. The lesion subsided using this triple combination therapy for 1 week. Both Acanthamoeba and P. aeruginosa are potentially devastating causes of infectious keratitis. Our case highlights the importance of considering the possibility of a concurrent infection and atypical presentation in cases with contact lens-related keratitis. The use of topical levofloxacin combined with voriconazole should be considered as the first-line treatment in such patients.
Collapse
Affiliation(s)
- Chih-Chien Hsu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
8
|
Bouchoucha I, Aziz A, Hoffart L, Drancourt M. Repertoire of free-living protozoa in contact lens solutions. BMC Ophthalmol 2016; 16:191. [PMID: 27793130 PMCID: PMC5086047 DOI: 10.1186/s12886-016-0370-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/20/2016] [Indexed: 11/25/2022] Open
Abstract
Background The repertoire of free-living protozoa in contact lens solutions is poorly known despite the fact that such protozoa may act as direct pathogens and may harbor intra-cellular pathogens. Methods Between 2009 and 2014, the contact lens solutions collected from patients presenting at our Ophthalmology Department for clinically suspected keratitis, were cultured on non-nutrient agar examined by microscope for the presence of free-living protozoa. All protozoa were identified by 18S rRNA gene sequencing. Results A total of 20 of 233 (8.6 %) contact lens solution specimens collected from 16 patients were cultured. Acanthamoeba amoeba in 16 solutions (80 %) collected from 12 patients and Colpoda steini, Cercozoa sp., Protostelium sp. and a eukaryotic more closely related to Vermamoeba sp., were each isolated in one solution. Cercozoa sp., Colpoda sp., Protostelium sp. and Vermamoeba sp. are reported for the first time as contaminating contact lens solutions. Conclusion The repertoire of protozoa in contact lens solutions is larger than previously known.
Collapse
Affiliation(s)
| | - Aurore Aziz
- Ophthalmology Department, Hôpital de la Timone, Marseille, France
| | - Louis Hoffart
- Ophthalmology Department, Hôpital de la Timone, Marseille, France
| | - Michel Drancourt
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD198, Inserm 1095, 13005, Marseille, France. .,Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Faculté de Médecine, 27, Boulevard Jean Moulin, Marseille cedex 5, France.
| |
Collapse
|
9
|
Current and past strategies for bacterial culture in clinical microbiology. Clin Microbiol Rev 2015; 28:208-36. [PMID: 25567228 DOI: 10.1128/cmr.00110-14] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A pure bacterial culture remains essential for the study of its virulence, its antibiotic susceptibility, and its genome sequence in order to facilitate the understanding and treatment of caused diseases. The first culture conditions empirically varied incubation time, nutrients, atmosphere, and temperature; culture was then gradually abandoned in favor of molecular methods. The rebirth of culture in clinical microbiology was prompted by microbiologists specializing in intracellular bacteria. The shell vial procedure allowed the culture of new species of Rickettsia. The design of axenic media for growing fastidious bacteria such as Tropheryma whipplei and Coxiella burnetii and the ability of amoebal coculture to discover new bacteria constituted major advances. Strong efforts associating optimized culture media, detection methods, and a microaerophilic atmosphere allowed a dramatic decrease of the time of Mycobacterium tuberculosis culture. The use of a new versatile medium allowed an extension of the repertoire of archaea. Finally, to optimize the culture of anaerobes in routine bacteriology laboratories, the addition of antioxidants in culture media under an aerobic atmosphere allowed the growth of strictly anaerobic species. Nevertheless, among usual bacterial pathogens, the development of axenic media for the culture of Treponema pallidum or Mycobacterium leprae remains an important challenge that the patience and innovations of cultivators will enable them to overcome.
Collapse
|
10
|
Drancourt M. Looking in amoebae as a source of mycobacteria. Microb Pathog 2014; 77:119-24. [PMID: 25017516 DOI: 10.1016/j.micpath.2014.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 11/16/2022]
Abstract
Mycobacteria exhibit various relationships with amoebae, ranging from the killing of one partner by the other one, to amoebae hosting mycobacteria in trophozoites and cysts. This observation indicates that poorly described biological factors affect the relationships, including mycobacterial cell-wall glycolipids and the size of the mycobacteria. Experimental observations indicate that a majority of environmental, opportunistic mycobacteria but also obligate pathogens including Mycobacterium tuberculosis, Mycobacterium leprae and Mycobacterium ulcerans are inter-amoebal organisms. Amoebae may give opportunities for genetic exchanges between mycobacteria, sympatric intra-amoebal organisms and the amoebae themselves. Amoebae clearly protect opportunistic mycobacterial pathogens during their environmental life but their role for obligate mycobacterial infection remains to be established. Accordingly, water was the source for emerging, community-acquired and health care-associated infection with amoeba-resisting mycobacteria of the Mycobacterium avium, Mycobacterium abscessus and Mycobacterium fortuitum groups, among others. Amoebae are organisms where mycobacteria can be found and, accordingly, amoeba co-culture can be used for the isolation of mycobacteria from environmental and clinical specimens. Looking in amoebae may help recovering new species of mycobacteria.
