1
|
Dhawan S, Dittrich S, Arafah S, Ongarello S, Mace A, Panapruksachat S, Boutthasavong L, Adsamouth A, Thongpaseuth S, Davong V, Vongsouvath M, Ashley EA, Robinson MT, Blacksell SD. Diagnostic accuracy of DPP Fever Panel II Asia tests for tropical fever diagnosis. PLoS Negl Trop Dis 2024; 18:e0012077. [PMID: 38598549 PMCID: PMC11034646 DOI: 10.1371/journal.pntd.0012077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/22/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Fever is the most frequent symptom in patients seeking care in South and Southeast Asia. The introduction of rapid diagnostic tests (RDTs) for malaria continues to drive patient management and care. Malaria-negative cases are commonly treated with antibiotics without confirmation of bacteraemia. Conventional laboratory tests for differential diagnosis require skilled staff and appropriate access to healthcare facilities. In addition, introducing single-disease RDTs instead of conventional laboratory tests remains costly. To overcome some of the delivery challenges of multiple separate tests, a multiplexed RDT with the capacity to diagnose a diverse range of tropical fevers would be a cost-effective solution. In this study, a multiplex lateral flow immunoassay (DPP Fever Panel II Assay) that can detect serum immunoglobulin M (IgM) and specific microbial antigens of common fever agents in Asia (Orientia tsutsugamushi, Rickettsia typhi, Leptospira spp., Burkholderia pseudomallei, Dengue virus, Chikungunya virus, and Zika virus), was evaluated. METHODOLOGY/PRINCIPAL FINDINGS Whole blood (WB) and serum samples from 300 patients with undefined febrile illness (UFI) recruited in Vientiane, Laos PDR were tested using the DPP Fever Panel II, which consists of an Antibody panel and Antigen panel. To compare reader performance, results were recorded using two DPP readers, DPP Micro Reader (Micro Reader 1) and DPP Micro Reader Next Generation (Micro Reader 2). WB and serum samples were run on the same fever panel and read on both micro readers in order to compare results. ROC analysis and equal variance analysis were performed to inform the diagnostic validity of the test compared against the respective reference standards of each fever agent (S1 Table). Overall better AUC values were observed in whole blood results. No significant difference in AUC performance was observed when comparing whole blood and serum sample testing, except for when testing for R. typhi IgM (p = 0.04), Leptospira IgM (p = 0.02), and Dengue IgG (p = 0.03). Linear regression depicted R2 values had ~70% agreement across WB and serum samples, except when testing for leptospirosis and Zika, where the R2 values were 0.37 and 0.47, respectively. No significant difference was observed between the performance of Micro Reader 1 and Micro Reader 2, except when testing for the following pathogens: Zika IgM, Zika IgG, and B pseudomallei CPS Ag. CONCLUSIONS/SIGNIFICANCE These results demonstrate that the diagnostic accuracy of the DPP Fever Panel II is comparable to that of commonly used RDTs. The optimal cut-off would depend on the use of the test and the desired sensitivity and specificity. Further studies are required to authenticate the use of these cut-offs in other endemic regions. This multiplex RDT offers diagnostic benefits in areas with limited access to healthcare and has the potential to improve field testing capacities. This could improve tropical fever management and reduce the public health burden in endemic low-resource areas.
