1
|
Kayode TA, Addo AK, Addison TK, Tweneboah A, Afriyie SO, Abbas DA, Seth A, Badu-Tawiah AK, Badu K, Koepfli C. Comparison of three rapid diagnostic tests for Plasmodium falciparum diagnosis in Ghana. Malar J 2024; 23:265. [PMID: 39215297 PMCID: PMC11363606 DOI: 10.1186/s12936-024-05073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Accurate diagnosis and timely treatment are crucial in combating malaria. METHODS A total of 449 samples were screened for Plasmodium falciparum infection by expert microscopy, qPCR, and three RDTs, namely Rapigen Biocredit Malaria Ag Pf (detecting HRP2 and pLDH on separate bands), Abbott NxTek Eliminate Malaria Ag Pf (detecting HRP2), and SD Bioline Malaria Ag Pf (detecting HRP2). hrp2/3 deletion typing was done by digital PCR. RESULTS 45.7% (205/449) individuals tested positive by qPCR for P. falciparum with a mean parasite density of 12.5 parasites/μL. Using qPCR as reference, the sensitivity of microscopy was 28.3% (58/205), the Biocredit RDT was 52.2% (107/205), the NxTek RDT was 49.3% (101/205), and the Bioline RDT was 39.5% (81/205). When only samples with densities > 20 parasites/μL were included (n = 89), sensitivity of 62.9% (56/89) by microscopy, 88.8% (79/89) by Biocredit, 88.8% (79/89) by NxTek, and 78.7% (70/89) by Bioline were obtained. All three RDTs demonstrated specificities > 95%. The limits of detection (95% probability that a sample tested positive) was 4393 parasites/μL (microscopy), 56 parasites/μL (Biocredit, considering either HRP2 or pLDH), 84 parasites/μL (NxTek), and 331 parasites/μL (Bioline). None of the three qPCR-confirmed P. falciparum positive samples, identified solely through the pLDH target, or eight samples negative for all RDTs but qPCR-positive at densities > 20 parasites/µL carried hrp2/3 deletions. CONCLUSION The Biocredit and NxTek RDTs demonstrated comparable diagnostic efficacies. All three RDTs performed better than microscopy.
Collapse
Affiliation(s)
- Tolulope Adeyemi Kayode
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Agyapong Kofi Addo
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Thomas Kwame Addison
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Austine Tweneboah
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Stephen Opoku Afriyie
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Dawood Ackom Abbas
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ayesha Seth
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Kingsley Badu
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Cristian Koepfli
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
2
|
Abdi Moussa R, Papa Mze N, Yonis Arreh H, Abdillahi Hamoud A, Mohamed Alaleh K, Mohamed Aden F, Yonis Omar AR, Osman Abdi W, Kayad Guelleh S, Ahmed Abdi AI, Basco LK, Abdi Khaireh B, Bogreau H. Assessment of the Performance of Lactate Dehydrogenase-Based Rapid Diagnostic Test for Malaria in Djibouti in 2022-2023. Diagnostics (Basel) 2024; 14:262. [PMID: 38337778 PMCID: PMC10854848 DOI: 10.3390/diagnostics14030262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Until 2020, Djiboutian health authorities relied on histidine-rich protein-2 (HRP2)-based rapid diagnostic tests (RDTs) to establish the diagnosis of Plasmodium falciparum. The rapid spread of P. falciparum histidine-rich protein-2 and -3 (pfhrp2/3) gene-deleted parasite strains in Djibouti has led the authorities to switch from HRP2-based RDTs to lactate dehydrogenase (LDH)-based RDTs targeting the plasmodial lactate dehydrogenase (pLDH) specific for P. falciparum and P. vivax (RapiGEN BIOCREDIT Malaria Ag Pf/Pv pLDH/pLDH) in 2021. This study was conducted with the primary objective of evaluating the diagnostic performance of this alternative RDT. Operational constraints related, in particular, to the implementation of this RDT during the COVID-19 pandemic were also considered. The performance of BIOCREDIT Malaria Ag Pf/Pv (pLDH/pLDH) RDT was also compared to our previously published data on the performance of two HRP2-based RDTs deployed in Djibouti in 2018-2020. The diagnosis of 350 febrile patients with suspected malaria in Djibouti city was established using two batches of RapiGEN BIOCREDIT Malaria Ag Pf/Pv (pLDH/pLDH) RDT over a two-year period (2022 and 2023) and confirmed by real-time quantitative polymerase chain reaction. The sensitivity and specificity for the detection of P. falciparum were 88.2% and 100%, respectively. For P. vivax, the sensitivity was 86.7% and the specificity was 100%. Re-training and closer supervision of the technicians between 2022 and 2023 have led to an increased sensitivity to detect P. falciparum (69.8% in 2022 versus 88.2% in 2023; p < 0.01). The receiver operating characteristic curve analysis highlighted a better performance in the diagnosis of P. falciparum with pLDH-based RDTs compared with previous HRP2-based RDTs. In Djibouti, where pfhrp2-deleted strains are rapidly gaining ground, LDH-based RDTs seem to be more suitable for diagnosing P. falciparum than HRP2-based RDTs. Awareness-raising and training for technical staff have also been beneficial.
