1
|
Xu C, Cui X, Che J, Shen X, Chen D. Efficacy and safety of fluorescence navigation combined with 3D imaging in precise liver resection: A systematic review and meta-analysis. Photodiagnosis Photodyn Ther 2025; 51:104446. [PMID: 39706235 DOI: 10.1016/j.pdpdt.2024.104446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE This study aimed to evaluate the effectiveness and safety of fluorescence navigation combined with three-dimensional imaging (FN&3DI) technology in precise liver resection. METHODS A systematic search was conducted in the PubMed, Web of Science, Embase, and Cochrane Library databases for all English-language publications on fluorescence-guided navigation combined with three-dimensional (3D) imaging technology-assisted precise liver resection, with a cutoff date of July 2024. After assessing the quality of the included studies and extracting relevant data, a meta-analysis was performed using Stata 12.0 software. RESULTS A total of 6 studies involving 451 patients were included in this study, with 207 patients in the FN&3DI group and 244 patients in the conventional surgery (CS) group. The meta-analysis results showed that the FN&3DI group exhibited significantly lower values than the CS group in terms of intraoperative blood loss [mean difference (MD) = -97.90, 95 % confidence intervals (CI) = -151.15 to -44.66, P = 0.000], intraoperative blood transfusion rates [odds ratios (OR) = 2.96, 95 % CI = 1.71-5.10, P = 0.000], hospital stay (MD = -0.91, 95 % CI = -1.78 to -0.04, P = 0.041), and overall postoperative complications (OR = 1.68, 95 % CI = 1.11 to 2.53, P = 0.014). However, the FN&3DI group exhibited significantly longer surgery time (MD = 57.36, 95 % CI = 13.31-101.40, P = 0.011), but no statistically significant difference was noted in conversion rate, R0 resection margins, and postoperative recurrence between the two groups. CONCLUSION Fluorescence navigation combined with 3D imaging technology is safe and feasible for guiding precise liver resection.
Collapse
Affiliation(s)
- Chunwei Xu
- Department of General Surgery, Zhejiang Rongjun Hospital, Zhejiang JiaXing 314000, China
| | - Xinhua Cui
- Department of General Surgery, Zhejiang Rongjun Hospital, Zhejiang JiaXing 314000, China
| | - Jiafei Che
- Department of General Surgery, Zhejiang Rongjun Hospital, Zhejiang JiaXing 314000, China
| | - Xiaojing Shen
- Department of General Surgery, Zhejiang Rongjun Hospital, Zhejiang JiaXing 314000, China
| | - Dingchao Chen
- Department of General Surgery, Zhejiang Rongjun Hospital, Zhejiang JiaXing 314000, China.
| |
Collapse
|
2
|
Zhao J, Cheng Q, Liu C, Wang Q, Lv Y, Tang Z, Luo Y, Yang H. Optimal combination periprosthetic vasculature visualization and metal artifact reduction by spectral computed tomography using virtual monoenergetic images in total hip arthroplasty. Insights Imaging 2023; 14:181. [PMID: 37880460 PMCID: PMC10600072 DOI: 10.1186/s13244-023-01533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023] Open
Abstract
OBJECTIVES To investigate the optimal parameters of spectral CT for preferably visualizing the periprosthetic vasculature and metal artifact reduction (MAR) in total hip arthroplasty (THA). METHODS A total of 34 THA of 30 patients were retrospectively included. Image reconstructions included conventional image (CI), CI combined with MAR (CIMAR), and virtual monoenergetic images (VMI) combined with MAR (VMIMAR) at 50-120 keV. The attenuation and standard deviation of the vessel and artifact, and the width of artifact were measured. Qualitative scoring was evaluated including the vascular contour, the extent of artifact, and overall diagnostic evaluation. RESULTS The attenuation, noise of the vessel and artifact, and the width of artifact decreased as the energy level increased (p < 0.001). The downtrend was relatively flat at 80-120 keV, and the vascular attenuation dropped to 200 HU at 90 keV. The qualitative rating of vascular contour was significantly higher at CIMAR (3.47) and VMIMAR 60-80 keV (2.82-3.65) compared with CI (2.03) (p ≤ 0.029), and the highest score occurred at 70 and 80 keV (3.65 and 3.56). The score of the extent of artifact was higher at VMIMAR 80 keV than CIMAR (3.53 VS 