Collapse
Affiliation(s)
- Sandhya Dhawan
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sabine Dittrich
- FIND, Campus Biotech, Geneva, Switzerland
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | - Aurelian Mace
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Siribun Panapruksachat
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Latsaniphone Boutthasavong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Aphaphone Adsamouth
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Soulignasak Thongpaseuth
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Viengmon Davong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Elizabeth A. Ashley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Matthew T. Robinson
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Stuart D. Blacksell
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| |
Collapse
|
2
|
Harapan H, Panta K, Michie A, Ernst T, McCarthy S, Muhsin M, Safarianti S, Zanaria TM, Mudatsir M, Sasmono RT, Imrie A. Hyperendemic Dengue and Possible Zika Circulation in the Westernmost Region of the Indonesian Archipelago. Viruses 2022; 14:219. [PMID: 35215813 PMCID: PMC8875625 DOI: 10.3390/v14020219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 12/03/2022] Open
Abstract
The transmission of dengue and other medically important mosquito-borne viruses in the westernmost region of Indonesia is not well described. We assessed dengue and Zika virus seroprevalence in Aceh province, the westernmost area of the Indonesian archipelago. Serum samples collected from 199 randomly sampled healthy residents of Aceh Jaya in 2017 were analyzed for neutralizing antibodies by plaque reduction neutralization test (PRNT). Almost all study participants (198/199; 99.5%) presented with multitypic profiles of neutralizing antibodies to two or more DENV serotypes, indicating transmission of multiple DENV in the region prior to 2017. All residents were exposed to one or more DENV serotypes by the age of 30 years. The highest geometric mean titers were measured for DENV-4, followed by DENV-1, DENV-2 and DENV-3. Among a subset of 116 sera, 27 neutralized ZIKV with a high stringency (20 with PRNT90 > 10 and 7 with PRNT90 > 40). This study showed that DENV is hyperendemic in the westernmost region of the Indonesian archipelago and suggested that ZIKV may have circulated prior to 2017.
Collapse
Affiliation(s)
- Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (H.H.); (M.M.)
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (K.P.); (A.M.); (T.E.); (S.M.)
| | - Kritu Panta
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (K.P.); (A.M.); (T.E.); (S.M.)
| | - Alice Michie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (K.P.); (A.M.); (T.E.); (S.M.)
| | - Timo Ernst
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (K.P.); (A.M.); (T.E.); (S.M.)
| | - Suzi McCarthy
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (K.P.); (A.M.); (T.E.); (S.M.)
- Pathwest Laboratory Medicine, Nedlands, WA 6009, Australia
| | - Muhsin Muhsin
- Department of Internal Medicine, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Department of Parasitology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (S.S.); (T.M.Z.)
| | - Safarianti Safarianti
- Department of Parasitology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (S.S.); (T.M.Z.)
| | - Tjut Mariam Zanaria
- Department of Parasitology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (S.S.); (T.M.Z.)
| | - Mudatsir Mudatsir
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (H.H.); (M.M.)
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - R. Tedjo Sasmono
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia;
| | - Allison Imrie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (K.P.); (A.M.); (T.E.); (S.M.)
| |
Collapse
|
3
|
Targovnik AM, Simonin JA, Mc Callum GJ, Smith I, Cuccovia Warlet FU, Nugnes MV, Miranda MV, Belaich MN. Solutions against emerging infectious and noninfectious human diseases through the application of baculovirus technologies. Appl Microbiol Biotechnol 2021; 105:8195-8226. [PMID: 34618205 PMCID: PMC8495437 DOI: 10.1007/s00253-021-11615-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022]
Abstract
Abstract
Baculoviruses are insect pathogens widely used as biotechnological tools in different fields of life sciences and technologies. The particular biology of these entities (biosafety viruses 1; large circular double-stranded DNA genomes, infective per se; generally of narrow host range on insect larvae; many of the latter being pests in agriculture) and the availability of molecular-biology procedures (e.g., genetic engineering to edit their genomes) and cellular resources (availability of cell lines that grow under in vitro culture conditions) have enabled the application of baculoviruses as active ingredients in pest control, as systems for the expression of recombinant proteins (Baculovirus Expression Vector Systems—BEVS) and as viral vectors for gene delivery in mammals or to display antigenic proteins (Baculoviruses applied on mammals—BacMam). Accordingly, BEVS and BacMam technologies have been introduced in academia because of their availability as commercial systems and ease of use and have also reached the human pharmaceutical industry, as incomparable tools in the development of biological products such as diagnostic kits, vaccines, protein therapies, and—though still in the conceptual stage involving animal models—gene therapies. Among all the baculovirus species, the Autographa californica multiple nucleopolyhedrovirus has been the most highly exploited in the above utilities for the human-biotechnology field. This review highlights the main achievements (in their different stages of development) of the use of BEVS and BacMam technologies for the generation of products for infectious and noninfectious human diseases. Key points • Baculoviruses can assist as biotechnological tools in human health problems. • Vaccines and diagnosis reagents produced in the baculovirus platform are described. • The use of recombinant baculovirus for gene therapy–based treatment is reviewed.