Collapse
Affiliation(s)
- M Drancourt
- Aix Marseille Université, URMITE, UM 63 UMR_S1095 UMR 7278, Méditerranée Infection, 13385, Marseille, France.
| |
Collapse
|
11
|
Garcia A, Goñi P, Cieloszyk J, Fernandez MT, Calvo-Beguería L, Rubio E, Fillat MF, Peleato ML, Clavel A. Identification of free-living amoebae and amoeba-associated bacteria from reservoirs and water treatment plants by molecular techniques. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:3132-3140. [PMID: 23444840 DOI: 10.1021/es400160k] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The occurrence of free-living amoebae (FLA) was investigated in 83 water samples from reservoirs and water treatment plants, with culture positive in 64 of them (77.1%). Polymerase chain reaction (PCR) of partial 18S rRNA gene and ITS region was performed in order to identify amoeba isolates, and the presence of Legionella pneumophila , Mycobacterium spp., Pseudomonas spp., and Microcystis aeruginosa was investigated in 43 isolates of amoebae by multiplex PCR. Of the isolated amoebae, 31 were Acanthamoeba spp., 21 were Hartmannella vermiformis, 13 were Naegleria spp., and one was Vanella spp. T2, T4, and T5 genotypes of Acanthamoeba have been identified, and T4 isolates were grouped into five subgenotypes and graphically represented with a Weblog application. Inside amoebae, L. pneumophila was detected in 13.9% (6/43) of the isolates, and Pseudomonas spp. and Mycobacterium spp. were detected in 32.6% (14/43) and 41.9% (18/43), respectively. No statistical correlation was demonstrated between FLA isolation and seasonality, but the presence of intracellular bacteria was associated with warm water temperatures, and also the intracellular presence of Mycobacterium spp. and Pseudomonas spp. were associated. These results highlight the importance of amoebae in natural waters as reservoirs of potential pathogens and its possible role in the spread of bacterial genera with interest in public and environmental health.
Collapse
Affiliation(s)
- Alicia Garcia
- Area of Parasitology and §Area of Biomedicine and Public Health Biostatistics, Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cooccurrence of free-living amoebae and nontuberculous Mycobacteria in hospital water networks, and preferential growth of Mycobacterium avium in Acanthamoeba lenticulata. Appl Environ Microbiol 2013; 79:3185-92. [PMID: 23475613 DOI: 10.1128/aem.03823-12] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The incidence of lung and other diseases due to nontuberculous mycobacteria (NTM) is increasing. NTM sources include potable water, especially in households where NTM populate pipes, taps, and showerheads. NTM share habitats with free-living amoebae (FLA) and can grow in FLA as parasites or as endosymbionts. FLA containing NTM may form cysts that protect mycobacteria from disinfectants and antibiotics. We first assessed the presence of FLA and NTM in water and biofilm samples collected from a hospital, confirming the high prevalence of NTM and FLA in potable water systems, particularly in biofilms. Acanthamoeba spp. (genotype T4) were mainly recovered (8/17), followed by Hartmannella vermiformis (7/17) as well as one isolate closely related to the genus Flamella and one isolate only distantly related to previously described species. Concerning mycobacteria, Mycobacterium gordonae was the most frequently found isolate (9/17), followed by Mycobacterium peregrinum (4/17), Mycobacterium chelonae (2/17), Mycobacterium mucogenicum (1/17), and Mycobacterium avium (1/17). The propensity of Mycobacterium avium hospital isolate H87 and M. avium collection strain 104 to survive and replicate within various FLA was also evaluated, demonstrating survival of both strains in all amoebal species tested but high replication rates only in Acanthamoeba lenticulata. As A. lenticulata was frequently recovered from environmental samples, including drinking water samples, these results could have important consequences for the ecology of M. avium in drinking water networks and the epidemiology of disease due to this species.
