1
|
Fan Y, Chen K, Zhao Q, Yin H, Zhu Y, Xu H. Quantitative ultrasound analysis for non-invasive assessment of hepatic steatosis in metabolic dysfunction-associated steatotic liver disease. Clin Hemorheol Microcirc 2025:13860291241304057. [PMID: 39973438 DOI: 10.1177/13860291241304057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
OBJECTIVE To evaluate the diagnostic performance of novel tissue attenuation imaging (TAI) and tissue scatter distribution imaging (TSI) tools in detecting and grading hepatic steatosis using controlled attenuation parameter (CAP) as reference standard. METHODS A total of 185 participants with suspected metabolic dysfunction-associated steatotic liver disease (MASLD) were prospectively enrolled, and all underwent CAP and quantitative ultrasound (QUS) testing. Correlations between CAP, biological data, TAI and TSI were assessed. The influence factors of TAI and TSI as well as the diagnostic performance of TAI and TSI in detecting hepatic steatosis were evaluated. RESULTS The QUS parameters (TAI and TSI) showed good intra-observer reliability with ICC of 0.972 and 0.777, respectively. The correlation of CAP with TAI was higher than that of TSI (0.724 vs 0.360, P < 0.05). Multivariate Regression analysis showed that CAP was an important influence factor of TAI and TSI (P < 0.001). The area under the ROC curve (CAP > 250 dB/m) of TAI and TSI tools for detecting hepatic steatosis was 0.876 (95% CI: 0.813-0.923; P < 0.0001) and 0.797(95% CI: 0.724-0.857; P < 0.001), respectively; the sensitivity was 67.18% and 83.21%, the specificity was 95.65% and 69.57%, and the cut-off values were 0.93 dB/cm/MHz and 91.28, respectively. When TAI and TSI were combined, the area under the ROC curve was 0.881, with a sensitivity of 80.92% and a specificity of 82.61%. The Delong test showed that the combined diagnosis of TAI and TSI was equivalent to the use of TAI alone (P > 0.05). CONCLUSION TAI and TSI provided good intra-observer reliability, correlated well with CAP, and helped to detect and stage hepatic steatosis.
Collapse
Affiliation(s)
- Yunling Fan
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kailing Chen
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiannan Zhao
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haohao Yin
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
- Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
| | - Yuli Zhu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huixiong Xu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Boglárka Z, Zsombor Z, Rónaszéki AD, Egresi A, Stollmayer R, Himsel M, Bérczi V, Kalina I, Werling K, Győri G, Maurovich-Horvat P, Folhoffer A, Hagymási K, Kaposi PN. Construction of a Compound Model to Enhance the Accuracy of Hepatic Fat Fraction Estimation with Quantitative Ultrasound. Diagnostics (Basel) 2025; 15:203. [PMID: 39857087 PMCID: PMC11763894 DOI: 10.3390/diagnostics15020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Background: we evaluated regression models based on quantitative ultrasound (QUS) parameters and compared them with a vendor-provided method for calculating the ultrasound fat fraction (USFF) in metabolic dysfunction-associated steatotic liver disease (MASLD). Methods: We measured the attenuation coefficient (AC) and the backscatter-distribution coefficient (BSC-D) and determined the USFF during a liver ultrasound and calculated the magnetic resonance imaging proton-density fat fraction (MRI-PDFF) and steatosis grade (S0-S4) in a combined retrospective-prospective cohort. We trained multiple models using single or various QUS parameters as independent variables to forecast MRI-PDFF. Linear and nonlinear models were trained during five-time repeated three-fold cross-validation in a retrospectively collected dataset of 60 MASLD cases. We calculated the models' Pearson correlation (r) and the intraclass correlation coefficient (ICC) in a prospectively collected test set of 57 MASLD cases. Results: The linear multivariable model (r = 0.602, ICC = 0.529) and USFF (r = 0.576, ICC = 0.54) were more reliable in S0- and S1-grade steatosis than the nonlinear multivariable model (r = 0.492, ICC = 0.461). In S2 and S3 grades, the nonlinear multivariable (r = 0.377, ICC = 0.32) and AC-only (r = 0.375, ICC = 0.313) models' approximated correlation and agreement surpassed that of the multivariable linear model (r = 0.394, ICC = 0.265). We searched a QUS parameter grid to find the optimal thresholds (AC ≥ 0.84 dB/cm/MHz, BSC-D ≥ 105), above which switching from a linear (r = 0.752, ICC = 0.715) to a nonlinear multivariable (r = 0.719, ICC = 0.641) model could improve the overall fit (r = 0.775, ICC = 0.718). Conclusions: The USFF and linear multivariable models are robust in diagnosing low-grade steatosis. Switching to a nonlinear model could enhance the fit to MRI-PDFF in advanced steatosis.
Collapse
Affiliation(s)
- Zsély Boglárka
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (Z.B.); (Z.Z.); (A.D.R.); (R.S.); (M.H.); (V.B.); (I.K.); (G.G.); (P.M.-H.)
| | - Zita Zsombor
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (Z.B.); (Z.Z.); (A.D.R.); (R.S.); (M.H.); (V.B.); (I.K.); (G.G.); (P.M.-H.)
| | - Aladár D. Rónaszéki
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (Z.B.); (Z.Z.); (A.D.R.); (R.S.); (M.H.); (V.B.); (I.K.); (G.G.); (P.M.-H.)
| | - Anna Egresi
- Department of Surgery, Transplantation, and Gastroenterology, Semmelweis University, 1082 Budapest, Hungary; (A.E.); (K.W.); (K.H.)
| | - Róbert Stollmayer
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (Z.B.); (Z.Z.); (A.D.R.); (R.S.); (M.H.); (V.B.); (I.K.); (G.G.); (P.M.-H.)
- Clinic for Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Marco Himsel
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (Z.B.); (Z.Z.); (A.D.R.); (R.S.); (M.H.); (V.B.); (I.K.); (G.G.); (P.M.-H.)
| | - Viktor Bérczi
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (Z.B.); (Z.Z.); (A.D.R.); (R.S.); (M.H.); (V.B.); (I.K.); (G.G.); (P.M.-H.)
| | - Ildikó Kalina
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (Z.B.); (Z.Z.); (A.D.R.); (R.S.); (M.H.); (V.B.); (I.K.); (G.G.); (P.M.-H.)
| | - Klára Werling
- Department of Surgery, Transplantation, and Gastroenterology, Semmelweis University, 1082 Budapest, Hungary; (A.E.); (K.W.); (K.H.)
| | - Gabriella Győri
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (Z.B.); (Z.Z.); (A.D.R.); (R.S.); (M.H.); (V.B.); (I.K.); (G.G.); (P.M.-H.)
| | - Pál Maurovich-Horvat
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (Z.B.); (Z.Z.); (A.D.R.); (R.S.); (M.H.); (V.B.); (I.K.); (G.G.); (P.M.-H.)
| | - Anikó Folhoffer
- Department of Internal Medicine and Oncology, Semmelweis University, 1082 Budapest, Hungary;
| | - Krisztina Hagymási
- Department of Surgery, Transplantation, and Gastroenterology, Semmelweis University, 1082 Budapest, Hungary; (A.E.); (K.W.); (K.H.)
| | - Pál Novák Kaposi
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (Z.B.); (Z.Z.); (A.D.R.); (R.S.); (M.H.); (V.B.); (I.K.); (G.G.); (P.M.-H.)
| |
Collapse
|
3
|
Gong P, Zhang J, Huang C, Lok UW, Tang S, Liu H, DeRuiter R, Peterson K, Knoll K, Robinson K, Watt K, Callstrom M, Chen S. Novel Quantitative Liver Steatosis Assessment Method With Ultrasound Harmonic Imaging. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:77-85. [PMID: 39315751 PMCID: PMC11634646 DOI: 10.1002/jum.16582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
OBJECTIVES Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent liver disorder in Western countries, with approximately 20%-30% of the MASLD patients progressing to severe stages. There is an urgent need for noninvasive, cost-effective, widely accessible, and precise biomarkers to evaluate liver steatosis. This study aims to assess and compare the diagnostic performance of a novel reference frequency method-based ultrasound attenuation coefficient estimation (ACE) in both fundamental (RFM-ACE-FI) and harmonic (RFM-ACE-HI) imaging for detecting and grading liver steatosis. METHODS An Institutional Review Board-approved prospective study was carried out between December 2018 and October 2022. A total number of 130 subjects were enrolled in the study. The correlation between RFM-ACE-HI values and magnetic resonance imaging proton density fat fraction (MRI-PDFF), as well as between RFM-ACE-FI values and MRI-PDFF were calculated. The diagnostic performance of RFM-ACE-FI and RFM-ACE-HI was evaluated using receiver operating characteristic (ROC) curve analysis, as compared to MRI-PDFF. The reproducibility of RFM-ACE-HI was assessed by interobserver agreement between two sonographers. RESULTS A strong correlation was observed between RFM-ACE-HI and MRI-PDFF, with R = 0.88 (95% confidence interval [CI]: 0.83-0.92; P < .001), while the correlation between RFM-ACE-FI and MRI-PDFF was R = 0.65 (95% CI: 0.50-0.76; P < .001). The area under the ROC (AUROC) curve for RFM-ACE-HI in staging liver steatosis grades of S ≥ 1 and S ≥ 2 was 0.97 (95% CI: 0.91-0.99; P < .001) and 0.98 (95% CI: 0.93-1.00; P < .001), respectively, and 0.76 (95% CI: 0.65-0.85) and 0.80 (95% CI: 0.70-0.88) for RFM-ACE-FI, respectively. Great reproducibility was achieved for RFM-ACE-HI, with an interobserver agreement of R = 0.97 (95% CI: 0.94-0.99; P < .001). CONCLUSIONS The novel RFM-ACE-HI method offered high liver steatosis diagnostic accuracy and reproducibility, which has important clinical implications for early disease intervention and treatment evaluation.