Collapse
Affiliation(s)
- Rahma Abdi Moussa
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France (L.K.B.)
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Nasserdine Papa Mze
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France (L.K.B.)
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Houssein Yonis Arreh
- Laboratoire National de Référence, Hôpital Peltier, Ministère de la Santé, Djibouti ville 98230, Djibouti
| | | | - Kahiya Mohamed Alaleh
- Caisse Nationale de Sécurité Sociale (CNSS), Djibouti ville 98230, Djibouti (K.M.A.)
| | - Fatouma Mohamed Aden
- Caisse Nationale de Sécurité Sociale (CNSS), Djibouti ville 98230, Djibouti (K.M.A.)
| | - Abdoul-Razak Yonis Omar
- Laboratoire de Diagnostic, Centre de Santé Communautaire d’Einguela, Ministère de la Santé, Djibouti ville 98230, Djibouti
| | - Warsama Osman Abdi
- Caisse Nationale de Sécurité Sociale (CNSS), Djibouti ville 98230, Djibouti (K.M.A.)
| | - Samatar Kayad Guelleh
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé, Djibouti ville 98230, Djibouti;
| | - Abdoul-Ilah Ahmed Abdi
- Service de Santé des Armées, Présidence de la République, Djibouti ville 98230, Djibouti;
| | - Leonardo K. Basco
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France (L.K.B.)
| | - Bouh Abdi Khaireh
- UNDP Djibouti, Global Fund to Fight AIDS-TB-Malaria, Djibouti ville 98230, Djibouti;
| | - Hervé Bogreau
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France (L.K.B.)
- IHU-Méditerranée Infection, 13005 Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France
| |
Collapse
|
3
|
Tan AF, Sakam SSB, Rajahram G, William T, Abd Rachman Isnadi M, Daim S, Barber B, Kho S, Sutherland CJ, Anstey NM, Yerlikaya S, van Schalkwyk DA, Grigg MJ. Diagnostic accuracy and limit of detection of ten malaria parasite lactate dehydrogenase-based rapid tests for Plasmodium knowlesi and P. falciparum. Front Cell Infect Microbiol 2022; 12:1023219. [PMID: 36325471 PMCID: PMC9618705 DOI: 10.3389/fcimb.2022.1023219] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Background Plasmodium knowlesi causes zoonotic malaria across Southeast Asia. First-line diagnostic microscopy cannot reliably differentiate P. knowlesi from other human malaria species. Rapid diagnostic tests (RDTs) designed for P. falciparum and P. vivax are used routinely in P. knowlesi co-endemic areas despite potential cross-reactivity for species-specific antibody targets. Methods Ten RDTs were evaluated: nine to detect clinical P. knowlesi infections from Malaysia, and nine assessing limit of detection (LoD) for P. knowlesi (PkA1-H.1) and P. falciparum (Pf3D7) cultures. Targets included Plasmodium-genus parasite lactate dehydrogenase (pan-pLDH) and P. vivax (Pv)-pLDH. Results Samples were collected prior to antimalarial treatment from 127 patients with microscopy-positive PCR-confirmed P. knowlesi mono-infections. Median parasitaemia was 788/µL (IQR 247-5,565/µL). Pan-pLDH sensitivities ranged from 50.6% (95% CI 39.6–61.5) (SD BIOLINE) to 87.0% (95% CI 75.1–94.6) (First Response® and CareStart™ PAN) compared to reference PCR. Pv-pLDH RDTs detected P. knowlesi with up to 92.0% (95% CI 84.3-96.7%) sensitivity (Biocredit™). For parasite counts ≥200/µL, pan-pLDH (Standard Q) and Pv-pLDH RDTs exceeded 95% sensitivity. Specificity of RDTs against 26 PCR-confirmed negative controls was 100%. Sensitivity of six highest performing RDTs were not significantly different when comparing samples taken before and after (median 3 hours) antimalarial treatment. Parasite ring stages were present in 30% of pre-treatment samples, with ring stage proportions (mean 1.9%) demonstrating inverse correlation with test positivity of Biocredit™ and two CareStart™ RDTs. For cultured P. knowlesi, CareStart™ PAN demonstrated the lowest LoD at 25 parasites/µL; LoDs of other pan-pLDH ranged from 98 to >2000 parasites/µL. Pv-pLDH LoD for P. knowlesi was 49 parasites/µL. No false-positive results were observed in either P. falciparum-pLDH or histidine-rich-protein-2 channels. Conclusion Selected RDTs demonstrate sufficient performance for detection of major human malaria species including P. knowlesi in co-endemic areas where microscopy is not available, particularly for higher parasite counts, although cannot reliably differentiate among non-falciparum malaria.