Collapse
|
13
|
Molecular characterization and ultrastructure of a new amoeba endoparasite belonging to the Stenotrophomonas maltophilia complex. Exp Parasitol 2013; 133:383-90. [PMID: 23298539 DOI: 10.1016/j.exppara.2012.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/20/2012] [Accepted: 12/23/2012] [Indexed: 11/23/2022]
Abstract
Naegleria and Acanthamoeba spp. were recovered from biofilm of a flushing cistern in a lavatory and both were found to be infected by rod-shaped bacteria enclosed within a vacuole. These intracellular bacteria behave like parasites, causing lysis of host amoebae. The bacteria proved unculturable on bacteriological media, and but could be maintained as endocytobionts within Acanthamoeba on agar plates. A marked differential host preference was observed in co-culture assays with various strains of amoebae. Molecular phylogenetic analyses performed on almost complete 16S rDNA sequences showed that the bacteria emerged as an atypical rapidly-evolving strain within the Stenotrophomonas maltophilia complex (Gamma-Proteobacteria, Xanthomonadales).
Collapse
|
14
|
Thomas V, McDonnell G, Denyer SP, Maillard JY. Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiol Rev 2010; 34:231-59. [DOI: 10.1111/j.1574-6976.2009.00190.x] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Corsaro D, Pages GS, Catalan V, Loret JF, Greub G. Biodiversity of amoebae and amoeba-associated bacteria in water treatment plants. Int J Hyg Environ Health 2010; 213:158-66. [PMID: 20403728 DOI: 10.1016/j.ijheh.2010.03.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 02/18/2010] [Accepted: 03/19/2010] [Indexed: 11/27/2022]
Abstract
In this study, we enlarged our previous investigation focusing on the biodiversity of chlamydiae and amoebae in a drinking water treatment plant, by the inclusion of two additional plants and by searching also for the presence of legionellae and mycobacteria. Autochthonous amoebae were recovered onto non-nutritive agar, identified by 18S rRNA gene sequencing, and screened for the presence of bacterial endosymbionts. Bacteria were also searched for by Acanthamoeba co-culture. From a total of 125 samples, we recovered 38 amoebae, among which six harboured endosymbionts (three chlamydiae and three legionellae). In addition, we recovered by amoebal co-culture 11 chlamydiae, 36 legionellae (no L. pneumophila), and 24 mycobacteria (all rapid-growers). Two plants presented a similar percentage of samples positive for chlamydiae (11%), mycobacteria (20%) and amoebae (27%), whereas in the third plant the number of recovered bacteria was almost twice higher. Each plant exhibited a relatively high specific microbiota. Amoebae were mainly represented by various Naegleria species, Acanthamoeba species and Hartmannella vermiformis. Parachlamydiaceae were the most abundant chlamydiae (8 strains in total), and in this study we recovered a new genus-level strain, along with new chlamydiae previously reported. Similarly, about 66% of the recovered legionellae and 47% of the isolated mycobacteria could represent new species. Our work highlighted a high species diversity among legionellae and mycobacteria, dominated by putative new species, and it confirmed the presence of chlamydiae in these artificial water systems.
Collapse
Affiliation(s)
- Daniele Corsaro
- Center for Research on Intracellular Bacteria, Institute of Microbiology, Faculty of Biology and Medecine, University of Lausanne, Bugnon 46, 1011 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
16
|
Iovieno A, Ledee DR, Miller D, Alfonso EC. Detection of bacterial endosymbionts in clinical acanthamoeba isolates. Ophthalmology 2010; 117:445-52, 452.e1-3. [PMID: 20031220 DOI: 10.1016/j.ophtha.2009.08.033] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 08/23/2009] [Accepted: 08/25/2009] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To determine the presence of 4 clinically relevant bacterial endosymbionts in Acanthamoeba isolates obtained from patients with Acanthamoeba keratitis (AK) and the possible contribution of endosymbionts to the pathogenesis of AK. DESIGN Experimental study. PARTICIPANTS Acanthamoeba isolates (N = 37) recovered from the cornea and contact lens paraphernalia of 23 patients with culture-proven AK and 1 environmental isolate. METHODS Acanthamoeba isolates were evaluated for the presence of microbial endosymbionts belonging to the bacterial genera Legionella, Pseudomonas, Mycobacterium, and Chlamydia using molecular techniques (polymerase chain reaction and sequence analysis, fluorescence in situ hybridization) and transmission electron microscopy. Corneal toxicity and virulence of Acanthamoeba isolates with and without endosymbionts