Collapse
Affiliation(s)
- Alexandra Marisa Targovnik
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina.
- Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, CONICET -Universidad de Buenos Aires, Junín 956, Sexto Piso, C1113AAD, 1113, Buenos Aires, Argentina.
| | - Jorge Alejandro Simonin
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Gregorio Juan Mc Callum
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, CONICET -Universidad de Buenos Aires, Junín 956, Sexto Piso, C1113AAD, 1113, Buenos Aires, Argentina
| | - Ignacio Smith
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, CONICET -Universidad de Buenos Aires, Junín 956, Sexto Piso, C1113AAD, 1113, Buenos Aires, Argentina
| | - Franco Uriel Cuccovia Warlet
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - María Victoria Nugnes
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - María Victoria Miranda
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, CONICET -Universidad de Buenos Aires, Junín 956, Sexto Piso, C1113AAD, 1113, Buenos Aires, Argentina
| | - Mariano Nicolás Belaich
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
4
|
Yap TL, Hong SY, Soh JH, Ravichandraprabhu L, Lim VWX, Chan HM, Ong TZX, Chua YP, Koh SE, Wang H, Leo YS, Ying JY, Sun W. Engineered NS1 for Sensitive, Specific Zika Virus Diagnosis from Patient Serology. Emerg Infect Dis 2021; 27:1427-1437. [PMID: 33900180 PMCID: PMC8084482 DOI: 10.3201/eid2705.190121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Dengue virus (DENV) and Zika virus (ZIKV) belong to the Flaviviridae family of viruses spread by Aedes aegypti mosquitoes in tropical and subtropical areas. Accurate diagnostic tests to differentiate the 2 infections are necessary for patient management and disease control. Using characterized ZIKV and DENV patient plasma in a blind manner, we validated an ELISA and a rapid immunochromatographic test for ZIKV detection. We engineered the ZIKV nonstructural protein 1 (NS1) for sensitive serologic detection with low cross reactivity against dengue and developed monoclonal antibodies specific for the ZIKV NS1 antigen. As expected, the serologic assays performed better with convalescent than acute plasma samples; the sensitivity ranged from 71% to 88%, depending on the performance of individual tests (IgM/IgG/NS1). Although serologic tests were generally less sensitive with acute samples, our ZIKV NS1 antibodies were able to complement the serologic tests to achieve greater sensitivity for detecting early infections.