Collapse
Affiliation(s)
- Angelica F. Tan
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, N T, Australia
- Infectious Diseases Society Kota Kinabalu Sabah – Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- *Correspondence: Angelica F. Tan, ; Matthew J. Grigg,
| | - Sitti Saimah binti Sakam
- Infectious Diseases Society Kota Kinabalu Sabah – Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Giri S. Rajahram
- Infectious Diseases Society Kota Kinabalu Sabah – Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Ministry of Health, Kota Kinabalu, Sabah, Malaysia
- Department of Medicine, Queen Elizabeth Hospital II, Kota Kinabalu, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Kota Kinabalu Sabah – Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Ministry of Health, Kota Kinabalu, Sabah, Malaysia
| | | | - Sylvia Daim
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Bridget E. Barber
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, N T, Australia
- Clinical Malaria, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, N T, Australia
| | - Colin J. Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, N T, Australia
- Infectious Diseases Society Kota Kinabalu Sabah – Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Seda Yerlikaya
- Malaria and Fever, Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Donelly A. van Schalkwyk
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew J. Grigg
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, N T, Australia
- Infectious Diseases Society Kota Kinabalu Sabah – Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- *Correspondence: Angelica F. Tan, ; Matthew J. Grigg,
| |
Collapse
|
4
|
Niyukuri D, Sinzinkayo D, Troth EV, Oduma CO, Barengayabo M, Ndereyimana M, Holzschuh A, Vera-Arias CA, Gebre Y, Badu K, Nyandwi J, Baza D, Juma E, Koepfli C. Performance of highly sensitive and conventional rapid diagnostic tests for clinical and subclinical Plasmodium falciparum infections, and hrp2/3 deletion status in Burundi. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000828. [PMID: 36962426 PMCID: PMC10022336 DOI: 10.1371/journal.pgph.0000828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022]
Abstract
Rapid diagnostic tests (RDTs) are a key tool for the diagnosis of malaria infections among clinical and subclinical individuals. Low-density infections, and deletions of the P. falciparum hrp2/3 genes (encoding the HRP2 and HRP3 proteins detected by many RDTs) present challenges for RDT-based diagnosis. The novel Rapigen Biocredit three-band Plasmodium falciparum HRP2/LDH RDT was evaluated among 444 clinical and 468 subclinical individuals in a high transmission setting in Burundi. Results were compared to the AccessBio CareStart HRP2 RDT, and qPCR with a sensitivity of <0.3 parasites/μL blood. Sensitivity compared to qPCR among clinical patients for the Biocredit RDT was 79.9% (250/313, either of HRP2/LDH positive), compared to 73.2% (229/313) for CareStart (P = 0.048). Specificity of the Biocredit was 82.4% compared to 96.2% for CareStart. Among subclinical infections, sensitivity was 72.3% (162/224) compared to 58.5% (131/224) for CareStart (P = 0.003), and reached 88.3% (53/60) in children <15 years. Specificity was 84.4% for the Biocredit and 93.4% for the CareStart RDT. No (0/362) hrp2 and 2/366 hrp3 deletions were observed. In conclusion, the novel RDT showed improved sensitivity for the diagnosis of P. falciparum.