were compared using a cytopathic effect (CPE) assay on human corneal epithelial cells in vitro. Initial visual acuity, location and characteristics of the infiltrate, time to detection of the infection, and symptom duration at presentation were evaluated in all patients. MAIN OUTCOME MEASURES Prevalence and potential pathobiology of bacterial endosymbionts detected in Acanthamoeba isolates recovered from AK. RESULTS Twenty-two (59.4%) of the 38 cultures examined contained at least 1 bacterial endosymbiont. One isolate contained 2 endosymbionts, Legionella and Chlamydia, confirmed by fluorescence in situ hybridization. Corneal toxicity (CPE) was significantly higher for Acanthamoeba-hosting endosymbionts compared with isolates without endosymbionts (P<0.05). Corneal pathogenic endosymbionts such as Pseudomonas and Mycobacterium enhanced Acanthamoeba CPE significantly more than Legionella (P<0.05). In the presence of bacterial endosymbionts, there was a trend toward worse initial visual acuity (P>0.05), central location (P<0.05), absence of radial perineuritis (P<0.05), delayed time to detection (P>0.05), and longer symptom duration at presentation (P>0.05). CONCLUSIONS Most Acanthamoeba isolates responsible for AK harbor 1 or more bacterial endosymbionts. The presence of endosymbionts enhances the corneal pathogenicity of Acanthamoeba isolates and may impact detection time and clinical features of AK.
Collapse
Affiliation(s)
- Alfonso Iovieno
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami-Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
17
|
Salah IB, Ghigo E, Drancourt M. Free-living amoebae, a training field for macrophage resistance of mycobacteria. Clin Microbiol Infect 2009; 15:894-905. [PMID: 19845701 DOI: 10.1111/j.1469-0691.2009.03011.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Mycobacterium species evolved from an environmental recent common ancestor by reductive evolution and lateral gene transfer. Strategies selected through evolution and developed by mycobacteria resulted in resistance to predation by environmental unicellular protists, including free-living amoebae. Indeed, mycobacteria are isolated from the same soil and water environments as are amoebae, and experimental models using Acanthamoeba spp. and Dictyostelium discoideum were exploited to analyse the mechanisms for intracellular survival. Most of these mechanisms have been further reproduced in macrophages for mycobacteria regarded as opportunistic and obligate pathogens. Amoebal cysts may protect intracellular mycobacteria against adverse conditions and may act as a vector for mycobacteria. The latter hypothesis warrants further environmental and clinical studies to better assess the role of free-living amoebae in the epidemiology of infections caused by mycobacteria.
Collapse
Affiliation(s)
- I B Salah
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, CNRS 6236 IRD 198, IFR 48 Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | | | | |
Collapse
|
18
|
Choi SH, Cho MK, Ahn SC, Lee JE, Lee JS, Kim DH, Xuan YH, Hong YC, Kong HH, Chung DI, Yu HS. Endosymbionts of Acanthamoeba isolated from domestic tap water in Korea. THE KOREAN JOURNAL OF PARASITOLOGY 2009; 47:337-44. [PMID: 19967080 DOI: 10.3347/kjp.2009.47.4.337] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 09/16/2009] [Accepted: 09/19/2009] [Indexed: 11/23/2022]
Abstract
In a previous study, we reported our discovery of Acanthamoeba contamination in domestic tap water; in that study, we determined that some Acanthamoeba strains harbor endosymbiotic bacteria, via our molecular characterization by mitochondrial DNA restriction fragment length polymorphism (Mt DNA RFLP). Five (29.4%) among 17 Acanthamoeba isolates contained endosymbionts in their cytoplasm, as demonstrated via orcein staining. In order to estimate their pathogenicity, we conducted a genetic characterization of the endosymbionts in Acanthamoeba isolated from domestic tap water via 16S rDNA sequencing. The endosymbionts of Acanthamoeba sp. KA/WP3 and KA/WP4 evidenced the highest level of similarity, at 97% of the recently published 16S rDNA sequence of the bacterium, Candidatus Amoebophilus asiaticus. The endosymbionts of Acanthamoeba sp. KA/WP8 and KA/WP12 shared a 97% sequence similarity with each other, and were also highly similar to Candidatus Odyssella thessalonicensis, a member of the alpha-proteobacteria. The endosymbiont of Acanthamoeba sp. KA/WP9 exhibits a high degree of similarity (85-95%) with genus Methylophilus, which is not yet known to harbor any endosymbionts. This is the first report, to the best of our knowledge, to show that Methylophilus spp. can live in the cytoplasm of Acanthamoeba.
