1
|
Lee SK, Nguyen TK, Mohring F, Han JH, Firdaus ER, Na SH, Park WS, Moon RW, Han ET. Merozoite surface protein 1 paralog is involved in the human erythrocyte invasion of a zoonotic malaria, Plasmodium knowlesi. Front Cell Infect Microbiol 2023; 13:1314533. [PMID: 38111629 PMCID: PMC10726050 DOI: 10.3389/fcimb.2023.1314533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
The zoonotic malaria parasite Plasmodium knowlesi is an important public health concern in Southeast Asia. Invasion of host erythrocytes is essential for parasite growth, and thus, understanding the repertoire of parasite proteins that enable this process is vital for identifying vaccine candidates and how some species are able to cause zoonotic infection. Merozoite surface protein 1 (MSP1) is found in all malaria parasite species and is perhaps the most well-studied as a potential vaccine candidate. While MSP1 is encoded by a single gene in P. falciparum, all other human infective species (P. vivax, P. knowlesi, P. ovale, and P. malariae) additionally encode a divergent paralogue known as MSP1P, and little is known about its role or potential functional redundancy with MSP1. We, therefore, studied the function of P. knowlesi merozoite surface protein 1 paralog (PkMSP1P), using both recombinant protein and CRISPR-Cas9 genome editing. The recombinant 19-kDa C-terminus of PkMSP1P (PkMSP1P-19) was shown to bind specifically to human reticulocytes. However, immunoblotting data suggested that PkMSP1P-19-induced antibodies can recognize PkMSP1-19 and vice versa, confounding our ability to separate the properties of these two proteins. Targeted disruption of the pkmsp1p gene profoundly impacts parasite growth, demonstrating for the first time that PkMSP1P is important in in vitro growth of P. knowlesi and likely plays a distinct role from PkMSP1. Importantly, the MSP1P KO also enabled functional characterization of the PkMSP1P-19 antibodies, revealing clear immune cross-reactivity between the two paralogues, highlighting the vital importance of genetic studies in contextualizing recombinant protein studies.
Collapse
Affiliation(s)
- Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Tuyet Kha Nguyen
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Franziska Mohring
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Egy Rahman Firdaus
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Sung-Hun Na
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Won-Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Robert W. Moon
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| |
Collapse
|
2
|
A novel platform for peptide-mediated affinity capture and LC-MS/MS identification of host receptors involved in Plasmodium invasion. J Proteomics 2020; 231:104002. [PMID: 33045431 DOI: 10.1016/j.jprot.2020.104002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/12/2020] [Accepted: 09/30/2020] [Indexed: 11/21/2022]
Abstract
Successful Plasmodium falciparum invasion of red blood cells includes the orderly execution of highly specific receptor-ligand molecular interactions between the parasite's proteins and the red blood cell membrane proteins. There is a growing need for elucidating receptor-ligand pairings, which will help in understanding the parasite's biology and provide the fundamental basis for developing prophylactic or therapeutic alternatives leading to mitigating or eliminating this type of malaria. We have thus used Plasmodium falciparum RH5 - derived peptides and ghost red blood cell proteins in synthetic peptide affinity capture assays to identify important host receptors used by Plasmodium spp. in the invasion of red blood cells. LC-MS/MS analysis confirmed the extensively described interaction between PfRH5 and the basigin receptor on the red blood cell membrane. As shown here, tagged synthetic peptides displaying high binding ability to erythrocytes can be used to identify receptors present in protein extracts from ghost red blood cells via affinity capture and LC-MS/MS. SIGNIFICANCE: The article describes a novel approach for identifying red blood cell receptors based on the ability of synthetic peptides having high red blood cell binding capacity to capture Plasmodium spp. receptors on proteins extracted from ghost red blood cells. Specifically, novel methods to identify Plasmodium falciparum reticulocyte binding protein homolog 5 PfRH5 and basigin interaction using a combination of affinity capture and LC-MS/MS assays is described. Identification of these host RBC receptors interacting with malarial parasite proteins is of utmost importance in studying the disease's pathogenesis and will provide crucial information in understanding the parasite's biology. In addition, data from these studies can be used to identify potential therapeutic target(s) to mitigate or eliminate this debilitating disease.