Collapse
|
5
|
Li CJ, Huang PH, Chen HW, Chang SC. Development and characterization of mouse monoclonal antibodies targeting to distinct epitopes of Zika virus envelope protein for specific detection of Zika virus. Appl Microbiol Biotechnol 2021; 105:4663-4673. [PMID: 34043078 PMCID: PMC8156580 DOI: 10.1007/s00253-021-11364-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 12/02/2022]
Abstract
Abstract The recent Zika virus (ZIKV) epidemic poses a serious threat to global health due to its association with microcephaly and congenital diseases in newborns and neurological complications and Guillain-Barré syndrome in adults. However, the majority of people infected with ZIKV do not develop symptoms. The platforms aimed to specifically diagnose ZIKV infection are needed for patient care and public health surveillance. In the study, four ZIKV envelope (E) protein-specific monoclonal antibodies (mAbs) (A1, B1, C1, and 9E-1) have been developed by using the conventional mAb technology. The binding epitopes of mAbs A1, B1, C1, and 9E-1 are located at E(238-257), E(410-431), E(258-277), and E(340-356), respectively. mAb 9E-1 performs 1.4- to 47-fold strong affinity to ZIKV E protein compared to another three mAbs. mAbs A1, C1, and 9E-1 do not have cross-reactivity against the recombinant E proteins of dengue virus serotypes 2, 3, and 4. Although these four mAbs do not have ZIKV neutralizing activity, mAbs B1 and 9E-1 have been developed as the lateral flow immunochromatographic assay for specific detection of ZIKV E protein and virions. Key points • The mAbs targeting to the regions of E(238-257), E(410-431), E(258-277), and E(340-356) do not have ZIKV neutralizing activity. • The binding epitope of mAb 9E-1 is highly specific to ZIKV E protein. • mAbs B1 and 9E-1 can bind to ZIKV virions and have been developed as the lateral flow immunochromatographic assay.
Collapse
Affiliation(s)
- Chia-Jung Li
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Ping-Han Huang
- Department of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Shih-Chung Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan. .,Center of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
6
|
Silva IBB, da Silva AS, Cunha MS, Cabral AD, de Oliveira KCA, Gaspari ED, Prudencio CR. Zika virus serological diagnosis: commercial tests and monoclonal antibodies as tools. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200019. [PMID: 33281886 PMCID: PMC7685096 DOI: 10.1590/1678-9199-jvatitd-2020-0019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Zika virus (ZIKV), an emerging arthropod-borne virus (arbovirus) of the Flaviviridae family, is a current issue worldwide, particularly because of the congenital and neurological syndromes associated with infection by this virus. As the initial clinical symptoms of all diseases caused by this group are very similar, clinical diagnosis is difficult. Furthermore, laboratory diagnostic efforts have failed to identify specific and accurate tests for each virus of the Flaviviridae family due to the cross-reactivity of these viruses in serum samples. This situation has resulted in underreporting of the diseases caused by flaviviruses. However, many companies developed commercial diagnostic tests after the recent ZIKV outbreak. Moreover, health regulatory agencies have approved different commercial tests to extend the monitoring of ZIKV infections. Considering that a specific and sensitive diagnostic method for estimating risk and evaluating ZIKV propagation is still needed, this review aims to provide an update of the main commercially approved serological diagnostics test by the US Food and Drug Administration (FDA) and Brazilian National Health Surveillance Agency (ANVISA). Additionally, we present the technologies used for monoclonal antibody production as a tool for the development of diagnostic tests and applications of these antibodies in detecting ZIKV infections worldwide.
Collapse
Affiliation(s)
- Isaura Beatriz Borges Silva
- Center of Immunology, Adolfo Lutz Institute, São Paulo, SP, Brazil.,Interunits Graduate Program in Biotechnology, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | | | | | | | - Elizabeth De Gaspari
- Center of Immunology, Adolfo Lutz Institute, São Paulo, SP, Brazil.,Interunits Graduate Program in Biotechnology, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Carlos Roberto Prudencio
