1
|
Dinzouna-Boutamba SD, Moon Z, Lee S, Afridi SG, Lê HG, Hong Y, Na BK, Goo YK. Population genetic analysis of Plasmodium vivax vir genes in Pakistan. PARASITES, HOSTS AND DISEASES 2024; 62:313-322. [PMID: 39218630 PMCID: PMC11366537 DOI: 10.3347/phd.24036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/21/2024] [Indexed: 09/04/2024]
Abstract
Plasmodium vivax variant interspersed repeats (vir) refer to the key protein used for escaping the host immune system. Knowledge in the genetic variation of vir genes can be used for the development of vaccines or diagnostic methods. Therefore, we evaluated the genetic diversity of the vir genes of P. vivax populations of several Asian countries, including Pakistan, which is a malaria-endemic country experiencing a significant rise in malaria cases in recent years. We analyzed the genetic diversity and population structure of 4 vir genes (vir 4, vir 12, vir 21, and vir 27) in the Pakistan P. vivax population and compared these features to those of the corresponding vir genes in other Asian countries. In Pakistan, vir 4 (S=198, H=9, Hd=0.889, Tajima's D value=1.12321) was the most genetically heterogenous, while the features of vir 21 (S=8, H=7, Hd=0.664, Tajima's D value =-0.63763) and vir 27 (S =25, H =11, Hd =0.682, Tajima's D value=-2.10836) were relatively conserved. Additionally, vir 4 was the most genetically diverse among Asian P. vivax populations, although within population diversity was low. Meanwhile, vir 21 and vir 27 among all Asian populations were closely related genetically. Our findings on the genetic diversity of vir genes and its relationships between populations in diverse geographical locations contribute toward a better understanding of the genetic characteristics of vir. The high level of genetic diversity of vir 4 suggests that this gene can be a useful genetic marker for understanding the P. vivax population structure. Longitudinal genetic diversity studies of vir genes in P. vivax isolates obtained from more diverse geographical areas are needed to better understand the function of vir genes and their use for the development of malaria control measures, such as vaccines.
Collapse
Affiliation(s)
| | - Zin Moon
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944,
Korea
| | - Sanghyun Lee
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944,
Korea
| | - Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan,
Pakistan
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, Department of Convergence Medical Science, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727,
Korea
| | - Yeonchul Hong
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944,
Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, Department of Convergence Medical Science, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727,
Korea
| | - Youn-Kyoung Goo
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944,
Korea
- Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu 41566,
Korea
| |
Collapse
|
2
|
Hawadak J, Arya A, Chaudhry S, Singh V. Genetic diversity and natural selection analysis of VAR2CSA and vir genes: implication for vaccine development. Genomics Inform 2024; 22:11. [PMID: 39010183 PMCID: PMC11247734 DOI: 10.1186/s44342-024-00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/27/2023] [Indexed: 07/17/2024] Open
Abstract
Variable surface antigens (VSAs) encoded by var and vir genes in Plasmodium falciparum and Plasmodium vivax, respectively, are known to be involved in malaria pathogenesis and host immune escape through antigenic variations. Knowledge of the genetic diversity of these antigens is essential for malaria control and effective vaccine development. In this study, we analysed the genetic diversity and evolutionary patterns of two fragments (DBL2X and DBL3X) of VAR2CSA gene and four vir genes (vir 4, vir 12, vir 21 and vir 27) from different endemic regions, including Southeast Asia and sub-Saharan Africa. High levels of segregating sites (S) and haplotype diversity (Hd) were observed in both var and vir genes. Among vir genes, vir 12 (S = 131, Hd = 0.996) and vir 21 (S = 171, Hd = 892) were found to be more diverse as compared to vir 4 (S = 11, Hd = 0.748) and vir 27 (S = 23, Hd = 0.814). DBL2X (S = 99, Hd = 0.996) and DBL3X (S = 307, Hd = 0.999) fragments showed higher genetic diversity. Our analysis indicates that var and vir genes are highly diverse and follow the similar evolutionary pattern globally. Some codons showed signatures of positive or negative selection pressure, but vir and var genes are likely to be under balancing selection. This study highlights the high variability of var and vir genes and underlines the need of functional experimental studies to determine the most relevant allelic forms for effective progress towards vaccine formulation and testing.
Collapse
Affiliation(s)
- Joseph Hawadak
- ICMR-National Institute of Malaria Research (NIMR), Delhi, 110077, India
| | - Aditi Arya
- ICMR-National Institute of Malaria Research (NIMR), Delhi, 110077, India
| | - Shewta Chaudhry
- ICMR-National Institute of Malaria Research (NIMR), Delhi, 110077, India
| | - Vineeta Singh
- ICMR-National Institute of Malaria Research (NIMR), Delhi, 110077, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Goo YK. Vivax Malaria and the Potential Role of the Subtelomeric Multigene vir Superfamily. Microorganisms 2022; 10:microorganisms10061083. [PMID: 35744600 PMCID: PMC9228997 DOI: 10.3390/microorganisms10061083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Vivax malaria, caused by Plasmodium vivax, remains a public health concern in Central and Southeast Asia and South America, with more than two billion people at risk of infection. Compared to Plasmodium falciparum, P. vivax is considered a benign infection. However, in recent decades, incidences of severe vivax malaria have been confirmed. The P. falciparum erythrocyte membrane protein 1 family encoded by var genes is known as a mediator of severe falciparum malaria by cytoadherence property. Correspondingly, the vir multigene superfamily has been identified as the largest multigene family in P. vivax and is implicated in cytoadherence to endothelial cells and immune response activation. In this review, the functions of vir genes are reviewed in the context of their potential roles in severe vivax malaria.