Collapse
Affiliation(s)
- Ping Gong
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jingke Zhang
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chengwu Huang
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - U-Wai Lok
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Shanshan Tang
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hui Liu
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Ultrasound, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Ryan DeRuiter
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kendra Peterson
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kate Knoll
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Kymberly Watt
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Shigao Chen
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
De Rosa L, Salvati A, Martini N, Chiappino D, Cappelli S, Mancini M, Demi L, Ghiadoni L, Bonino F, Brunetto MR, Faita F. An ultrasound multiparametric method to quantify liver fat using magnetic resonance as standard reference. Liver Int 2024; 44:3008-3019. [PMID: 39189634 DOI: 10.1111/liv.16078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/15/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND & AIMS There is an unmet need for a reliable and reproducible non-invasive measure of fatty liver content (FLC) for monitoring steatotic liver disease in clinical practice. Sonographic FLC assessment is qualitative and operator-dependent, and the dynamic quantification range of algorithms based on a single ultrasound (US) parameter is unsatisfactory. This study aims to develop and validate a new multiparametric algorithm based on B-mode images to quantify FLC using Magnetic Resonance (MR) values as standard reference. METHODS Patients with elevated liver enzymes and/or bright liver at US (N = 195) underwent FLC evaluation by MR and by US. Five US-derived quantitative features [attenuation rate(AR), hepatic renal-ratio(HR), diaphragm visualization(DV), hepatic-portal-vein-ratio(HPV), portal-vein-wall(PVW)] were combined by mixed linear/exponential regression in a multiparametric model (Steatoscore2.0). One hundred and thirty-four subjects were used for training and 61 for independent validations; score-computation underwent an inter-operator reproducibility analysis. RESULTS The model is based on a mixed linear/exponential combination of 3 US parameters (AR, HR, DV), modelled by 2 equations according to AR values. The computation of FLC by Steatoscore2.0 (mean ± std, 7.91% ± 8.69) and MR (mean ± std, 8.10% ± 10.31) is highly correlated with a low root mean square error in both training/validation cohorts, respectively (R = 0.92/0.86 and RMSE = 5.15/4.62, p < .001). Steatoscore2.0 identified patients with MR-FLC≥5%/≥10% with sensitivity = 93.2%/89.4%, specificity = 86.1%/95.8%, AUROC = 0.958/0.975, respectively and correlated with MR (R = 0.92) significantly (p < .001) better than CAP (R = 0.73). CONCLUSIONS Multiparametric Steatoscore2.0 measures FLC providing values highly comparable with MR. It is reliable, inexpensive, easy to use with any US equipment and qualifies to be tested in larger, prospective studies as new tool for the non-invasive screening and monitoring of FLC.
Collapse
Affiliation(s)
- Laura De Rosa
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
- Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
| | | | | | | | - Simone Cappelli
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - Marcello Mancini
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Libertario Demi
- Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
| | - Lorenzo Ghiadoni
- Emergency Medicine Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Ferruccio Bonino
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Maurizia R Brunetto
- Hepatology Unit, Pisa University Hospital, Pisa, Italy
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Francesco Faita
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| |
Collapse
|
5
|
Li BY, Xi Y, Liu YP, Wang D, Wang C, Chen CG, Fang XH, Li ZX, Chen YM. Effects of Silybum marianum, Pueraria lobate, combined with Salvia miltiorrhiza tablets on non-alcoholic fatty liver disease in adults: A triple-blind, randomized, placebo-controlled clinical trial. Clin Nutr ESPEN 2024; 63:2-12. [PMID: 38879879 DOI: 10.1016/j.clnesp.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND & AIMS Several medicinal plant extracts have demonstrated hepatoprotective effects. However, data are scarce regarding their combined effects on non-alcoholic fatty liver disease (NAFLD). This study aimed to investigate the effects of tablets containing Silybum marianum, Pueraria lobata, and Salvia miltiorrhiza (SPS) on NAFLD progression in Chinese adults. METHODS In this randomized, triple-blind, placebo-controlled clinical trial, 121 NAFLD patients (60 female and 61 male), diagnosed via magnetic resonance imaging (MRI) and aged 18-65 years, were enrolled. Participants were randomly allocated to receive SPS tablets (n = 60; three tablets per dose, twice daily) or placebo (n = 61) for 24 weeks. Each SPS tablet contained approximately 23.0 mg of silybin, 11.4 mg of puerarin, and 10.9 mg of salvianolic acid. There were no differences in appearance, taste and odour between the SPS tablets and placebo manufactured by BYHEALTH Co., LTD (Guangzhou, China). The primary endpoints were changes in the liver fat content (LFC) and steatosis grade from baseline to 24 weeks. Secondary outcomes included changes in biomarkers/scores of liver fibrosis and steatosis, oxidative stress, inflammatory cytokines, alcohol metabolism, and glucose metabolism. RESULTS A total of 112 participants completed the research. The intention-to-treat results showed a trend toward reduction in both absolute LFC (-0.52%) and percentage of LFC (-4.57%) in the SPS group compared to the placebo group after 24 weeks, but these changes didn't reach statistical significance (p > 0.05). The SPS intervention (vs. placebo) significantly decreased hypersensitive C-reactive protein level (-6.76%) and increased aldehyde dehydrogenase activity (+18.1%) at 24 weeks post-intervention (all p < 0.05). Per-protocol analysis further supported these effects. This trial is registered at Clinical Trials.gov (NCT05076058). CONCLUSION SPS supplementation may have potential benefits in improving NAFLD, but further larger-scale trials are necessary to confirm these findings.
Collapse
Affiliation(s)
- Bang-Yan Li
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, China.
| | - Yue Xi
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, China.
| | - Yu-Ping Liu
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, China; Sichuan Center for Disease Control and Prevention, Chengdu, China.
| | - Di Wang
- BYHEALTH Institute of Nutrition & Health, Guangzhou 510663, China.
| | - Cheng Wang
- Clinical Nutrition Department of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China.
| | - Chao-Gang Chen
- Clinical Nutrition Department of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China.
| | - Xiao-Hong Fang
- Guangzhou Universal Medical Imaging Diagnostic Center, Guangzhou 510080, China.
| | - Zhong-Xia Li
- BYHEALTH Institute of Nutrition & Health, Guangzhou 510663, China.