- Center of Immunology, Adolfo Lutz Institute, São Paulo, SP, Brazil.,Interunits Graduate Program in Biotechnology, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
7
|
Jorge FA, Thomazella MV, Castro Moreira D, Lopes LDG, Teixeira JJV, Bertolini DA. Evolutions and upcoming on Zika virus diagnosis through an outbreak: A systematic review. Rev Med Virol 2020; 30:e2105. [DOI: 10.1002/rmv.2105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Fernando A. Jorge
- Department of Clinical Analysis and BiomedicineState University of Maringá Maringá Brazil
| | - Mateus V. Thomazella
- Medical Research Laboratory, School of MedicineUniversity of São Paulo São Paulo Brazil
| | - Deborah Castro Moreira
- Department of Clinical Analysis and BiomedicineState University of Maringá Maringá Brazil
| | - Luciana D. G. Lopes
- Department of Clinical Analysis and BiomedicineState University of Maringá Maringá Brazil
| | - Jorge J. V. Teixeira
- Department of Clinical Analysis and BiomedicineState University of Maringá Maringá Brazil
| | - Dennis A. Bertolini
- Department of Clinical Analysis and BiomedicineState University of Maringá Maringá Brazil
| |
Collapse
|
8
|
Kam YW, Leite JA, Amrun SN, Lum FM, Yee WX, Bakar FA, Eng KE, Lye DC, Leo YS, Chong CY, Freitas ARR, Milanez GP, Proença-Modena JL, Rénia L, Costa FTM, Ng LFP. ZIKV-Specific NS1 Epitopes as Serological Markers of Acute Zika Virus Infection. J Infect Dis 2020; 220:203-212. [PMID: 30901054 DOI: 10.1093/infdis/jiz092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) infections have reemerged as a global health issue due to serious clinical complications. Development of specific serological assays to detect and differentiate ZIKV from other cocirculating flaviviruses for accurate diagnosis remains a challenge. METHODS We investigated antibody responses in 51 acute ZIKV-infected adult patients from Campinas, Brazil, including 7 pregnant women who later delivered during the study. Using enzyme-linked immunosorbent assays, levels of antibody response were measured and specific epitopes identified. RESULTS Several antibody-binding hot spots were identified in ZIKV immunogenic antigens, including membrane, envelope (E) and nonstructural protein 1 (NS1). Interestingly, specific epitopes (2 from E and 2 from NS1) strongly recognized by ZIKV-infected patients' antibodies were identified and were not cross-recognized by dengue virus (DENV)-infected patients' antibodies. Corresponding DENV peptides were not strongly recognized by ZIKV-infected patients' antibodies. Notably, ZIKV-infected pregnant women had specific epitope recognition for ZIKV NS1 (amino acid residues 17-34), which could be a potential serological marker for early ZIKV detection. CONCLUSIONS This study identified 6 linear ZIKV-specific epitopes for early detection of ZIKV infections. We observed differential epitope recognition between ZIKV-infected and DENV-infected patients. This information will be useful for developing diagnostic methods that differentiate between closely related flaviviruses.
Collapse
Affiliation(s)
- Yiu-Wing Kam
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Juliana Almeida Leite
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Siti Naqiah Amrun
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Fok-Moon Lum
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Wearn-Xin Yee
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Farhana Abu Bakar
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore.,School of Biological Sciences, Nanyang Technological University
| | - Kai Er Eng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - David C Lye
- National Centre for Infectious Diseases.,Tan Tock Seng Hospital.,Lee Kong Chian School of Medicine, Nanyang Technological University.,Yong Loo Lin School of Medicine
| | - Yee-Sin Leo
- National Centre for Infectious Diseases.,Tan Tock Seng Hospital.,Lee Kong Chian School of Medicine, Nanyang Technological University.,Yong Loo Lin School of Medicine.,Saw Swee Hock School of Public Health, National University of Singapore
| | - Chia-Yin Chong
- Lee Kong Chian School of Medicine, Nanyang Technological University.,Yong Loo Lin School of Medicine.,KK Women's and Children's Hospital, Singapore
| | - Andre Ricardo Ribas Freitas