Collapse
|
3
|
Han JH, Cheng Y, Muh F, Ahmed MA, Cho JS, Nyunt MH, Jeon HY, Ha KS, Na S, Park WS, Hong SH, Shin HJ, Russell B, Han ET. Inhibition of parasite invasion by monoclonal antibody against epidermal growth factor-like domain of Plasmodium vivax merozoite surface protein 1 paralog. Sci Rep 2019; 9:3906. [PMID: 30846737 PMCID: PMC6405985 DOI: 10.1038/s41598-019-40321-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 01/30/2019] [Indexed: 01/04/2023] Open
Abstract
The Plasmodium vivax merozoite surface protein 1 paralog (PvMSP1P), which has epidermal growth factor (EGF)-like domains, was identified as a novel erythrocyte adhesive molecule. This EGF-like domain (PvMSP1P-19) elicited high level of acquired immune response in patients. Antibodies against PvMSP1P significantly reduced erythrocyte adhesion activity to its unknown receptor. To determine PvMSP1P-19-specific antibody function and B-cell epitopes in vivax patients, five monoclonal antibodies (mAbs) and 18-mer peptides were generated. The mAb functions were determined by erythrocyte-binding inhibition assay and invasion inhibition assay with P. knowlesi. B-cell epitopes of PvMSP1P-19 domains were evaluated by peptide microarray. The pvmsp1p-19 sequences showed limited polymorphism in P. vivax worldwide isolates. The 1BH9-A10 showed erythrocyte binding inhibitory by interaction with the N-terminus of PvMSP1P-19, while this mAb failed to recognize PkMSP1P-19 suggesting the species-specific for P. vivax. Other mAbs showed cross-reactivity with PkMSP1P-19. Among them, the 2AF4-A2 and 2AF4-A6 mAb significantly reduced parasite invasion through C-terminal recognition. The linear B-cell epitope in naturally exposed P. vivax patient was identified at three linear epitopes. In this study, PvMSP1P-19 N-terminal-specific 1BH9-A10 and C-terminal-specific 2AF4 mAbs showed functional activity for epitope recognition suggesting that PvMSP1P may be useful for vaccine development strategy for specific single epitope to prevent P. vivax invasion.
Collapse
Affiliation(s)
- Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea.,Department of Microbiology and Immunology, University of Otago, Dunedin, 9054, New Zealand
| | - Yang Cheng
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea.,Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Fauzi Muh
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Md Atique Ahmed
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jee-Sun Cho
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore 117597, Singapore; Singapore Immunology Network (SIgN), A*STAR, Singapore, 138648, Singapore.,Jenner Institute Laboratories, Old Road Campus Research Building, University of Oxford, Oxford, United Kingdom
| | | | - Hye-Yoon Jeon
- Department of Cellular and Molecular Biology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Kwon-Soo Ha
- Department of Cellular and Molecular Biology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Sunghun Na
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon national University, Chuncheon, Gangwon-do, Republic of Korea
| | - Ho-Joon Shin
- Department of Microbiology, Ajou University School of Medicine, and Department of Biomedical Science, Ajou University Graduate School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9054, New Zealand.,Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore 117597, Singapore; Singapore Immunology Network (SIgN), A*STAR, Singapore, 138648, Singapore
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea.
| |
Collapse
|
4
|
Bermúdez M, Moreno-Pérez DA, Arévalo-Pinzón G, Curtidor H, Patarroyo MA. Plasmodium vivax in vitro continuous culture: the spoke in the wheel. Malar J 2018; 17:301. [PMID: 30126427 PMCID: PMC6102941 DOI: 10.1186/s12936-018-2456-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/13/2018] [Indexed: 01/01/2023] Open
Abstract
Understanding the life cycle of Plasmodium vivax is fundamental for developing strategies aimed at controlling and eliminating this parasitic species. Although advances in omic sciences and high-throughput techniques in recent years have enabled the identification and characterization of proteins which might be participating in P. vivax invasion of target cells, exclusive parasite tropism for invading reticulocytes has become the main obstacle in maintaining a continuous culture for this species. Such advance that would help in defining each parasite protein’s function in the complex process of P. vivax invasion, in addition to evaluating new therapeutic agents, is still a dream. Advances related to maintenance, culture medium supplements and the use of different sources of reticulocytes and parasites (strains and isolates) have been made regarding the development of an in vitro culture for P. vivax; however, only some cultures having few replication cycles have been obtained to date, meaning that this parasite’s maintenance goes beyond the technical components involved. Although it is still not yet clear which molecular mechanisms P. vivax prefers for invading young CD71+ reticulocytes [early maturation stages (I–II–III)], changes related to membrane proteins remodelling of such cells could form part of the explanation. The most relevant aspects regarding P. vivax in vitro culture and host cell characteristics have been analysed in this review to explain possible reasons why the species’ continuous in vitro culture is so difficult to standardize. Some alternatives for P. vivax in vitro culture have also been described.
Collapse
Affiliation(s)
- Maritza Bermúdez
- Receptor-ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, Colombia
| | - Darwin Andrés Moreno-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, Colombia.,Livestock Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 No. 55-37, Bogotá, DC, Colombia
| | - Gabriela Arévalo-Pinzón
- Receptor-ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, Colombia
| | - Hernando Curtidor
- Receptor-ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, Colombia.,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá, DC, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, Colombia. .,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá, DC, Colombia.
| |
Collapse
|