| | - Yu-Ming Chen
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
6
|
Kim MN, Han JW, An J, Kim BK, Jin YJ, Kim SS, Lee M, Lee HA, Cho Y, Kim HY, Shin YR, Yu JH, Kim MY, Choi Y, Chon YE, Cho EJ, Lee EJ, Kim SG, Kim W, Jun DW, Kim SU. KASL clinical practice guidelines for noninvasive tests to assess liver fibrosis in chronic liver disease. Clin Mol Hepatol 2024; 30:S5-S105. [PMID: 39159947 PMCID: PMC11493350 DOI: 10.3350/cmh.2024.0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024] Open
Affiliation(s)
- Mi Na Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Ji Won Han
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jihyun An
- Department of Gastroenterology and Hepatology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Beom Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Young-Joo Jin
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Seung-seob Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Minjong Lee
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Han Ah Lee
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yuri Cho
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
| | - Hee Yeon Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu Rim Shin
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Hwan Yu
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Moon Young Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - YoungRok Choi
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Young Eun Chon
- Department of Internal Medicine, Institute of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Joo Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Gyune Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - on behalf of The Korean Association for the Study of the Liver (KASL)
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Gastroenterology and Hepatology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Institute of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
- Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Yoo J, Joo I, Jeon SK, Park J, Yoon SH. Utilizing fully-automated 3D organ segmentation for hepatic steatosis assessment with CT attenuation-based parameters. Eur Radiol 2024; 34:6205-6213. [PMID: 38393403 PMCID: PMC11364604 DOI: 10.1007/s00330-024-10660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/22/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVES To investigate the clinical utility of fully-automated 3D organ segmentation in assessing hepatic steatosis on pre-contrast and post-contrast CT images using magnetic resonance spectroscopy (MRS)-proton density fat fraction (PDFF) as reference standard. MATERIALS AND METHODS This retrospective study analyzed 362 adult potential living liver donors with abdominal CT scans and MRS-PDFF. Using a deep learning-based tool, mean volumetric CT attenuation of the liver and spleen were measured on pre-contrast (liver(L)_pre and spleen(S)_pre) and post-contrast (L_post and S_post) images. Agreements between volumetric and manual region-of-interest (ROI)-based measurements were assessed using the intraclass correlation coefficient (ICC) and Bland-Altman analysis. Diagnostic performances of volumetric parameters (L_pre, liver-minus-spleen (L-S)_pre, L_post, and L-S_post) were evaluated for detecting MRS-PDFF ≥ 5% and ≥ 10% using receiver operating characteristic (ROC) curve analysis and compared with those of ROI-based parameters. RESULTS Among the 362 subjects, 105 and 35 had hepatic steatosis with MRS-PDFF ≥ 5% and ≥ 10%, respectively. Volumetric and ROI-based measurements revealed ICCs of 0.974, 0.825, 0.992, and 0.962, with mean differences of -4.2 HU, -3.4 HU, -1.2 HU, and -7.7 HU for L_pre, S_pre, L_post, and S_post, respectively. Volumetric L_pre, L-S_pre, L_post, and L-S_post yielded areas under the ROC curve of 0.813, 0.813, 0.734, and 0.817 for MRS-PDFF ≥ 5%; and 0.901, 0.915, 0.818, and 0.868 for MRS-PDFF ≥ 10%, comparable with those of ROI-based parameters (0.735-0.818; and 0.816-0.895, Ps = 0.228-0.911). CONCLUSION Automated 3D segmentation of the liver and spleen in CT scans can provide volumetric CT attenuation-based parameters to detect and grade hepatic steatosis, applicable to pre-contrast and post-contrast images. CLINICAL RELEVANCE STATEMENT Volumetric CT attenuation-based parameters of the liver and spleen, obtained through automated segmentation tools from pre-contrast or post-contrast CT scans, can efficiently detect and grade hepatic steatosis, making them applicable for large population data collection. KEY POINTS • Automated organ segmentation enables the extraction of CT attenuation-based parameters for the target organ. • Volumetric liver and spleen CT attenuation-based parameters are highly accurate in hepatic steatosis assessment. • Automated CT measurements from pre- or post-contrast imaging show promise for hepatic steatosis screening in large cohorts.
Collapse
Affiliation(s)
- Jeongin Yoo
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Institute of Radiation Medicine, Seoul National University Medical Research Center Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| | - Sun Kyung Jeon
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Junghoan Park
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Soon Ho Yoon
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- MEDICALIP. Co. Ltd., Seoul, Korea
| |
Collapse
|
8
|
Pyo JH, Cho SJ, Choi SC, Jee JH, Yun J, Hwang JA, Park G, Kim K, Kang W, Kang M, Byun YH. Diagnostic performance of quantitative ultrasonography for hepatic steatosis in a health screening program: a prospective single-center study. Ultrasonography 2024; 43:250-262. [PMID: 38898634 PMCID: PMC11222130 DOI: 10.14366/usg.24040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
PURPOSE This study compared the diagnostic performance of quantitative ultrasonography (QUS) with that of conventional ultrasonography (US) in assessing hepatic steatosis among individuals undergoing health screening using magnetic resonance imaging-derived proton density fat fraction (MRI-PDFF) as the reference standard. METHODS This single-center prospective study enrolled 427 participants who underwent abdominal MRI and US. Measurements included the attenuation coefficient in tissue attenuation imaging (TAI) and the scatter-distribution coefficient in tissue scatter-distribution imaging (TSI). The correlation between QUS and MRI-PDFF was evaluated. The diagnostic capabilities of QUS, conventional B-mode US, and their combined models for detecting hepatic fat content of ≥5% (MRI-PDFF ≥5%) and ≥10% (MRI-PDFF ≥10%) were compared by analyzing the areas under the receiver operating characteristic curves. Additionally, clinical risk factors influencing the diagnostic performance of QUS were identified using multivariate linear regression analyses. RESULTS TAI and TSI were strongly correlated with MRI-PDFF (r=0.759 and r=0.802, respectively; both P<0.001) and demonstrated good diagnostic performance in detecting and grading hepatic steatosis. The combination of QUS and B-mode US resulted in the highest areas under the ROC curve (AUCs) (0.947 and 0.975 for detecting hepatic fat content of ≥5% and ≥10%, respectively; both P<0.05), compared to TAI, TSI, or B-mode US alone (AUCs: 0.887, 0.910, 0.878 for ≥5% and 0.951, 0.922, 0.875 for ≥10%, respectively). The independent determinants of QUS included skinliver capsule distance (β=7.134), hepatic fibrosis (β=4.808), alanine aminotransferase (β=0.202), triglyceride levels (β=0.027), and diabetes mellitus (β=3.710). CONCLUSION QUS is a useful and effective screening tool for detecting and grading hepatic steatosis during health checkups.
Collapse
Affiliation(s)
- Jeung Hui Pyo
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Jin Cho
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Chul Choi
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Hwan Jee
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeeyeong Yun
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Ah Hwang
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Goeun Park
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Kyunga Kim
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Wonseok Kang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mira Kang
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
- Digital Transformation Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young hye Byun
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Li X, Sun Z, Liu W, Sun L, Ren J, Xu Y, Yu H, Bai W. Methodology exploration and reproducibility evaluation of TAI and TSI for quantitative ultrasound assessment of hepatic steatosis. Heliyon 2024; 10:e31904. [PMID: 38845969 PMCID: PMC11153231 DOI: 10.1016/j.heliyon.2024.e31904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Background and aim New quantitative ultrasound techniques can be used to quantify hepatic steatosis, including tissue attenuation imaging (TAI), tissue scatter -distribution imaging (TSI), and the hepatorenal index (HRI). However, the measurement norms and the effects of fasting on these measurements remain unclear. The present study performed a methodological exploration and investigated the reliability of these measurements. Methods In total, 103 participants were prospectively recruited for ultrasonography and magnetic resonance imaging (MRI) scans. For the TAI and TSI data, the upper (2 cm), middle (4 cm) and lower (6 cm) areas determined according to the depth of the region of interest from the liver capsule, were sampled three times. Correlation analyses were performed to compare the measurements of TAI, TSI, and HRI with the controlled attenuation parameter (CAP) or MRI-proton density fat fraction (MRI-PDFF). Intra- and inter-operator repeatability was assessed using intraclass correlation coefficients. The effects of fasting on these measurements were then compared. Results The TAI and TSI measurements obtained from the upper and middle depths exhibited stronger correlations with the CAP measurements than those obtained from the lower depth. Specifically, the mean TAI had a significant positive correlation with MRI-PDFF (r = 0.753, P < 0.0001). TAI and TSI measurements exhibited excellent intra- (0.933 and 0.925, respectively) and inter- (0.896 and 0.766, respectively) examiner reliability. However, the correlation between HRI and CAP measurements was only 0.281, with no significant correlation with MRI-PDFF, and intra- and inter-examiner reproducibility of 0.458 and 0.343, respectively. Fasting did not affect these measurements. Conclusions TAI and TSI measurements demonstrated good intra- and interobserver reliability and correlated well with CAP and MRI-PDFF measurements. However, in practice-based clinical applications, the sampling depth should be controlled within 2-4 cm of the hepatic capsule; no fasting is required before the examination.
Collapse
Affiliation(s)
- Xiao Li
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziwei Sun
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Junyi Ren
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Xu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyong Yu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Institute of Shanghai Diabetes, Shanghai, China
| | - Wenkun Bai
- Department of Ultrasound in Medicine, Tongji Hospital Affiliated to Tongji University, Shanghai Institute of Ultrasound in Medicine, Shanghai, China
| |
Collapse
|
10
|
Yin H, Xiong B, Yu J, Fan Y, Zhou B, Sun Y, Wang L, Xu H, Zhu Y. Interoperator reproducibility of quantitative ultrasound analysis of hepatic steatosis in participants with suspected MASLD: A prospective study. Eur J Radiol 2024; 175:111427. [PMID: 38522397 DOI: 10.1016/j.ejrad.2024.111427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/11/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
OBJECTIVES To evaluate the reproducibility of tissue attenuation imaging (TAI) and tissue scatter distribution imaging (TSI) measurements in adults with suspected metabolic dysfunction-associated steatotic liver disease (MASLD) between radiologists with varying experience. MATERIALS AND METHODS Participants with suspected MASLD were prospectively recruited. TAI and TSI were performed for each participant by two radiologists with different levels of experience. Interoperability reliability was assessed on the basis of Bland-Altman analysis and intraclass correlation coefficients (ICCs). The study determined and compared the diagnostic performance of TAI and TSI with clinical prediction models using proton magnetic resonance spectroscopy (1H-MRS) as a reference. RESULTS A total of 180 participants (women, n = 56; men, n = 124, mean age, 46.98 ± 14.92 years; mean BMI, 25.81 ± 4.47) were enrolled from August 2022 to September 2022. Bland-Altman plots showed only slight deviation in the TAI and TSI results of the two radiologists; there was good interoperator reproducibility for TAI (ICC = 0.92) and TSI (ICC = 0.86). Senior and junior radiologists performed examinations labeled as TAI-1 and TSI-1, and TAI-2 and TSI-2, respectively. The areas under the curves (AUCs) of TAI-1, TAI-2, TSI-1, and TAI-2 for the detection of ≥5 % hepatic steatosis were 0.90, 0.96, 0.91 and 0.96, respectively. According to ROC analysis, the diagnostic performance of both radiologists for TAI and TSI was statistically similar and superior to that of the clinical prediction model. CONCLUSIONS TAI and TSI have good reproducibility between radiologists with different levels of experience. Meanwhile, both TAI and TSI demonstrated good diagnostic performance for hepatic steatosis (≥5%), surpassing that of clinical prediction models.