- Campinas Department of Public Health Surveillance. Campinas.,Sao Leopoldo Mandic Medical School. Campinas, São Paulo, Brazil
| | - Guilherme Paier Milanez
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Jose Luiz Proença-Modena
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Fabio T M Costa
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore.,Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | | |
Collapse
|
9
|
Generation and Characterization of a Polyclonal Antibody Against NS1 Protein for Detection of Zika Virus. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.96070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
10
|
Hossain MG, Nazir KHMNH, Saha S, Rahman MT. Zika virus: A possible emerging threat for Bangladesh! J Adv Vet Anim Res 2019; 6:575-582. [PMID: 31819889 PMCID: PMC6882728 DOI: 10.5455/javar.2019.f385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/23/2022] Open
Abstract
Zika virus, a member of Flaviviridae is the etiology of Zika or Zika fever or Zika virus (ZIKV) disease characterized by mild symptoms similar to very mild form of Dengue or Chikungunya. The virus transmits through Aedes mosquitoes, particularly by Aedes aegypti. The most dangerous effect of ZIKV infection is the ability of the virus to cause microcephaly and congenital malformation to the newborn baby if the mother is infected. The neurological disorders including Guillain-Barré syndrome might be associated with adults and children due to ZIKV infections. Zika has emerged as a serious global public health problem as it has been found in 87 countries, particularly in Africa, America, and Asia and has no vaccine and treatment so far. Bangladesh is at a high risk of ZIKV infection and we consider ZIKV as a possible emerging threat for Bangladesh. This short review summarizes the insights of ZIKV infection, present status of the disease in Bangladesh and its neighboring countries, and recommendations for necessary preparations and strategies to be taken for effective controlling of the ZIKV infection in Bangladesh before getting any havoc.
Collapse
Affiliation(s)
- Md Golzar Hossain
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.,Division of Virology, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Japan
| | - K H M Nazmul Hussain Nazir
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Sukumar Saha
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
11
|
Sornjai W, Ramphan S, Wikan N, Auewarakul P, Smith DR. High correlation between Zika virus NS1 antibodies and neutralizing antibodies in selected serum samples from normal healthy Thais. Sci Rep 2019; 9:13498. [PMID: 31534148 PMCID: PMC6751300 DOI: 10.1038/s41598-019-49569-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/28/2019] [Indexed: 11/30/2022] Open
Abstract
Despite the widespread presence of the mosquito transmitted Zika virus (ZIKV) over much of Southeast Asia, the number of reported cases remains low. One possibility is that residents in Southeast Asia are immunologically protected, although the nature of any such protection remains unclear. This study sought to investigate the presence of antibodies directed to ZIKV NS1 protein in a selected sub-set of samples from a well characterized cohort of serum samples from normal, healthy Thais that had been previously characterized for the presence of neutralizing antibodies to ZIKV, DENV 1-4, and JEV. Because of similarities in molecular weight between the flavivirus E and NS1 proteins, an immunoblot system was established in which the NS1 antigen was not denatured, allowing detection of the dimer form of NS1, distinctly clear from the migration position of the E and NS1 monomer proteins. The results showed that antibodies to ZIKV NS1 protein were only detected in samples with ZIKV neutralizing antibodies (27/30 samples), and no sample (0/30) with a ZIKV plaque reduction neutralization test (PRNT)90 < 20 showed evidence of anti-ZIKV NS1 antibodies. The high correlation between the presence of ZIKV NS1 antibodies and ZIKV PRNT suggests that immunological protection against ZIKV infection in Thailand arises from prior exposure to ZIKV, and not through cross neutralization.
Collapse
Affiliation(s)
- Wannapa Sornjai
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Suwipa Ramphan
- Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Nitwara Wikan
- Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand.