Collapse
Affiliation(s)
- Seon Hee Choi
- Department of Parasitology, School of Medicine, Pusan National University, Busan, 602-739, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yli-Pirilä T, Kusnetsov J, Hirvonen MR, Seuri M, Nevalainen A. Survival of amoebae on building materials. INDOOR AIR 2009; 19:113-121. [PMID: 19076736 DOI: 10.1111/j.1600-0668.2008.00567.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
UNLABELLED Moisture damage and concurrent microbial growth in buildings are associated with adverse health effects among the occupants. However, the causal agents for the symptoms are unclear although microbes are assumed to play a major role. Fungi and bacteria are not the only microbes inhabiting moist building materials; it was recently revealed that amoebae are also present. As amoebae have the potential to harbor many pathogens and to modulate the characteristics of growing microbes, a better appreciation of the growth and survival of amoebae in moisture damage conditions will add to the understanding of their effects on health outcomes. In this study, we investigated the ability of amoebae to survive on six building materials. Furthermore, both aged and unused materials were tested. Amoebae survived on gypsum board and mineral wool for the whole 2 months experiment even without additional sustenance. When sustenance (heat-killed bacteria) was available, aged pine wood and birch wood also allowed their survival. In contrast, amoebae were quickly killed on fresh pine wood and they did not survive on concrete or linoleum. In conclusion, our data show that amoebae can persist on several common building materials once these materials become wet. PRACTICAL IMPLICATIONS Amoebae are able to survive on many building materials should the materials become wet. Amoebae have the potential to increase growth, cytotoxicity, and pathogenicity of other microbes present in moisture damages, and they may carry potentially pathogenic bacteria as endosymbionts and thus introduce them into the indoor air. Therefore, amoebae may have a prominent role in the microbial exposures occurring in moisture-damaged buildings. The presence of amoebae could be usefully included in reporting the microbial damage of material samples.
Collapse
Affiliation(s)
- T Yli-Pirilä
- Department of Environmental Health, National Public Health Institute, Kuopio, Finland.
| | | | | | | | | |
Collapse
|
20
|
Occurrence of free-living amoebae in communities of low and high endemicity for Buruli ulcer in southern Benin. Appl Environ Microbiol 2008; 74:6547-53. [PMID: 18776024 DOI: 10.1128/aem.01066-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Buruli ulcer or Mycobacterium ulcerans disease occurs mainly in areas in proximity to standing or slowly running freshwater, habitats in which free-living amoebae occur. For this reason, a possible link between the habitat of M. ulcerans and free-living amoebae was investigated. Free-living amoebae and mycobacteria were isolated from water and biofilm specimens taken from protected and unprotected sources of water in villages known to have either high or low endemicity for Buruli ulcer in Benin. Amoebae were isolated from 78.8% of samples. A greater proportion of water bodies in areas of high endemicity had amoebae than in areas of low endemicity (83.3% versus 66.7%). Protected sources of water were significantly more likely to contain amoebae in areas of high endemicity than in areas of low endemicity (88.0% versus 11.1%). Several pathogenic free-living amoebae and mycobacteria were isolated. However, no M. ulcerans was isolated and no specimen was positive for IS2404 PCR. Our results show that the study area has a water hygiene problem, which is greater in areas of high Buruli ulcer endemicity than in areas of low endemicity. Our observations indicate that additional studies are required to explore the possible link between free-living amoebae and mycobacteria.
Collapse
|
21
|
Thomas V, McDonnell G. Relationship between mycobacteria and amoebae: ecological and epidemiological concerns. Lett Appl Microbiol 2007; 45:349-57. [PMID: 17897376 DOI: 10.1111/j.1472-765x.2007.02206.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since the discovery that Legionella pneumophila can survive and grow within free-living amoebae, there has been an increasing number of microbial species shown to have similar relationships. These include many bacterial species, fungi, other protozoa (e.g. Cryptosporidium) and viruses. Among bacteria, mycobacteria are of particular importance because of their role in human and animal infections. This review will consider the progress made in understanding the relationships between mycobacteria and amoebae, and their consequences in terms of ecology and epidemiology.
Collapse
Affiliation(s)
- V Thomas
- STERIS Laboratory, CEA/DSV/IMETI/SEPIA, 18 route du Panorama, 92260 Fontenay-aux-Roses, France.
| | | |
Collapse
|