1
|
Sun H, Lin Z, Zhao L, Chen T, Shang M, Jiang H, Tang Z, Zhou X, Shi M, Zhou L, Ren P, Qu H, Lin J, Li X, Xu J, Huang Y, Yu X. Bacillus subtilis spore with surface display of paramyosin from Clonorchis sinensis potentializes a promising oral vaccine candidate. Parasit Vectors 2018. [PMID: 29514667 PMCID: PMC5842650 DOI: 10.1186/s13071-018-2757-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Clonorchiasis caused by Clonorchis sinensis has become increasingly prevalent in recent years. Effective prevention strategies are urgently needed to control this food-borne infectious disease. Previous studies indicated that paramyosin of C. sinensis (CsPmy) is a potential vaccine candidate. Methods We constructed a recombinant plasmid of PEB03-CotC-CsPmy, transformed it into Bacillus subtilis WB600 strain (B.s-CotC-CsPmy), and confirmed CsPmy expression on the spore surface by SDS-PAGE, Western blotting and immunofluorescence assay. The immune response and protective efficacy of the recombinant spore were investigated in BALB/c mice after intragastrical or intraperitoneal immunization. Additionally, biochemical enzyme activities in sera, the intestinal histopathology and gut microflora of spore-treated mice were investigated. Results CsPmy was successfully expressed on the spore surface and the fusion protein on the spore surface with thermostability. Specific IgG in sera and intestinal mucus were increased after intraperitoneal and intragastrical immunization. The sIgA level in intestinal mucus, feces and bile of B.s-CotC-CsPmy orally treated mice were also significantly raised. Furthermore, numerous IgA-secreting cells were detected in intestinal mucosa of intragastrically immunized mice. No inflammatory injury was observed in the intestinal tissues and there was no significant difference in levels of enzyme-indicated liver function among the groups. Additionally, the diversity and abundance of gut microbiota were not changed after oral immunization. Intragastric and intraperitoneal immunization of B.s-CotC-CsPmy spores in mice resulted in egg reduction rates of 48.3 and 51.2% after challenge infection, respectively. Liver fibrosis degree in B.s-CotC-CsPmy spores treated groups was also significantly reduced. Conclusions CsPmy expressed on the spore surface maintained its immunogenicity. Both intragastrical and intraperitoneal immunization with B.s-CotC-CsPmy spores induced systemic and local mucosal immune response in mice. Although both intragastric and intraperitoneal immunization elicited a similar protective effect, intragastric immunization induced stronger mucosal immune response without side effects to the liver, intestine and gut microbiota, compared with intraperitoneal immunization. Oral immunization with B. subtilis spore expressing CsPmy on the surface was a promising, safe and needle-free vaccination strategy against clonorchiasis.
Collapse
Affiliation(s)
- Hengchang Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China
| | - Zhipeng Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China
| | - Lu Zhao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China
| | - Tingjin Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China
| | - Mei Shang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China
| | - Hongye Jiang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China
| | - Zeli Tang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China.,Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Xinyi Zhou
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China
| | - Mengchen Shi
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China
| | - Lina Zhou
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China
| | - Pengli Ren
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China
| | - Honglin Qu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China
| | - Jinsi Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China
| | - Jin Xu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China. .,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China. .,Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China.
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China. .,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China. .,Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
3
|
Kim EM, Yu HS, Jin Y, Choi MH, Bae YM, Hong ST. Local immune response to primary infection and re-infection by Clonorchis sinensis in FVB mice. Parasitol Int 2016; 66:436-442. [PMID: 27856336 DOI: 10.1016/j.parint.2016.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/12/2016] [Accepted: 11/14/2016] [Indexed: 12/11/2022]
Abstract
Although Clonorchis sinensis lives in the bile duct, few studies have investigated the local immune response in the liver and bile duct. To investigate the local immune response to C. sinensis, we investigated the activation and recruitment of various immune cells and cytokine levels in the liver and bile duct lymph nodes (BLN) in FVB mice after primary infection and re-infection. Male 4-week-old FVB mice were divided into 6 experimental groups: uninfected controls, primary infection lasting 1week (PI 1w), primary infection lasting 4weeks (PI 4w), praziquantel treatment after PI 4w (Tx), re-infection lasting 1week after Tx (RI 1w), and re-infection lasting 4weeks after Tx (RI 4w). Recovery rates were 80.0% and 73.0% in PI 1w and PI 4w mice, respectively, but significantly decreased during re-infection to 26.6% in RI 1w and 13.3% in RI 4w. This result suggested that the mice were resistant to re-infection. In the liver, Kupffer cells were augmented 70-fold in PI 1w mice (P<0.001). Kupffer cells expressed Th2-related cytokines (IL-10 and IL-13) during primary infection. In addition, serum levels of C. sinensis-specific IgG1 and IgG2a strongly increased in RI 1w mice. Secretion of C. sinensis-specific IgE reached a plateau at 4weeks after primary infection, and remained elevated in all infected groups. In conclusion, during infection with C. sinensis, Kupffer cells likely act as antigen-presenting cells, stimulating the Th2 cytokine production system.
Collapse
Affiliation(s)
- Eun-Min Kim
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Department of Environmental Medical Biology and Arthropods of Medical Importance Resource Research Bank, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hak Sun Yu
- Department of Parasitology, School of Medicine, Pusan National University, Yangsan, Republic of Korea; Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Busan, Republic of Korea
| | - Yan Jin
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Min-Ho Choi
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Young Mee Bae
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Sung-Tae Hong
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea.
| |
Collapse
|