Collapse
Affiliation(s)
- Haohao Yin
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China; Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai 200032, China
| | - Bing Xiong
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China; Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai 200032, China
| | - Jifeng Yu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yunling Fan
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Boyang Zhou
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yikang Sun
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lifan Wang
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huixiong Xu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yuli Zhu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
11
|
Jeon SK, Lee JM. Inter-platform reproducibility of ultrasound-based fat fraction for evaluating hepatic steatosis in nonalcoholic fatty liver disease. Insights Imaging 2024; 15:46. [PMID: 38353856 PMCID: PMC10866839 DOI: 10.1186/s13244-024-01611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/07/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVES To evaluate the inter-platform reproducibility of ultrasound-based fat fraction examination in nonalcoholic fatty liver disease (NAFLD). METHODS Patients suspected of having NAFLD were prospectively enrolled from January 2023. Ultrasound-based fat fraction examinations were performed using two different platforms (ultrasound-derived fat fraction [UDFF] and quantitative ultrasound-derived estimated fat fraction [USFF]) on the same day. The correlation between UDFF and USFF was assessed using Pearson correlation coefficient. Intraclass correlation coefficient (ICC), Bland-Altman analysis with 95% limits of agreement (LOAs), and the coefficient of variation (CV) were used to assess inter-platform reproducibility. RESULTS A total of 41 patients (21 men and 20 women; mean age, 53.9 ± 12.6 years) were analyzed. Moderate correlation was observed between UDFF and USFF (Pearson's r = 0.748; 95% confidence interval [CI]: 0.572-0.858). On Bland-Altman analysis, the mean difference between UDFF and USFF values was 1.3% with 95% LOAs ranging from -8.0 to 10.6%. The ICC between UDFF and USFF was 0.842 (95% CI: 0.703-0.916), with a CV of 29.9%. CONCLUSION Substantial inter-platform variability was observed among different ultrasound-based fat fraction examinations. Therefore, it is not appropriate to use ultrasound-based fat fraction values obtained from different vendors interchangeably. CRITICAL RELEVANCE STATEMENT Considering the substantial inter-platform variability in ultrasound-based fat fraction assessments, caution is imperative when interpreting and comparing fat fraction values obtained from different ultrasound platforms in clinical practice. KEY POINTS • Inter-platform reproducibility of ultrasound-based fat fraction examinations is important for its clinical application. • Significant variability across different ultrasound-based fat fraction examinations was observed. • Using ultrasound-based fat fraction values from different vendors interchangeably is not advisable.
Collapse
Affiliation(s)
- Sun Kyung Jeon
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehangno, Jongno-Gu, Seoul, 03080, South Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehangno, Jongno-Gu, Seoul, 03080, South Korea.
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea.
| |
Collapse
|
12
|
Chen B, Lu Q, Hu B, Sun D, Ying T. Protocol of quantitative ultrasound techniques for noninvasive assessing of hepatic steatosis after bariatric surgery. Front Surg 2024; 10:1244199. [PMID: 38239667 PMCID: PMC10794322 DOI: 10.3389/fsurg.2023.1244199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/27/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Roux-en-Y gastric bypass surgery can effectively improve steatosis, necroinflammatory activity, and hepatic fibrosis in individuals diagnosed with morbid obesity or nonalcoholic steatohepatitis (NASH). Common methods such as body mass index (BMI) to evaluate the postoperative effect of clinical bariatric surgery cannot differentiate subcutaneous fats from visceral fats and muscles. Several Quantitative ultrasound (QUS)-based approaches have been developed to quantify hepatic steatosis. QUS techniques (tissue attenuation imaging (TAI), tissue scatter distribution imaging (TSI)) from radio frequency (RF) data analysis as a means for the detection and grading of hepatic steatosis has been posited as an objective and noninvasive approach. The implementation and standardization of QUS techniques (TAI, TSI) in assessing hepatic steatosis quantitatively after bariatric surgery is of high-priority. Our study is aimed to assess hepatic steatosis with QUS techniques (TAI, TSI) in morbidly obese individuals before and after bariatric surgery, and to compare with anthropometric measurements, laboratory assessments and other imaging methods. Methods and analysis The present investigation, a self-discipline examination of navigational capacity devoid of visual cues, is designed as a single-site, forward-looking evaluation of efficacy with the imprimatur of the institutional review board. The duration of the study has been provisionally determined to span from 1 January 2023 through 31 December 2025. Our cohort shall encompass one hundred participants, who was scheduled to undergo Roux-en-Y gastric bypass (RYGB) at Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine. All patients will undergo anthropometric measurements, blood-based biochemical analyses, ultrasonic examination and magnetic resonance imaging proton density fat fraction (MRI-PDFF). The primary endpoint is the analysis of evaluating the efficacy of QUS techniques assessing hepatic steatosis compared to other methods before and after bariatric surgery. Results Prior to the fomal study, we recruited 21 obese Chinese participants who received ultrasonic examination (TAI, TSI) and MRI-PDFF. AC-TAI showed moderate correlations with MRI-PDFF (adjusted r = 0.632; P < 0.05). For MRI-PDFF ≥10%, SC-TSI showed moderate correlations with MRI-PDFF (adjusted r = 0.677; P < 0.05). Conclusion Our pre-experiment results signified that using QUS techniques for postoperative evaluation of bariatric surgery is promising. QUS techniques will be signed a widespread availability, real-time functionality, and low-cost approach for assessing hepatic steatosis before and after bariatric surgery in obese individuals, thus is capable for subsequent scale-up liver fat quantification. Ethics and dissemination The present research endeavor has been bestowed with the imprimatur of the Ethics Committee of the Hospital, as indicated by its Approval Number: 2023-KY-015. In due course, upon completion of the study, we intend to disseminate our findings by publishing them in a suitable academic journal, thereby facilitating their widespread utilization. Registration The trial is duly registered with the Chinese Clinical Trial Registry, and with a unique Trial Registration Number, ChiCTR2300069892, approved on March 28, 2023.
Collapse
Affiliation(s)
- Bin Chen
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qijie Lu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Hu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Sun
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Ying
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Zhu Y, Yin H, Zhou D, Zhao Q, Wang K, Fan Y, Chen K, Han H, Xu H. A prospective comparison of three ultrasound-based techniques in quantitative diagnosis of hepatic steatosis in NAFLD. Abdom Radiol (NY) 2024; 49:81-92. [PMID: 37950767 DOI: 10.1007/s00261-023-04078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/13/2023]
Abstract
PURPOSE To investigate the correlation between different ultrasound attenuation-based techniques and to compare their diagnostic performances using proton magnetic resonance spectroscopy (1H-MRS) as a reference standard. METHODS Participants who had clinical suspicion of nonalcoholic fatty liver disease (NAFLD) were prospectively recruited. Each subject had ultrasound with attenuation imaging (ATI) or quantitative ultrasound including tissue attenuation imaging (TAI) and tissue scatter-distribution imaging (TSI), and controlled-attenuation parameter (CAP) and 1H-MRS if available. The technical success rates, intra-observer repeatabilities of attenuation and backscattering coefficient were evaluated. ATI, TAI and CAP were three attenuation-based techniques. Spearman coefficient was used to test correlations among them and 1H-MRS. In addition, the diagnostic performances of these parameters for detecting ≥ 5% or 10% hepatic steatosis were evaluated. RESULTS 130 participants had ultrasound scanning. Among them, 67 had CAP and 48 had 1H-MRS. The technical success rates were all 100%. The intra-observer repeatabilities of them were also excellent (ICCs > 0.90) and AC-ATI correlated well with AC-TAI (r = 0.752). AC-ATI, AC-TAI showed moderate correlation with CAP, (rATI = 0.623, 95% CI 0.446-0.752, P < 0.001; rTAI = 0.573, 95% CI 0.377-0.720, P < 0.001). For correlation with 1H-MRS, ATI and TAI performed better than CAP(rATI = 0.587; rTAI = 0.712; r CAP = 0.485). The AUCs of ATI, TAI, TSI and CAP for detecting ≥ 5% hepatic steatosis were 0.883, 0.862, 0.870 and 0.868, respectively. The AUC improved to 0.907 when TAI and TSI were combined (P < 0.05). When detecting ≥ 10% hepatic steatosis, the AUCs were 0.855, 0.702, 0.822 and 0.838, respectively. CONCLUSION Different ultrasound attenuation-based techniques were well correlated and exhibited good diagnostic performances in quantitative diagnosis of hepatic steatosis, however, the threshold values were different. Combinations of multiple parameters may improve the diagnostic performance in detecting hepatic steatosis. TRIAL REGISTRATION The study has been registered online ( https://www.chictr.org.cn ; unique identifier: ChiCTR2300069459).