| |
Collapse
|
12
|
Kim YH, Kim TY, Park JS, Park JS, Lee J, Moon J, Chong CK, Junior IN, Ferry FR, Ahn HJ, Bhatt L, Nam HW. Development and Clinical Evaluation of a Rapid Diagnostic Test for Yellow Fever Non-Structural Protein 1. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:283-290. [PMID: 31284351 PMCID: PMC6616167 DOI: 10.3347/kjp.2019.57.3.283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/16/2019] [Indexed: 11/23/2022]
Abstract
A rapid diagnostic test (RDT) kit was developed to detect non-structural protein 1 (NS1) of yellow fever virus (YFV) using monoclonal antibody. NS1 protein was purified from the cultured YFV and used to immunize mice. Monoclonal antibody to NS1 was selected and conjugated with colloidal gold to produce the YFV NS1 RDT kit. The YFV RDTs were evaluated for sensitivity and specificity using positive and negative samples of monkeys from Brazil and negative human blood samples from Korea. Among monoclonal antibodies, clones 3A11 and 3B7 proved most sensitive, and used for YFV RDT kit. Diagnostic accuracy of YFV RDT was fairly high; Sensitivity was 0.0% and specificity was 100% against Dengue viruses type 2 and 3, Zika, Chikungunya and Mayaro viruses. This YFV RDT kit could be employed as a test of choice for point-of-care diagnosis and large scale surveys of YFV infection under clinical or field conditions in endemic areas and on the globe.
Collapse
Affiliation(s)
- Yeong Hoon Kim
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | | | | | | | | | | | | | - Ivan Neves Junior
- Gafreé and Guinle University Hospital of the Federal University of Rio de Janeiro, Del Castilho, Rio de Janeiro, Brazil
| | - Fernando Raphael Ferry
- Gafreé and Guinle University Hospital of the Federal University of Rio de Janeiro, Del Castilho, Rio de Janeiro, Brazil
| | - Hye-Jin Ahn
- Department of Parasitology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Lokraj Bhatt
- Department of Parasitology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Ho-Woo Nam
- Department of Parasitology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
13
|
Blanchard J, Douglass K, Gidwani S, Khatri U, Gaballa D, Pousson A, Mangla N, Smith J. Seasonal dengue surge: Providers⬨tm) perceptions about the impact of dengue on patient volume, staffing and use of point of care testing in Indian emergency departments. J Infect Public Health 2019; 12:794-798. [PMID: 31006636 DOI: 10.1016/j.jiph.2019.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/02/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Global health emergencies, such as from diseases like dengue fever, can lead to rapid surges in visits to emergency departments. The objective of our study was to evaluate the impact of dengue on factors that could impact emergency department flow, including patient volume and staffing, on Indian emergency departments. METHODS This was a prospective cohort study of Indian emergency providers. Respondents were queried via online survey about a number of domains including practice environment, use of rapid testing, changes in ED volume and ED staffing adjustments occurring during dengue season. Data was analyzed using multivariate analysis. RESULTS We had a total of 210 respondents to our online survey. Less than half of respondents reported that their institutions used rapid point of care testing. When asked how dengue impacted ED flow, the most common response was that dengue increased the total number of ED visits (84%). Despite this increase, only about 32% of respondents reported that their institutions increased hospital staffing. In multivariate analysis, respondents at hospitals that experienced ED visit surges over 40% of baseline were more likely to also report that their institutions also increased staffing during this time (OR 3.28, 95% CI 1.44-7.46). CONCLUSIONS Our study shows that despite increases in visits during dengue season, ED providers noted that their EDs did not respond with staffing increases. More research is needed to better understand how emergency departments can adjust to dengue to provide optimal care for patients in India.
Collapse
Affiliation(s)
- Janice Blanchard
- George Washington University, Department of Emergency Medicine, 2120 L Street NW Suite 450, Washington DC 20037, United States.