3.12, p = 0.003). The score of the overall diagnostic evaluation was higher at VMIMAR 70 and 80 keV (3.32 and 3.53, respectively) than CIMAR (3.12) (p ≤ 0.035). CONCLUSION Eighty kiloelectron volts on VMIMAR, providing satisfactorily reduced metal artifacts and improved vascular visualization, can be an optimal recommended parameter of spectrum CT for the assessment of periprosthetic vasculature in THA patients. CRITICAL RELEVANCE STATEMENT The metal artifact is gradually reducing with increasing energy level; however, the vascular visualization is worsening. The vascular visualization is terrible above 100 keV, while the vessel is disturbed by artifacts below 70 keV. The best performance is found at 80 keV. KEY POINTS • VMIMAR can provide both reduced metal artifacts and improved vascular visualization. • Eighty kiloelectron volts on VMIMAR performs best in vascular visualization of total hip arthroplasty patients. • Energy spectrum CT is recommended for routine use in patients with total hip arthroplasty.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qiang Cheng
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuan Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qiqi Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yuchan Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Ziyi Tang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yuxi Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Haitao Yang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
3
|
Wang A, Li W, Huang W, Luo M, Xiao W, Qin C, Dong S, Liu H, Li Z, Diao K. Dual-layer spectral computed tomography aortography using a seventy-five-percent-reduced iodine dose protocol and multiparameter spectral imaging: comparison with conventional computed tomography imaging. Quant Imaging Med Surg 2023; 13:6456-6467. [PMID: 37869326 PMCID: PMC10585532 DOI: 10.21037/qims-23-101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/08/2023] [Indexed: 10/24/2023]
Abstract
Background Computed tomography angiography (CTA) is the recommended diagnostic and follow-up imaging modality for acute aortic dissection (AD). However, the high-contrast medium burden associated with repeated CT aortography follow-ups remains a significant concern. This prospective study aimed to assess whether an ultra-low contrast dose (75% cutoff) aortic CTA protocol on dual-layer spectral CT could achieve comparable image quality with the full dose protocol. We also investigated the image quality of the virtual noncontrast (VNC) images derived from the ultra-low dose protocol. Methods This study included 37 consecutive patients who were referred to aortic CTA from May 2022 to August 2022. The enrolled patients underwent full-dose contrast CTA and ultra-low dose (reduced to 25% of conventional) contrast CTA on dual-layer spectral CT in 1 day. Virtual monochromatic images (VMIs) were reconstructed with 40 and 70 keV. The VNC images were reconstructed for both protocols. Objective image quality evaluation, recorded as signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs), was compared between the groups using 1-way analysis of variance and post hoc analysis with Bonferroni correction. Subjective image quality was also compared between the groups. Finally, VNC images derived from the low-dose (VNClow) and full-dose (VNCfull) protocols were compared to the true noncontrast (TNC) images. Results Neither CNR nor SNR was lower for the 40-keV images reconstructed from the ultra-low dose group compared to the conventional images. Both were significantly higher than those of the 70-keV images. Regarding subjective image quality, vessel enhancement was not significantly different between the 40-keV VMI and full-dose images [ascending aorta (AAO): 4.37±0.46 vs. 4.57±0.48, P=0.096; brachiocephalic arteries: 4.34±0.45 vs. 4.51±0.49, P=0.152; abdominal aortic side branch: 4.42±0.48 vs. 4.51±0.49, P=0.480]. The VNClow images were similar to the TNC images but significantly different from the VNCfull images (P<0.001). Conclusions Ultra-low contrast aortic CTA with a 75%-reduced iodine dose using dual-layer spectral CT and the derived VNC achieved image quality comparable to that of conventional CTA and TNC images.