Collapse
Affiliation(s)
- Yuli Zhu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Haohao Yin
- Department of Ultrasound, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200032, China
- Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
| | - Da Zhou
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qiannan Zhao
- Department of Ultrasound, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Kun Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Yunling Fan
- Department of Ultrasound, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Kailing Chen
- Department of Ultrasound, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Hong Han
- Department of Ultrasound, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
| | - Huixiong Xu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
14
|
Hwang SM, Cho KY. Noninvasive assessment of paediatric hepatic steatosis by using attenuation imaging. Eur Radiol 2023; 33:8353-8365. [PMID: 37195431 PMCID: PMC10189215 DOI: 10.1007/s00330-023-09731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/18/2023]
Abstract
OBJECTIVES To evaluate the diagnostic performance of attenuation imaging (ATI) with an ultrasound scanner (US) in the detection of paediatric hepatic steatosis. METHODS Ninety-four prospectively enrolled children were classified into normal weight and overweight/obese (OW/OB) groups according to body mass index (BMI). US findings, including hepatic steatosis grade and ATI value, were examined by two radiologists. Anthropometric and biochemical parameters were obtained, and nonalcoholic fatty liver disease (NAFLD) scores, including the Framingham steatosis index (FSI) and hepatic steatosis index (HSI), were calculated. RESULTS After screening, 49 OW/OB and 40 normal weight children aged 10-18 years old (55 males and 34 females) participated in this study. The ATI value was significantly higher in the OW/OB group than in the normal weight group and showed a significant positive correlation with BMI, serum alanine transferase (ALT), uric acid, and NAFLD scores (p < 0.05). In the multiple linear regression adjusted for age, sex, BMI, ALT, uric acid, and HSI, ATI showed a significant positive association with BMI and ALT (p < 0.05). The receiver operating characteristic analysis showed a very good ability of ATI to predict hepatic steatosis. The intraclass correlation coefficient (ICC) of interobserver variability was 0.92, and the ICCs of intraobserver variability were 0.96 and 0.93 (p < 0.05). According to the two-level Bayesian latent class model analysis, the diagnostic performance of ATI showed the best performance for predicting hepatic steatosis among other known noninvasive NAFLD predictors. CONCLUSIONS This study suggests that ATI is an objective and possible surrogate screening test for detecting hepatic steatosis in paediatric patients with obesity. CLINICAL RELEVANCE STATEMENT Using ATI as a quantitative tool in hepatic steatosis allows clinicians to estimate the extent of the condition and track changes over time. This is helpful for monitoring disease progression and guiding treatment decisions, especially in paediatric practice. KEY POINTS • Attenuation imaging is a noninvasive US-based method for the quantification of hepatic steatosis. • Attenuation imaging values were significantly higher in the OW/OB and steatosis groups than in the normal weight and no steatosis groups, respectively, with a meaningful correlation with known clinical indicators of nonalcoholic fatty liver disease. • Attenuation imaging performs better than other noninvasive predictive models used to diagnose hepatic steatosis.
Collapse
Affiliation(s)
- Sook Min Hwang
- Department of Radiology, Hallym University Kangnam Sacred Heart Hospital, Seoul, 07441, Korea
| | - Ky Young Cho
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, 1 Singil-ro, Yeongdeungpo-gu, Seoul, 07441, Korea.
| |
Collapse
|
15
|
Polti G, Frigerio F, Del Gaudio G, Pacini P, Dolcetti V, Renda M, Angeletti S, Di Martino M, Iannetti G, Perla FM, Poggiogalle E, Cantisani V. Quantitative ultrasound fatty liver evaluation in a pediatric population: comparison with magnetic resonance imaging of liver proton density fat fraction. Pediatr Radiol 2023; 53:2458-2465. [PMID: 37698614 PMCID: PMC10635941 DOI: 10.1007/s00247-023-05749-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Biopsy remains the gold standard for the diagnosis of hepatic steatosis, the leading cause of pediatric chronic liver disease; however, its costs call for less invasive methods. OBJECTIVE This study examined the diagnostic accuracy and reliability of quantitative ultrasound (QUS) for the assessment of liver fat content in a pediatric population, using magnetic resonance imaging proton density fat fraction (MRI-PDFF) as the reference standard. MATERIALS AND METHODS We enrolled 36 patients. MRI-PDFF involved a 3-dimensional T2*-weighted with Dixon pulse multiple-echo sequence using iterative decomposition of water and fat with echo asymmetry and least squares estimation (IDEAL IQ). QUS imaging relied on the ultrasound system "RS85 A" (Samsung Medison, Seoul, South Korea) and the following software: Hepato-Renal Index with automated region of interest recommendation (EzHRI), Tissue Attenuation Imaging (TAI), and Tissue Scatter Distribution Imaging (TSI). For each QUS index, receiver operating characteristic (ROC) curve analysis against MRI-PDFF was used to identify the associated cut-off value and the area under the ROC curve (AUROC). Concordance between two radiologists was assessed by intraclass correlation coefficients (ICCs) and Bland-Altman analysis. RESULTS A total of 61.1% of the sample (n=22) displayed a MRI-PDFF ≥ 5.6%; QUS cut-off values were TAI=0.625 (AUROC 0.90, confidence interval [CI] 0.77-1.00), TSI=91.95 (AUROC 0.99, CI 0.98-1.00) and EzHRI=1.215 (AUROC 0.98, CI 0.94-1.00). Inter-rater reliability was good-to-excellent for EzHRI (ICC 0.91, 95% C.I. 0.82-0.95) and TAI (ICC 0.94, 95% C.I. 0.88-0.97) and moderate to good for TSI (ICC 0.73; 95% C.I. 0.53-0.85). CONCLUSION Our results suggest that QUS can be used to reliably assess the presence and degree of pediatric hepatic steatosis.
Collapse
Affiliation(s)
- Giorgia Polti
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Rome, Italy
| | - Francesco Frigerio
- Department of Experimental Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giovanni Del Gaudio
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Rome, Italy
| | - Patrizia Pacini
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Dolcetti
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Rome, Italy
| | - Maurizio Renda
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Rome, Italy
| | - Sergio Angeletti
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Rome, Italy
| | - Michele Di Martino
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Rome, Italy
| | - Giovanni Iannetti
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Rome, Italy
| | | | - Eleonora Poggiogalle
- Department of Experimental Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Vito Cantisani
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Kaposi PN, Zsombor Z, Rónaszéki AD, Budai BK, Csongrády B, Stollmayer R, Kalina I, Győri G, Bérczi V, Werling K, Maurovich-Horvat P, Folhoffer A, Hagymási K. The Calculation and Evaluation of an Ultrasound-Estimated Fat Fraction in Non-Alcoholic Fatty Liver Disease and Metabolic-Associated Fatty Liver Disease. Diagnostics (Basel) 2023; 13:3353. [PMID: 37958249 PMCID: PMC10648816 DOI: 10.3390/diagnostics13213353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
We aimed to develop a non-linear regression model that could predict the fat fraction of the liver (UEFF), similar to magnetic resonance imaging proton density fat fraction (MRI-PDFF), based on quantitative ultrasound (QUS) parameters. We measured and retrospectively collected the ultrasound attenuation coefficient (AC), backscatter-distribution coefficient (BSC-D), and liver stiffness (LS) using shear wave elastography (SWE) in 90 patients with clinically suspected non-alcoholic fatty liver disease (NAFLD), and 51 patients with clinically suspected metabolic-associated fatty liver disease (MAFLD). The MRI-PDFF was also measured in all patients within a month of the ultrasound scan. In the linear regression analysis, only AC and BSC-D showed a significant association with MRI-PDFF. Therefore, we developed prediction models using non-linear least squares analysis to estimate MRI-PDFF based on the AC and BSC-D parameters. We fitted the models on the NAFLD dataset and evaluated their performance in three-fold cross-validation repeated five times. We decided to use the model based on both parameters to calculate UEFF. The correlation between UEFF and MRI-PDFF was strong in NAFLD and very strong in MAFLD. According to a receiver operating characteristics (ROC) analysis, UEFF could differentiate between <5% vs. ≥5% and <10% vs. ≥10% MRI-PDFF steatosis with excellent, 0.97 and 0.91 area under the curve (AUC), accuracy in the NAFLD and with AUCs of 0.99 and 0.96 in the MAFLD groups. In conclusion, UEFF calculated from QUS parameters is an accurate method to quantify liver fat fraction and to diagnose ≥5% and ≥10% steatosis in both NAFLD and MAFLD. Therefore, UEFF can be an ideal non-invasive screening tool for patients with NAFLD and MAFLD risk factors.