| | - Katherine Douglass
- George Washington University, Department of Emergency Medicine, 2120 L Street NW Suite 450, Washington DC 20037, United States
| | - Shweta Gidwani
- Emergency Department, Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, United Kingdom
| | - Usha Khatri
- 3400 Spruce St, Philadelphia, PA 19104, United States
| | - Daniel Gaballa
- Department of Medicine Penn State, M S Hershey Medical Center, 500 University Drive, PO Box 850 Mail Code H039, Hershey, PA 16802, United States
| | - Amelia Pousson
- Johns Hopkins University, 1800 Orleans Street, Baltimore, MD 21287, United States
| | | | - Jeffrey Smith
- George Washington University, Department of Emergency Medicine, 2120 L Street NW Suite 450, Washington DC 20037, United States
| |
Collapse
|
14
|
Sornjai W, Jaratsittisin J, Auewarakul P, Wikan N, Smith DR. Analysis of Zika virus neutralizing antibodies in normal healthy Thais. Sci Rep 2018; 8:17193. [PMID: 30464242 PMCID: PMC6249253 DOI: 10.1038/s41598-018-35643-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022] Open
Abstract
Zika virus (ZIKV) infections have been reported from all over Thailand, but the number of reported cases remains low, suggesting a degree of immune protection against ZIKV infection. To address this possibility, the presence of ZIKV neutralizing antibodies was determined in serum from 135 healthy Thai adults with a plaque reduction neutralization test (PRNT), and a number of samples were subsequently analyzed for the presence of neutralizing antibodies to dengue virus (DENV) and Japanese encephalitis virus (JEV). Results showed that 70.4% (PRNT50 ≥ 10), 55.6 (PRNT50 ≥ 20) or 22.2% (PRNT90 ≥ 20) of the samples showed neutralizing antibodies to ZIKV. Detailed analysis showed no association between the presence of neutralizing antibodies to other flaviviruses (DENV, JEV) and the presence of ZIKV neutralizing antibodies. These results suggest that the level of ZIKV neutralizing antibodies in the Thai population is enough to dampen the transmission of the virus in Thailand.
Collapse
Affiliation(s)
- Wannapa Sornjai
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nitwara Wikan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand.
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
15
|
Yu DS, Weng TH, Hu CY, Wu ZG, Li YH, Cheng LF, Wu NP, Li LJ, Yao HP. Chaperones, Membrane Trafficking and Signal Transduction Proteins Regulate Zaire Ebola Virus trVLPs and Interact With trVLP Elements. Front Microbiol 2018; 9:2724. [PMID: 30483236 PMCID: PMC6240689 DOI: 10.3389/fmicb.2018.02724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/24/2018] [Indexed: 01/19/2023] Open
Abstract
Ebolavirus (EBOV) life cycle involves interactions with numerous host factors, but it remains poorly understood, as does pathogenesis. Herein, we synthesized 65 siRNAs targeting host genes mostly connected with aspects of the negative-sense RNA virus life cycle (including viral entry, uncoating, fusion, replication, assembly, and budding). We produced EBOV transcription- and replication-competent virus-like particles (trVLPs) to mimic the EBOV life cycle. After screening host factors associated with the trVLP life cycle, we assessed interactions of host proteins with trVLP glycoprotein (GP), VP40, and RNA by co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP). The results demonstrate that RNAi silencing with 11 siRNAs (ANXA5, ARFGAP1, FLT4, GRP78, HSPA1A, HSP90AB1, HSPA8, MAPK11, MEK2, NTRK1, and YWHAZ) decreased the replication efficiency of trVLPs. Co-IP revealed nine candidate host proteins (FLT4, GRP78, HSPA1A, HSP90AB1, HSPA8, MAPK11, MEK2, NTRK1, and YWHAZ) potentially interacting with trVLP GP, and four (ANXA5, GRP78, HSPA1A, and HSP90AB1) potentially interacting with trVLP VP40. Ch-IP identified nine candidate host proteins (ANXA5, ARFGAP1, FLT4, GRP78, HSPA1A, HSP90AB1, MAPK11, MEK2, and NTRK1) interacting with trVLP RNA. This study was based on trVLP and could not replace live ebolavirus entirely; in particular, the interaction between trVLP RNA and host proteins cannot be assumed to be identical in live virus. However, the results provide valuable information for further studies and deepen our understanding of essential host factors involved in the EBOV life cycle.
Collapse
Affiliation(s)
- Dong-Shan Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tian-Hao Weng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen-Yu Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Gang Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan-Hua Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin-Fang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Nan-Ping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|