Collapse
Affiliation(s)
- Aijie Wang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Wanjiang Li
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Wenyu Huang
- West China School of Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Mao Luo
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Wendan Xiao
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Chaoyi Qin
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Shushan Dong
- Clinical Science, Philips Healthcare, Beijing, China
| | - Haiwei Liu
- Advanced Clinical Application, Philips Healthcare, Beijing, China
| | - Zhenlin Li
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Kaiyue Diao
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Borges AP, Antunes C, Caseiro-Alves F. Spectral CT: Current Liver Applications. Diagnostics (Basel) 2023; 13:diagnostics13101673. [PMID: 37238163 DOI: 10.3390/diagnostics13101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Using two different energy levels, dual-energy computed tomography (DECT) allows for material differentiation, improves image quality and iodine conspicuity, and allows researchers the opportunity to determine iodine contrast and radiation dose reduction. Several commercialized platforms with different acquisition techniques are constantly being improved. Furthermore, DECT clinical applications and advantages are continually being reported in a wide range of diseases. We aimed to review the current applications of and challenges in using DECT in the treatment of liver diseases. The greater contrast provided by low-energy reconstructed images and the capability of iodine quantification have been mostly valuable for lesion detection and characterization, accurate staging, treatment response assessment, and thrombi characterization. Material decomposition techniques allow for the non-invasive quantification of fat/iron deposition and fibrosis. Reduced image quality with larger body sizes, cross-vendor and scanner variability, and long reconstruction time are among the limitations of DECT. Promising techniques for improving image quality with lower radiation dose include the deep learning imaging reconstruction method and novel spectral photon-counting computed tomography.
Collapse
Affiliation(s)
- Ana P Borges
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| | - Célia Antunes
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| | - Filipe Caseiro-Alves
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| |
Collapse
|
5
|
A feasibility study of different GSI noise indexes and concentrations of contrast medium in hepatic CT angiography of overweight patients: image quality, radiation dose, and iodine intake. Jpn J Radiol 2023; 41:669-679. [PMID: 36607550 DOI: 10.1007/s11604-022-01384-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE To conduct a comparative study of image quality, radiation dose, and iodine intake in hepatic computed tomographic angiography (CTA) of overweight patients with different Gemstone Spectral Imaging (GSI) noise indexes combined with different concentrations of contrast medium. MATERIALS AND METHODS Ninety patients with a body mass index of ≥ 25 kg/m2 were divided into three groups (A, B and C), each with 30 patients. The three groups underwent hepatic CTA with different NI of 7, 11 and 15, respectively, and were injected with different iodine concentrations of 370, 350 and 320 mgI/mL, respectively. Five sets of images at 40-60 keV (interval, 5 keV) were reconstructed in each group. The CT value, image noise, contrast-to-noise ratio (CNR) and subjective score of the hepatic artery and vein, and portal vein in different monochromatic image sets were analyzed to select the optimal energy level in each group. The differences in CT value, image noise, CNR and a subjective score of hepatic artery and vein, portal vein in the optimal monochromatic images among the three groups were compared, the volume CT dose index (CTDIvol) and dose-length product (DLP) were recorded, and the effective dose and iodine intake were calculated. RESULTS The 40 keV was determined to be the optimal energy level for the monochromatic image sets in each group. No significant group differences were noted in the CT value, image noise, CNR, and subjective image scores of the hepatic artery and vein, and portal vein for the optimal monochromatic images (P > 0.05). Compared with group A, the effective dose and iodine intake in group B were reduced by 50.18% and 9.3%, and by 58.12% and 14.23% in group C, respectively. CONCLUSION A low-concentration contrast medium combined with a high-noise GSI index in hepatic CTA of overweight patients can reduce the radiation dose and iodine intake while ensuring image quality.