Collapse
Affiliation(s)
- Pál Novák Kaposi
- Department of Radiology, Medical Imaging Center, Faculty of Medicine, Semmelweis University, Korányi S. u. 2., 1083 Budapest, Hungary; (Z.Z.); (A.D.R.); (B.K.B.); (B.C.); (R.S.); (I.K.); (G.G.); (V.B.); (P.M.-H.)
| | - Zita Zsombor
- Department of Radiology, Medical Imaging Center, Faculty of Medicine, Semmelweis University, Korányi S. u. 2., 1083 Budapest, Hungary; (Z.Z.); (A.D.R.); (B.K.B.); (B.C.); (R.S.); (I.K.); (G.G.); (V.B.); (P.M.-H.)
| | - Aladár D. Rónaszéki
- Department of Radiology, Medical Imaging Center, Faculty of Medicine, Semmelweis University, Korányi S. u. 2., 1083 Budapest, Hungary; (Z.Z.); (A.D.R.); (B.K.B.); (B.C.); (R.S.); (I.K.); (G.G.); (V.B.); (P.M.-H.)
| | - Bettina K. Budai
- Department of Radiology, Medical Imaging Center, Faculty of Medicine, Semmelweis University, Korányi S. u. 2., 1083 Budapest, Hungary; (Z.Z.); (A.D.R.); (B.K.B.); (B.C.); (R.S.); (I.K.); (G.G.); (V.B.); (P.M.-H.)
| | - Barbara Csongrády
- Department of Radiology, Medical Imaging Center, Faculty of Medicine, Semmelweis University, Korányi S. u. 2., 1083 Budapest, Hungary; (Z.Z.); (A.D.R.); (B.K.B.); (B.C.); (R.S.); (I.K.); (G.G.); (V.B.); (P.M.-H.)
| | - Róbert Stollmayer
- Department of Radiology, Medical Imaging Center, Faculty of Medicine, Semmelweis University, Korányi S. u. 2., 1083 Budapest, Hungary; (Z.Z.); (A.D.R.); (B.K.B.); (B.C.); (R.S.); (I.K.); (G.G.); (V.B.); (P.M.-H.)
| | - Ildikó Kalina
- Department of Radiology, Medical Imaging Center, Faculty of Medicine, Semmelweis University, Korányi S. u. 2., 1083 Budapest, Hungary; (Z.Z.); (A.D.R.); (B.K.B.); (B.C.); (R.S.); (I.K.); (G.G.); (V.B.); (P.M.-H.)
| | - Gabriella Győri
- Department of Radiology, Medical Imaging Center, Faculty of Medicine, Semmelweis University, Korányi S. u. 2., 1083 Budapest, Hungary; (Z.Z.); (A.D.R.); (B.K.B.); (B.C.); (R.S.); (I.K.); (G.G.); (V.B.); (P.M.-H.)
| | - Viktor Bérczi
- Department of Radiology, Medical Imaging Center, Faculty of Medicine, Semmelweis University, Korányi S. u. 2., 1083 Budapest, Hungary; (Z.Z.); (A.D.R.); (B.K.B.); (B.C.); (R.S.); (I.K.); (G.G.); (V.B.); (P.M.-H.)
| | - Klára Werling
- Department of Surgery, Transplantation and Gastroenterology, Faculty of Medicine, Semmelweis University, Üllői út 78., 1082 Budapest, Hungary; (K.W.); (K.H.)
| | - Pál Maurovich-Horvat
- Department of Radiology, Medical Imaging Center, Faculty of Medicine, Semmelweis University, Korányi S. u. 2., 1083 Budapest, Hungary; (Z.Z.); (A.D.R.); (B.K.B.); (B.C.); (R.S.); (I.K.); (G.G.); (V.B.); (P.M.-H.)
| | - Anikó Folhoffer
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Korányi S. u. 2/A., 1083 Budapest, Hungary;
| | - Krisztina Hagymási
- Department of Surgery, Transplantation and Gastroenterology, Faculty of Medicine, Semmelweis University, Üllői út 78., 1082 Budapest, Hungary; (K.W.); (K.H.)
| |
Collapse
|
17
|
Lee CM, Kim M, Kang BK, Jun DW, Yoon EL. Discordance diagnosis between B-mode ultrasonography and MRI proton density fat fraction for fatty liver. Sci Rep 2023; 13:15557. [PMID: 37730972 PMCID: PMC10511436 DOI: 10.1038/s41598-023-42422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
We aimed to evaluate the frequency and causes of discordant results in fatty liver (FL) diagnosis between B-mode ultrasonography (B-USG) and magnetic resonance imaging proton density fat fraction (MRI-PDFF). We analyzed patients who underwent both B-USG and MRI-PDFF within a 6-month interval. We made a confusion matrix for FL diagnosis between B-USG and MRI-PDFF and identified four discordant groups as follows: (1) the "UFL-MnFL-wo" group [B-USG FL-MRI-PDFF no FL without chronic liver disease (CLD) or liver cirrhosis (LC)]; (2) the "UFL-MnFL-w" group (B-USG FL-MRI-PDFF no FL with CLD or LC); (3) the "UnFL-MFL-wo" group (B-USG no FL-MRI-PDFF FL without CLD or LC); and (4) the "UnFL-MFL-w" group (B-USG no FL-MRI-PDFF FL with CLD or LC). We compared the "UFL-MnFL-wo" group with the control group in terms of various parameters. We found 201 patients (201/1514, 13.3%) with discordant results for FL diagnosis between B-USG and MRI-PDFF. The "UFL-MnFL-wo" group accounted for the largest portion at 6.8% (103/1514), followed by the "UFL-MnFL-w" group (79/1514, 5.2%) and the "UnFL-MFL-w" group (16/1514, 1.1%). The mean and right PDFF values, body mass index, and abdominal wall thickness were significantly higher in the "UFL-MnFL-wo" group than in the control group (p ≤ 0.001). The frequency of discordant results in the diagnosis of FL between B-USG and MRI-PDFF could be identified. The causes of discordant results were that B-USG was fairly accurate in diagnosing FL disease and that accompanying CLD or LC hindered the evaluation of FL.
Collapse
Affiliation(s)
- Chul-Min Lee
- Department of Radiology, Hanyang University College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea
| | - Mimi Kim
- Department of Radiology, Hanyang University College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea
| | - Bo-Kyeong Kang
- Department of Radiology, Hanyang University College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea.
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Eileen L Yoon
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| |
Collapse
|
18
|
Jeon SK, Lee JM, Cho SJ, Byun YH, Jee JH, Kang M. Development and validation of multivariable quantitative ultrasound for diagnosing hepatic steatosis. Sci Rep 2023; 13:15235. [PMID: 37709827 PMCID: PMC10502048 DOI: 10.1038/s41598-023-42463-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
This study developed and validated multivariable quantitative ultrasound (QUS) model for diagnosing hepatic steatosis. Retrospective secondary analysis of prospectively collected QUS data was performed. Participants underwent QUS examinations and magnetic resonance imaging proton density fat fraction (MRI-PDFF; reference standard). A multivariable regression model for estimating hepatic fat fraction was determined using two QUS parameters from one tertiary hospital (development set). Correlation between QUS-derived estimated fat fraction(USFF) and MRI-PDFF and diagnostic performance of USFF for hepatic steatosis (MRI-PDFF ≥ 5%) were assessed, and validated in an independent data set from the other health screening center(validation set). Development set included 173 participants with suspected NAFLD with 126 (72.8%) having hepatic steatosis; and validation set included 452 health screening participants with 237 (52.4%) having hepatic steatosis. USFF was correlated with MRI-PDFF (Pearson r = 0.799 and 0.824; development and validation set). The model demonstrated high diagnostic performance, with areas under the receiver operating characteristic curves of 0.943 and 0.924 for development and validation set, respectively. Using cutoff of 6.0% from development set, USFF showed sensitivity, specificity, positive predictive value, and negative predictive value of 87.8%, 78.6%, 81.9%, and 85.4% for diagnosing hepatic steatosis in validation set. In conclusion, multivariable QUS parameters-derived estimated fat fraction showed high diagnostic performance for detecting hepatic steatosis.
Collapse
Affiliation(s)
- Sun Kyung Jeon
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, Seoul, 03080, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, Seoul, 03080, Korea.
