1
|
Gonçalves AAM, Ribeiro AJ, Resende CAA, Couto CAP, Gandra IB, Dos Santos Barcelos IC, da Silva JO, Machado JM, Silva KA, Silva LS, Dos Santos M, da Silva Lopes L, de Faria MT, Pereira SP, Xavier SR, Aragão MM, Candida-Puma MA, de Oliveira ICM, Souza AA, Nogueira LM, da Paz MC, Coelho EAF, Giunchetti RC, de Freitas SM, Chávez-Fumagalli MA, Nagem RAP, Galdino AS. Recombinant multiepitope proteins expressed in Escherichia coli cells and their potential for immunodiagnosis. Microb Cell Fact 2024; 23:145. [PMID: 38778337 PMCID: PMC11110257 DOI: 10.1186/s12934-024-02418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Recombinant multiepitope proteins (RMPs) are a promising alternative for application in diagnostic tests and, given their wide application in the most diverse diseases, this review article aims to survey the use of these antigens for diagnosis, as well as discuss the main points surrounding these antigens. RMPs usually consisting of linear, immunodominant, and phylogenetically conserved epitopes, has been applied in the experimental diagnosis of various human and animal diseases, such as leishmaniasis, brucellosis, cysticercosis, Chagas disease, hepatitis, leptospirosis, leprosy, filariasis, schistosomiasis, dengue, and COVID-19. The synthetic genes for these epitopes are joined to code a single RMP, either with spacers or fused, with different biochemical properties. The epitopes' high density within the RMPs contributes to a high degree of sensitivity and specificity. The RMPs can also sidestep the need for multiple peptide synthesis or multiple recombinant proteins, reducing costs and enhancing the standardization conditions for immunoassays. Methods such as bioinformatics and circular dichroism have been widely applied in the development of new RMPs, helping to guide their construction and better understand their structure. Several RMPs have been expressed, mainly using the Escherichia coli expression system, highlighting the importance of these cells in the biotechnological field. In fact, technological advances in this area, offering a wide range of different strains to be used, make these cells the most widely used expression platform. RMPs have been experimentally used to diagnose a broad range of illnesses in the laboratory, suggesting they could also be useful for accurate diagnoses commercially. On this point, the RMP method offers a tempting substitute for the production of promising antigens used to assemble commercial diagnostic kits.
Collapse
Affiliation(s)
- Ana Alice Maia Gonçalves
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Anna Julia Ribeiro
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Carlos Ananias Aparecido Resende
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Carolina Alves Petit Couto
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Isadora Braga Gandra
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Isabelle Caroline Dos Santos Barcelos
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Jonatas Oliveira da Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Juliana Martins Machado
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Kamila Alves Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Líria Souza Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Michelli Dos Santos
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Lucas da Silva Lopes
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Mariana Teixeira de Faria
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Sabrina Paula Pereira
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Sandra Rodrigues Xavier
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Matheus Motta Aragão
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Mayron Antonio Candida-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, 04000, Peru
| | | | - Amanda Araujo Souza
- Biophysics Laboratory, Institute of Biological Sciences, Department of Cell Biology, University of Brasilia, Brasília, 70910-900, Brazil
| | - Lais Moreira Nogueira
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Mariana Campos da Paz
- Bioactives and Nanobiotechnology Laboratory, Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Eduardo Antônio Ferraz Coelho
- Postgraduate Program in Health Sciences, Infectious Diseases and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, 30130-100, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Biology of Cell Interactions, National Institute of Science and Technology on Tropical Diseases (INCT-DT), Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Sonia Maria de Freitas
- Biophysics Laboratory, Institute of Biological Sciences, Department of Cell Biology, University of Brasilia, Brasília, 70910-900, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, 04000, Peru
| | - Ronaldo Alves Pinto Nagem
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Alexsandro Sobreira Galdino
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil.
| |
Collapse
|
2
|
Xu S, Dawuti W, Maimaitiaili M, Dou J, Aizezi M, Aimulajiang K, Lü X, Lü G. Rapid and non-invasive detection of cystic echinococcosis in sheep based on serum fluorescence spectrum combined with machine learning algorithms. JOURNAL OF BIOPHOTONICS 2024; 17:e202300357. [PMID: 38263544 DOI: 10.1002/jbio.202300357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/15/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024]
Abstract
Cystic echinococcosis (CE) is a grievous zoonotic parasitic disease. Currently, the traditional technology of screening CE is laborious and expensive, developing an innovative technology is urgent. In this study, we combined serum fluorescence spectroscopy with machine learning algorithms to develop an innovative screening technique to diagnose CE in sheep. Serum fluorescence spectra of Echinococcus granulosus sensu stricto-infected group (n = 63) and uninfected E. granulosus s.s. group (n = 60) under excitation at 405 nm were recorded. The linear support vector machine (Linear SVM), Quadratic SVM, medium radial basis function (RBF) SVM, K-nearest neighbor (KNN), and principal component analysis-linear discriminant analysis (PCA-LDA) were used to analyze the spectra data. The results showed that Quadratic SVM had the great classification capacity, its sensitivity, specificity, and accuracy were 85.0%, 93.8%, and 88.9%, respectively. In short, serum fluorescence spectroscopy combined with Quadratic SVM algorithm has great potential in the innovative diagnosis of CE in sheep.