Collapse
Affiliation(s)
- Youn-Kyoung Goo
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
4
|
Lee S, Choi YK, Goo YK. Humoral and cellular immune response to Plasmodium vivax VIR recombinant and synthetic antigens in individuals naturally exposed to P. vivax in the Republic of Korea. Malar J 2021; 20:288. [PMID: 34183015 PMCID: PMC8237554 DOI: 10.1186/s12936-021-03810-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium vivax proteins with variant interspersed repeats (VIR) are the key proteins used by the parasite to escape from the host immune system through the creation of antigenic variations. However, few studies have been done to elucidate their role as targets of immunity. Thus, this study evaluated the naturally-acquired immune response against VIR proteins in vivax malaria-infected individuals in the Republic of Korea (ROK). METHODS Seven recombinant VIR proteins and two synthetic peptides previously studied in other countries that elicited a robust immune response were used to investigate the antibody and cellular immune response in 681 P. vivax-infected people in ROK. The expression of IgM, IgG, and IgG subclasses against each VIR antigen or against PvMSP1-19 was analysed by ELISA. PvMSP1-19, known as a promising vaccine candidate of P. vivax, was used as the positive control for immune response assessment. Furthermore, the cellular immune response to VIR antigens was evaluated by in vitro proliferative assay, cellular activation assay, and cytokine detection in mononuclear cells of the P. vivax-infected population. RESULTS IgM or IgG were detected in 52.4% of the population. Among all the VIR antigens, VIR25 elicited the highest humoral immune response in the whole population with IgG and IgM prevalence of 27.8% and 29.2%, respectively, while PvMSP1-19 elicited even higher prevalence (92%) of IgG in the population. As for the cellular immune response, VIR-C2, PvLP2, and PvMSP1-19 induced high cell activation and secretion of IL-2, IL-6, IL-10, and G-CSF in mononuclear cells from the P. vivax-infected population, comparable with results from PvMSP1-19. However, no significant proliferation response to these antigens was observed between the malaria-infected and healthy groups. CONCLUSION Moderate natural acquisition of antibody and cellular responses in P. vivax-infected Korean malaria patients presented here are similar to that in other countries. It is interesting that the immune response to VIR antigens is conserved among malaria parasites in different countries, considering that VIR genes are highly polymorphic. This thus warrants further studies to elucidate molecular mechanisms by which human elicit immune response to the malaria parasite VIR antigens.
Collapse
Affiliation(s)
- Sanghyun Lee
- Division of Bio Bigdata, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Chungbuk, 28159, Republic of Korea.,Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Young-Ki Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Youn-Kyoung Goo
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
5
|
Na BK, Kim TS, Lin K, Baek MC, Chung DI, Hong Y, Goo YK. Genetic polymorphism of vir genes of Plasmodium vivax in Myanmar. Parasitol Int 2020; 80:102233. [PMID: 33144194 DOI: 10.1016/j.parint.2020.102233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 09/10/2020] [Accepted: 09/25/2020] [Indexed: 02/03/2023]
Abstract
The Plasmodium vivax variant proteins encoded by vir genes are highly polymorphic antigens and are considered as one of key proteins of P. vivax for host immune evasion via antigenic variations. Because genetic diversity of these antigens is a critical hurdle in the development of an effective vaccine, understanding the genetic nature of the vir genes in natural population is important. In this study, we selected four vir genes (vir 4, vir 12, vir 21, and vir 27) previously used for genetic analysis in several studies and evaluated the genetic polymorphisms and phylogenetic relationship of these 4 vir genes in Myanmar P. vivax population. Taken all genetic diversity values, the vir 12 (S = 168, H = 17, Hd = 0.854, Tajima's D value = 2.91524) was the most genetically diverse gene and the vir 4 (S = 9, H = 4, Hd = 0.744, Tajima's D value = -0.49151) was the most conserved gene. All phylogenetic trees showed two clades, and vir 4 and 12 haplotypes from Myanmar were clustered in a distinct clade with those from India and Republic of Korea. These results confirmed the pattern of high genetic polymorphism of vir genes and provided information on vir gene for further functional research and studies focused toward the practical use of vir genes.