Collapse
|
6
|
Majeed NF, Ali SM, Therrien J, Wald C, Wortman JR. Virtual Monoenergetic Spectral Detector CT for Preoperative CT Angiography in Liver Donors. Curr Probl Diagn Radiol 2021; 51:517-523. [PMID: 34839975 DOI: 10.1067/j.cpradiol.2021.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate the use of virtual monoenergetic images (VMI) in pre-operative CT angiography of potential donors for living donor adult liver transplantation (LDALT), and to determine the optimal energy level to maximize vascular signal-to-noise and contrast-to-noise ratios (SNR and CNR, respectively). MATERIALS AND METHODS We retrospectively evaluated 29 CT angiography studies performed preoperatively in potential liver donors on a spectral detector CT scanner. All studies included arterial, early venous, and delayed venous phase imaging. Conventional polyenergetic images were generated for each patient, as well as virtual monoenergetic images in 10 keV increments from 40 -100 keV. Arteries (aorta and celiac, superior mesenteric, common hepatic, right and left hepatic arteries) were assessed on arterial phase images; portal venous system branches (splenic, superior mesenteric, main, right, and left portal veins) on early venous phase images; and hepatic veins on late venous phase images. Vascular attenuation, background parenchymal attenuation, and noise were measured on each set of virtual monoenergetic and conventional images. RESULTS Background hepatic and vascular noise decreased with increasing keV, with the lowest noise at 100 keV. Vascular SNR and CNR increased with decreasing keV and were highest at 40 keV, with statistical significance compared with conventional ( P < 0.05). CONCLUSIONS In preoperative CT angiography for potential liver donors, the optimal keV for assessing the vasculature to improve SNR and CNR is 40 keV. Use of low keV VMI in LDALT CT protocols may facilitate detection of vascular anatomical variants that can impact surgical planning.
Collapse
Affiliation(s)
- Noor Fatima Majeed
- Department of Radiology, Lahey Hospital and Medical Center, Burlington, MA.
| | - Sarah Maria Ali
- Department of Radiology, Lahey Hospital and Medical Center, Burlington, MA
| | - Jaclyn Therrien
- Department of Radiology, Lahey Hospital and Medical Center, Burlington, MA
| | - Christoph Wald
- Department of Radiology, Lahey Hospital and Medical Center, Burlington, MA
| | - Jeremy R Wortman
- Department of Radiology, Lahey Hospital and Medical Center, Burlington, MA
| |
Collapse
|
7
|
Majeed NF, Braschi Amirfarzan M, Wald C, Wortman JR. Spectral detector CT applications in advanced liver imaging. Br J Radiol 2021; 94:20201290. [PMID: 34048285 PMCID: PMC8248211 DOI: 10.1259/bjr.20201290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/16/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Spectral detector CT (SDCT) has many applications in advanced liver imaging. If appropriately utilized, this technology has the potential to improve image quality, provide new diagnostic information, and allow for decreased radiation dose. The purpose of this review is to familiarize radiologists with the uses of SDCT in liver imaging. CONCLUSION SDCT has a variety of post-processing techniques, which can be used in advanced liver imaging and can significantly add value in clinical practice.
Collapse
Affiliation(s)
- Noor Fatima Majeed
- Department of Radiology, Lahey Hospital and Medical Center, 41 Burlington Mall Road, Burlington, United States
| | - Marta Braschi Amirfarzan
- Department of Radiology, Lahey Hospital and Medical Center, 41 Burlington Mall Road, Burlington, United States
| | - Christoph Wald
- Department of Radiology, Lahey Hospital and Medical Center, 41 Burlington Mall Road, Burlington, United States
| | - Jeremy R Wortman
- Department of Radiology, Lahey Hospital and Medical Center, 41 Burlington Mall Road, Burlington, United States
| |
Collapse
|
8
|
Choe YH. A Glimpse on Trends and Characteristics of Recent Articles Published in the Korean Journal of Radiology. Korean J Radiol 2019; 20:1555-1561. [PMID: 31854145 PMCID: PMC6923209 DOI: 10.3348/kjr.2019.0928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yeon Hyeon Choe
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|