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.
| | - Soo Jin Cho
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea.
| | - Young-Hye Byun
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea
| | - Jae Hwan Jee
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea
| | - Mira Kang
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea
- Department of Digital Health, Samsung Advanced Institute of Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
- Digital Innovation Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Şendur HN, Cerit MN, Fatullayeva T, Erdal ZS, Karabörk Kılıç AC, Özhan Oktar S. Do Ultrasound Based Quantitative Hepatic Fat Content Measurements Have Differences Between Respiratory Phases? Acad Radiol 2023; 30:1832-1837. [PMID: 36628802 DOI: 10.1016/j.acra.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023]
Abstract
RATIONALE AND OBJECTIVES The recently developed ultrasound based tools using attenuation coefficient (AC) and scatter distribution coefficient (SDC) values can be used to quantify hepatic fat content in patients with non-alcoholic fatty liver disease (NAFLD). However, currently the impact of respiratory phase on these measurements is not known. The purpose of this study is to compare AC and SDC measurements acquired at peak inspiration and end expiration phases. MATERIALS AND METHODS AC and SDC measurements were obtained in 50 patients with NAFLD. Tissue Attenuation Imaging (TAI) and Tissue Scatter Distribution Imaging (TSI) tools were utilized to measure AC and SDC values, respectively. Five measurements were performed at respiratory phases using TAI and TSI tools and the median values were noted. Subgroup analyses were performed and Wilcoxon signed rank test was used for comparison of the measurements. RESULTS The median values of the AC measurements at peak inspiration and end expiration phases were 0.87 dB/cm/MHz and 0.89 dB/cm/MHz, respectively. The median values of the SDC measurements at peak inspiration and end expiration phases were 97.91 and 96.62, respectively. There were no statistically significant differences in AC and SDC measurements between the respiratory phases except for AC measurements in BMI <30 kg/m2 subgroup. CONCLUSION Our results revealed that respiratory phases have no impact on SDC measurements. However, while the AC measurements in BMI ≥30 kg/m2 subgroup showed no significant difference, there was a significant difference in AC measurements in BMI <30 kg/m2 subgroup between the respiratory phases.
Collapse
Affiliation(s)
- Halit Nahit Şendur
- Department of Radiology, Gazi University Faculty of Medicine, Yenimahalle, Ankara, Turkey.
| | - Mahi N Cerit
- Department of Radiology, Gazi University Faculty of Medicine, Yenimahalle, Ankara, Turkey
| | - Turkana Fatullayeva
- Department of Radiology, Gazi University Faculty of Medicine, Yenimahalle, Ankara, Turkey
| | - Zeynep S Erdal
- Department of Radiology, Gazi University Faculty of Medicine, Yenimahalle, Ankara, Turkey
| | | | - Suna Özhan Oktar
- Department of Radiology, Gazi University Faculty of Medicine, Yenimahalle, Ankara, Turkey
| |
Collapse
|
20
|
Zeng KY, Bao WYG, Wang YH, Liao M, Yang J, Huang JY, Lu Q. Non-invasive evaluation of liver steatosis with imaging modalities: New techniques and applications. World J Gastroenterol 2023; 29:2534-2550. [PMID: 37213404 PMCID: PMC10198053 DOI: 10.3748/wjg.v29.i17.2534] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/26/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
In the world, nonalcoholic fatty liver disease (NAFLD) accounts for majority of diffuse hepatic diseases. Notably, substantial liver fat accumulation can trigger and accelerate hepatic fibrosis, thus contributing to disease progression. Moreover, the presence of NAFLD not only puts adverse influences for liver but is also associated with an increased risk of type 2 diabetes and cardiovascular diseases. Therefore, early detection and quantified measurement of hepatic fat content are of great importance. Liver biopsy is currently the most accurate method for the evaluation of hepatic steatosis. However, liver biopsy has several limitations, namely, its invasiveness, sampling error, high cost and moderate intraobserver and interobserver reproducibility. Recently, various quantitative imaging techniques have been developed for the diagnosis and quantified measurement of hepatic fat content, including ultrasound- or magnetic resonance-based methods. These quantitative imaging techniques can provide objective continuous metrics associated with liver fat content and be recorded for comparison when patients receive check-ups to evaluate changes in liver fat content, which is useful for longitudinal follow-up. In this review, we introduce several imaging techniques and describe their diagnostic performance for the diagnosis and quantified measurement of hepatic fat content.
Collapse
Affiliation(s)
- Ke-Yu Zeng
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wu-Yong-Ga Bao
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yun-Han Wang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Min Liao
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jie Yang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia-Yan Huang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qiang Lu
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
21
|
Singla R, Hu R, Ringstrom C, Lessoway V, Reid J, Nguan C, Rohling R. The Kidneys Are Not All Normal: Transplanted Kidneys and Their Speckle Distributions. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1268-1274. [PMID: 36842904 DOI: 10.1016/j.ultrasmedbio.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/21/2022] [Accepted: 01/19/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Modelling ultrasound speckle to characterise tissue properties has generated considerable interest. As speckle is dependent on the underlying tissue architecture, modelling it may aid in tasks such as segmentation or disease detection. For the transplanted kidney, where ultrasound is used to investigate dysfunction, it is unknown which statistical distribution best characterises such speckle. This applies to the regions of the transplanted kidney: the cortex, the medulla and the central echogenic complex. Furthermore, it is unclear how these distributions vary by patient variables such as age, sex, body mass index, primary disease or donor type. These traits may influence speckle modelling given their influence on kidney anatomy. We investigate these two aims. METHODS B-mode images from n = 821 kidney transplant recipients (one image per recipient) were automatically segmented into the cortex, medulla and central echogenic complex using a neural network. Seven distinct probability distributions were fitted to each region's histogram, and statistical analysis was performed. DISCUSSION The Rayleigh and Nakagami distributions had model parameters that differed significantly between the three regions (p ≤ 0.05). Although both had excellent goodness of fit, the Nakagami had higher Kullbeck-Leibler divergence. Recipient age correlated weakly with scale in the cortex (Ω: ρ = 0.11, p = 0.004), while body mass index correlated weakly with shape in the medulla (m: ρ = 0.08, p = 0.04). Neither sex, primary disease nor donor type exhibited any correlation. CONCLUSION We propose the Nakagami distribution be used to characterize transplanted kidneys regionally independent of disease etiology and most patient characteristics.
Collapse
Affiliation(s)
- Rohit Singla
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Ricky Hu
- Faculty of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Cailin Ringstrom
- Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Victoria Lessoway
- Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Janice Reid
- Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Nguan
- Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert Rohling
- Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, Canada; Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Şendur HN, Cerit MN, Ibrahimkhanli N, Şendur AB, Özhan Oktar S. Interobserver Variability in Ultrasound-Based Liver Fat Quantification. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:833-841. [PMID: 35778902 DOI: 10.1002/jum.16048] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/28/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES To assess interobserver variability in ultrasound-based quantitative liver fat content measurements and to determine how much time these quantitative ultrasound (QUS) techniques require. METHODS One hundred patients with known or suspected of having nonalcoholic fatty liver disease were included in this prospective study. Two observers who were blinded to each other measurements performed tissue attenuation imaging (TAI) and tissue scatter distribution imaging (TSI) techniques independently. Both observers assessed hepatic steatosis visually and obtained 5 measurements for each QUS technique and the median values of the measurements were recorded. Spearman's correlation test was used to assess the correlation between QUS measurements and visual hepatic stetaosis grades. Intraclass correlation coefficient (ICC) test was used to assess interobserver variability in QUS measurements. RESULTS The median values of TAI measurements for the observers 1 and 2 were 0.75 and 0.74 dB/cm/MHz, respectively. The median values of TSI measurements for the observers 1 and 2 were 93.53 and 92.58, respectively. The interobserver agreement in TAI (ICC: 0.970) and TSI (ICC: 0.938) measurements were excellent. The mean of the required time period for TAI technique were 55.1 ± 7.8 and 59.9 ± 6.6 seconds for the observers 1 and 2, respectively. The mean of the required time period for TSI technique were 49.1 ± 5.8 and 54.1 ± 5.4 seconds for the observers 1 and 2, respectively. CONCLUSION The current study revealed that both TAI and TSI techniques are highly reproducible and can be implemented into daily practice with little additional time requirement.