Collapse
Affiliation(s)
- David Niyukuri
- Doctoral School, University of Burundi, Bujumbura, Burundi
- South African DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis, Stellenbosch University, Stellenbosch, South Africa
| | - Denis Sinzinkayo
- Doctoral School, University of Burundi, Bujumbura, Burundi
- National Malaria Control Program, Bujumbura, Burundi
| | - Emma V Troth
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | | | | | | | - Aurel Holzschuh
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Claudia A Vera-Arias
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Yilekal Gebre
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Kingsley Badu
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Joseph Nyandwi
- Doctoral School, University of Burundi, Bujumbura, Burundi
- National Institute of Public Health, Bujumbura, Burundi
| | | | | | - Cristian Koepfli
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
5
|
Kim YH, Ahn HJ, Kim D, Hong SJ, Kim TS, Nam HW. Recent Spatial and Temporal Trends of Malaria in Korea. THE KOREAN JOURNAL OF PARASITOLOGY 2021; 59:585-593. [PMID: 34974665 PMCID: PMC8721308 DOI: 10.3347/kjp.2021.59.6.585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022]
Abstract
This study was done to provide an analytical overview on the latest malaria infection clusters by evaluating temporal trends during 2010–2019 in Korea. Incheon was the most likely cluster (MLC) for all cases of malaria during the total period. MLCs for P. falciparum, vivax, malariae, ovale, and clinically diagnosed malaria without parasitological confirmation were Jeollanam-do, Incheon, Gangwon-do, Gyeongsangnam-do, and Jeollabuk-do, respectively. Malaria was decreasing in most significant clusters, but Gwangju showed an increase for all cases of malaria, P. vivax and clinically diagnosed cases. Malaria overall, P. falciparum and P. vivax seem to be under control thanks to aggressive health measures. This study might provide a sound scientific basis for future control measures against malaria in Korea.
Collapse
Affiliation(s)
- Yeong Hoon Kim
- Department of Ophthalmology, College of Medicine, Catholic University of Korea, Seoul 06591,
Korea
| | - Hye-Jin Ahn
- Department of Parasitology, College of Medicine, Catholic University of Korea, Seoul 06591,
Korea
| | - Dongjae Kim
- Department of Biomedicine Health Science, College of Medicine, The Catholic University of Korea, Seoul 06591,
Korea
| | - Sung-Jong Hong
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012,
Korea
| | - Tong-Soo Kim
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012,
Korea
| | - Ho-Woo Nam
- Department of Parasitology, College of Medicine, Catholic University of Korea, Seoul 06591,
Korea
- Corresponding author ()
| |
Collapse
|
6
|
Malaria Rapid Diagnostic Tests: Literary Review and Recommendation for a Quality Assurance, Quality Control Algorithm. Diagnostics (Basel) 2021; 11:diagnostics11050768. [PMID: 33922917 PMCID: PMC8145891 DOI: 10.3390/diagnostics11050768] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/24/2023] Open
Abstract
Malaria rapid diagnostic tests (RDTs) have had an enormous global impact which contributed to the World Health Organization paradigm shift from empiric treatment to obtaining a parasitological diagnosis prior to treatment. Microscopy, the classic standard, requires significant expertise, equipment, electricity, and reagents. Alternatively, RDT’s lower complexity allows utilization in austere environments while achieving similar sensitivities and specificities. Worldwide, there are over 200 different RDT brands that utilize three antigens: Plasmodium histidine-rich protein 2 (PfHRP-2), Plasmodium lactate dehydrogenase (pLDH), and Plasmodium aldolase (pALDO). pfHRP-2 is produced exclusively by Plasmodium falciparum and is very Pf sensitive, but an alternative antigen or antigen combination is required for regions like Asia with significant Plasmodium vivax prevalence. RDT sensitivity also decreases with low parasitemia (<100 parasites/uL), genetic variability, and prozone effect. Thus, proper RDT selection and understanding of test limitations are essential. The Center for Disease Control recommends confirming RDT results by microscopy, but this is challenging, due to the utilization of clinical laboratory standards, like the College of American Pathologists (CAP) and the Clinical Lab Improvement Act (CLIA), and limited recourses. Our focus is to provide quality assurance and quality control strategies for resource-constrained environments and provide education on RDT limitations.
Collapse
|