Collapse
Affiliation(s)
- Shengke Xu
- College of Life Sciences and Technology, Xinjiang University, Urumqi, Xinjiang, China
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wubulitalifu Dawuti
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Maierhaba Maimaitiaili
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jingrui Dou
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Malike Aizezi
- Animal Health Supervision Institute of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, PR China
| | - Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaoyi Lü
- College of Software, Xinjiang University, Urumqi, Xinjiang, China
| | - Guodong Lü
- College of Life Sciences and Technology, Xinjiang University, Urumqi, Xinjiang, China
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
3
|
Dawuti W, Dou J, Zheng X, Lü X, Zhao H, Yang L, Lin R, Lü G. Rapid and accurate screening of cystic echinococcosis in sheep based on serum Fourier-transform infrared spectroscopy combined with machine learning algorithms. JOURNAL OF BIOPHOTONICS 2023; 16:e202200320. [PMID: 36707914 DOI: 10.1002/jbio.202200320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 05/17/2023]
Abstract
Cystic echinococcosis (CE) in sheep is a serious zoonotic parasitic disease caused by Echinococcus granulosus sensu stricto (s.s.). Presently, the screening technology for CE in sheep is time-consuming and inaccurate, and novel screening technology is urgently needed. In this work, we combined machine-learning algorithms with Fourier transform infrared (FT-IR) spectroscopy of serum to establish a quick and accurate screening approach for CE in sheep. Serum samples from 77 E. granulosus s.s.-infected sheep to 121 healthy control sheep were measured by FT-IR spectrometer. To optimize the classification accuracy of the serum FI-TR method for the E. granulosus s.s.-infected sheep and healthy control sheep, principal component analysis (PCA), linear discriminant analysis, and support vector machine (SVM) algorithms were used to analyze the data. Among all the bands, 1500-1700 cm-1 band has the best classification effect; its diagnostic sensitivity, specificity, and accuracy of PCA-SVM were 100%, 95.74%, and 96.66%, respectively. The study showed that serum FT-IR spectroscopy combined with machine learning algorithms has great potential for rapid and accurate screening methods for the CE in sheep.
Collapse
Affiliation(s)
- Wubulitalifu Dawuti
- School of Public Health, Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jingrui Dou
- School of Public Health, Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiangxiang Zheng
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China
| | - Xiaoyi Lü
- College of Software, Xinjiang University, Urumqi, China
| | - Hui Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lingfei Yang
- Department of Abdominal Ultrasound Diagnosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Renyong Lin
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Guodong Lü
- School of Public Health, Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
5
|
Maglioco A, Gentile J, Barbery Venturi MS, Jensen O, Hernández C, Gertiser ML, Poggio V, Canziani G, Fuchs AG. Detection of Echinococcus granulosus sensu lato infection by using extracts derived from a protoscoleces G1 cell line. Parasite Immunol 2019; 41:e12674. [PMID: 31557338 DOI: 10.1111/pim.12674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/26/2022]
Abstract
Cystic echinococcosis (CE) can be diagnosed by means of several serological approaches, but their results vary among laboratories due to the molecular characteristics of the reference antigens used. Thus, this study aimed to address both the relevance of an EGPE cell line previously obtained from Echinococcus granulosus protoscoleces G1 and the complexity of the immune response by using two different in vitro growth stages as separate sources of parasite antigens. The serum reactivity was investigated by western blotting (WB) in 21 CE patients from an endemic area in a matched case-control design and also in seven experimentally infected sheep and five healthy control sheep. EGPE-antigen-human serum sensitivity by WB was higher than that of hydatid fluid (HF) WB, ELISA and DD5 (P < .05, Chi-square test). EGPE protein extract was immunogenic in mice and hyperimmune plasma reacted with HF proteins, and AgB2 expression was detected by molecular analysis. Proteins of 37 to 60 kDa were recognized by 95.24% of the CE patients' sera but, with poor specificity. Statistically significant differences were found between serum protein extract recognition at 7 and 20 days of cell growth. The EGPE cell line is a laboratory source of antigens for improvement of CE serological diagnosis.
Collapse
Affiliation(s)
- Andrea Maglioco
- Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Universidad Abierta Interamericana (UAI), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jorge Gentile
- Servicio de Infectología, Hospital Municipal Ramón Santamarina de Tandil, Buenos Aires, Argentina
| | - Melisa S Barbery Venturi
- Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Universidad Abierta Interamericana (UAI), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Oscar Jensen
- Centro de Investigación en Zoonosis de la Provincia de Chubut, Chubut, Argentina
| | - Claudia Hernández
- Servicio de Infectología, Hospital Municipal Ramón Santamarina de Tandil, Buenos Aires, Argentina
| | - María Laura Gertiser
- Centro de Investigación en Zoonosis de la Provincia de Chubut, Chubut, Argentina
| | - Verónica Poggio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Instituto de Ciencia y Tecnología "Dr César Milstein", Buenos Aires, Argentina
| | - Gabriela Canziani
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Instituto de Ciencia y Tecnología "Dr César Milstein", Buenos Aires, Argentina
| | - Alicia Graciela Fuchs
- Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Universidad Abierta Interamericana (UAI), Buenos Aires, Argentina.,Instituto Nacional de Parasitología "Dr Mario Fatala Chaben", ANLIS-Malbrán, Buenos Aires, Argentina
| |
Collapse
|