Collapse
Affiliation(s)
- Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Tong-Soo Kim
- Department of Tropical Medicine, Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Khin Lin
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Dong-Il Chung
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Yeonchul Hong
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Youn-Kyoung Goo
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
6
|
Succinate dehydrogenase gene as a marker for studying Blastocystis genetic diversity. Heliyon 2020; 6:e05387. [PMID: 33163680 PMCID: PMC7609450 DOI: 10.1016/j.heliyon.2020.e05387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/01/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Blastocystis has been reported as the most common eukaryotic microorganism residing in the intestines of both humans and animals, with a prevalence of up to 100% in some populations. Since this is a cryptic species, sequence polymorphism are the single strategy to analyses its genetic diversity, being traditionally used the analysis of ssu rRNA gene sequence to determine alleles and subtypes (STs) for this species. This multicopy gene has shown high diversity among different STs, making necessary to explore other genes to assess intraspecific diversity. This study evaluated the use of a novel genetic marker, succinate dehydrogenase (SDHA), for the typing and evaluation of the genetic diversity and genetic population structure of Blastocystis. In total, 375 human fecal samples were collected and subjected to PCR, subtyped using the ssu rRNA marker, and then the SDHA gene was amplified via PCR for 117 samples. We found some incongruences between tree topologies for both molecular markers. However, the clustering by ST previously established for Blastocystis was congruent in the concatenated sequence. SDHA showed lower reticulation (The origination of a lineage through the partial merging of two ancestor lineages) signals and better intra ST clustering ability. Clusters with geographical associations were observed intra ST. The genetic diversity was lower in the marker evaluated compared to that of the ssu rRNA gene (nucleotide diversity = 0.03344 and 0.16986, respectively) and the sequences analyzed showed population expansion with genetic differentiation principally among STs. The ssu rRNA gene was useful to explore interspecific diversity but together with the SDHA gene the resolution power to evaluate intra ST diversity was higher. These results showed the potential of the SDHA marker for studying the intra ST genetic diversity of Blastocystis related with geographical location and the inter ST diversity using the concatenated sequences.
Collapse
|
7
|
Bahk YY, Kim J, Ahn SK, Na BK, Chai JY, Kim TS. Genetic Diversity of Plasmodium vivax Causing Epidemic Malaria in the Republic of Korea. THE KOREAN JOURNAL OF PARASITOLOGY 2018; 56:545-552. [PMID: 30630274 PMCID: PMC6327206 DOI: 10.3347/kjp.2018.56.6.545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 11/23/2022]
Abstract
Plasmodium vivax is more challenging to control and eliminate than P. falciparum due to its more asymptomatic infections with low parasite densities making diagnosis more difficult, in addition to its unique biological characteristics. The potential re-introduction of incidence cases, either through borders or via human migrations, is another major hurdle to sustained control and elimination. The Republic of Korea has experienced re-emergence of vivax malaria in 1993 but is one of the 32 malaria-eliminating countries to-date. Despite achieving successful nationwide control and elimination of vivax malaria, the evolutionary characteristics of vivax malaria isolates in the Republic of Korea have not been fully understood. In this review, we present an overview of the genetic variability of such isolates to increase understanding of the epidemiology, diversity, and dynamics of vivax populations in the Republic of Korea.
Collapse
Affiliation(s)
- Young Yil Bahk
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478,
Korea
| | - Jeonga Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Seong Kyu Ahn
- Department of Parasitology and Tropical Medicine, Inha University School of Medicine, Incheon 22212,
Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727,
Korea
| | - Jong-Yil Chai
- Korea Association of Health Promotion, Seoul 07653,
Korea
| | - Tong-Soo Kim
- Department of Parasitology and Tropical Medicine, Inha University School of Medicine, Incheon 22212,
Korea
| |
Collapse
|
8
|
Tannous S, Ghanem E. A bite to fight: front-line innate immune defenses against malaria parasites. Pathog Glob Health 2018; 112:1-12. [PMID: 29376476 DOI: 10.1080/20477724.2018.1429847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Malaria infection caused by Plasmodium parasites remains a major health burden worldwide especially in the tropics and subtropics. Plasmodium exhibits a complex life cycle whereby it undergoes a series of developmental stages in the Anopheles mosquito vector and the vertebrate human host. Malaria severity is mainly attributed to the genetic complexity of the parasite which is reflected in the sophisticated mechanisms of invasion and evasion that allow it to overcome the immune responses of both its invertebrate and vertebrate hosts. In this review, we aim to provide an updated, clear and concise summary of the literature focusing on the interactions of the vertebrate innate immune system with Plasmodium parasites, namely sporozoites, merozoites, and trophozoites. The roles of innate immune factors, both humoral and cellular, in anti-Plasmodium defense are described with particular emphasis on the contribution of key innate players including neutrophils, macrophages, and natural killer cells to the clearance of liver and blood stage parasites. A comprehensive understanding of the innate immune responses to malaria parasites remains an important goal that would dramatically help improve the design of original treatment strategies and vaccines, both of which are urgently needed to relieve the burden of malaria especially in endemic countries.
Collapse
Affiliation(s)
- Stephanie Tannous
- a Faculty of Natural and Applied Sciences, Department of Sciences , Notre Dame University , Louaize , Lebanon
| | - Esther Ghanem
- a Faculty of Natural and Applied Sciences, Department of Sciences , Notre Dame University , Louaize , Lebanon
| |
Collapse
|