Collapse
Affiliation(s)
- Halit Nahit Şendur
- Department of Radiology, Gazi University Faculty of Medicine, Mevlana Bulvarı No:29 06560 Yenimahalle, Ankara, Turkey
| | - Mahi Nur Cerit
- Department of Radiology, Gazi University Faculty of Medicine, Mevlana Bulvarı No:29 06560 Yenimahalle, Ankara, Turkey
| | - Nemat Ibrahimkhanli
- Department of Radiology, Gazi University Faculty of Medicine, Mevlana Bulvarı No:29 06560 Yenimahalle, Ankara, Turkey
| | | | - Suna Özhan Oktar
- Department of Radiology, Gazi University Faculty of Medicine, Mevlana Bulvarı No:29 06560 Yenimahalle, Ankara, Turkey
| |
Collapse
|
23
|
Evaluation of Artificial Intelligence-Calculated Hepatorenal Index for Diagnosing Mild and Moderate Hepatic Steatosis in Non-Alcoholic Fatty Liver Disease. Medicina (B Aires) 2023; 59:medicina59030469. [PMID: 36984470 PMCID: PMC10058464 DOI: 10.3390/medicina59030469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Background and Objectives: This study aims to evaluate artificial intelligence-calculated hepatorenal index (AI-HRI) as a diagnostic method for hepatic steatosis. Materials and Methods: We prospectively enrolled 102 patients with clinically suspected non-alcoholic fatty liver disease (NAFLD). All patients had a quantitative ultrasound (QUS), including AI-HRI, ultrasound attenuation coefficient (AC,) and ultrasound backscatter-distribution coefficient (SC) measurements. The ultrasonographic fatty liver indicator (US-FLI) score was also calculated. The magnetic resonance imaging fat fraction (MRI-PDFF) was the reference to classify patients into four grades of steatosis: none < 5%, mild 5–10%, moderate 10–20%, and severe ≥ 20%. We compared AI-HRI between steatosis grades and calculated Spearman’s correlation (rs) between the methods. We determined the agreement between AI-HRI by two examiners using the intraclass correlation coefficient (ICC) of 68 cases. We performed a receiver operating characteristics (ROC) analysis to estimate the area under the curve (AUC) for AI-HRI. Results: The mean AI-HRI was 2.27 (standard deviation, ±0.96) in the patient cohort. The AI-HRI was significantly different between groups without (1.480 ± 0.607, p < 0.003) and with mild steatosis (2.155 ± 0.776), as well as between mild and moderate steatosis (2.777 ± 0.923, p < 0.018). AI-HRI showed moderate correlation with AC (rs = 0.597), SC (rs = 0.473), US-FLI (rs = 0.5), and MRI-PDFF (rs = 0.528). The agreement in AI-HRI was good between the two examiners (ICC = 0.635, 95% confidence interval (CI) = 0.411–0.774, p < 0.001). The AI-HRI could detect mild steatosis (AUC = 0.758, 95% CI = 0.621–0.894) with fair and moderate/severe steatosis (AUC = 0.803, 95% CI = 0.721–0.885) with good accuracy. However, the performance of AI-HRI was not significantly different (p < 0.578) between the two diagnostic tasks. Conclusions: AI-HRI is an easy-to-use, reproducible, and accurate QUS method for diagnosing mild and moderate hepatic steatosis.
Collapse
|
24
|
Jeon SK, Lee JM, Joo I, Yoon JH, Lee G. Two-dimensional Convolutional Neural Network Using Quantitative US for Noninvasive Assessment of Hepatic Steatosis in NAFLD. Radiology 2023; 307:e221510. [PMID: 36594835 DOI: 10.1148/radiol.221510] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Quantitative US (QUS) using radiofrequency data analysis has been recently introduced for noninvasive evaluation of hepatic steatosis. Deep learning algorithms may improve the diagnostic performance of QUS for hepatic steatosis. Purpose To evaluate a two-dimensional (2D) convolutional neural network (CNN) algorithm using QUS parametric maps and B-mode images for diagnosis of hepatic steatosis, with the MRI-derived proton density fat fraction (PDFF) as the reference standard, in patients with nonalcoholic fatty liver disease (NAFLD). Materials and Methods: Consecutive adult participants with suspected NAFLD were prospectively enrolled at a single academic medical center from July 2020 to June 2021. Using radiofrequency data analysis, two QUS parameters (tissue attenuation imaging [TAI] and tissue scatter-distribution imaging [TSI]) were measured. On B-mode images, hepatic steatosis was graded using visual scoring (none, mild, moderate, or severe). Using B-mode images and two QUS parametric maps (TAI and TSI) as input data, the algorithm estimated the US fat fraction (USFF) as a percentage. The correlation between the USFF and MRI PDFF was evaluated using the Pearson correlation coefficient. The diagnostic performance of the USFF for hepatic steatosis (MRI PDFF ≥5%) was evaluated using receiver operating characteristic curve analysis and compared with that of TAI, TSI, and visual scoring. Results Overall, 173 participants (mean age, 51 years ± 14 [SD]; 96 men) were included, with 126 (73%) having hepatic steatosis (MRI PDFF ≥5%). USFF correlated strongly with MRI PDFF (Pearson r = 0.86, 95% CI: 0.82, 0.90; P < .001). For diagnosing hepatic steatosis (MRI PDFF ≥5%), the USFF yielded an area under the receiver operating characteristic curve of 0.97 (95% CI: 0.93, 0.99), higher than those of TAI, TSI, and visual scoring (P = .015, .006, and < .001, respectively), with a sensitivity of 90% (95% CI: 84, 95 [114 of 126]) and a specificity of 91% (95% CI: 80, 98 [43 of 47]) at a cutoff value of 5.7%. Conclusion A deep learning algorithm using quantitative US parametric maps and B-mode images accurately estimated the hepatic fat fraction and diagnosed hepatic steatosis in participants with nonalcoholic fatty liver disease. ClinicalTrials.gov registration nos. NCT04462562, NCT04180631 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Sidhu and Fang in this issue.
Collapse
Affiliation(s)
- Sun Kyung Jeon
- From the Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, Seoul 03080, Korea (S.K.J., J.M.L., I.J., J.H.Y.); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea (J.M.L.); and Ultrasound R&D 2 Group, Health & Medical Equipment Business, Samsung Electronics Co, Ltd, Seoul, Korea (G.L.)
| | - Jeong Min Lee
- From the Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, Seoul 03080, Korea (S.K.J., J.M.L., I.J., J.H.Y.); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea (J.M.L.); and Ultrasound R&D 2 Group, Health & Medical Equipment Business, Samsung Electronics Co, Ltd, Seoul, Korea (G.L.)
| | - Ijin Joo
- From the Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, Seoul 03080, Korea (S.K.J., J.M.L., I.J., J.H.Y.); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea (J.M.L.); and Ultrasound R&D 2 Group, Health & Medical Equipment Business, Samsung Electronics Co, Ltd, Seoul, Korea (G.L.)
| | - Jeong Hee Yoon
- From the Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, Seoul 03080, Korea (S.K.J., J.M.L., I.J., J.H.Y.); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea (J.M.L.); and Ultrasound R&D 2 Group, Health & Medical Equipment Business, Samsung Electronics Co, Ltd, Seoul, Korea (G.L.)
| | - Gunwoo Lee
- From the Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, Seoul 03080, Korea (S.K.J., J.M.L., I.J., J.H.Y.); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea (J.M.L.); and Ultrasound R&D 2 Group, Health & Medical Equipment Business, Samsung Electronics Co, Ltd, Seoul, Korea (G.L.)
| |
Collapse
|
25
|
Sim KC, Kim MJ, Cho Y, Kim HJ, Park BJ, Sung DJ, Han NY, Han YE, Kim TH, Lee YJ. Radiomics Analysis of Magnetic Resonance Proton Density Fat Fraction for the Diagnosis of Hepatic Steatosis in Patients With Suspected Non-Alcoholic Fatty Liver Disease. J Korean Med Sci 2022; 37:e339. [PMID: 36536543 PMCID: PMC9763710 DOI: 10.3346/jkms.2022.37.e339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND This study aimed to assess the diagnostic feasibility of radiomics analysis based on magnetic resonance (MR)-proton density fat fraction (PDFF) for grading hepatic steatosis in patients with suspected non-alcoholic fatty liver disease (NAFLD). METHODS This retrospective study included 106 patients with suspected NAFLD who underwent a hepatic parenchymal biopsy. MR-PDFF and MR spectroscopy were performed on all patients using a 3.0-T scanner. Following whole-volume segmentation of the MR-PDFF images, 833 radiomic features were analyzed using a commercial program. Radiologic features were analyzed, including median and mean values of the multiple regions of interest and variable clinical features. A random forest regressor was used to extract the important radiomic, radiologic, and clinical features. The model was trained using 20 repeated 10-fold cross-validations to classify the NAFLD steatosis grade. The area under the receiver operating characteristic curve (AUROC) was evaluated using a classifier to diagnose steatosis grades. RESULTS The levels of pathological hepatic steatosis were classified as low-grade steatosis (grade, 0-1; n = 82) and high-grade steatosis (grade, 2-3; n = 24). Fifteen important features were extracted from the radiomic analysis, with the three most important being wavelet-LLL neighboring gray tone difference matrix coarseness, original first-order mean, and 90th percentile. The MR spectroscopy mean value was extracted as a more important feature than the MR-PDFF mean or median in radiologic measures. Alanine aminotransferase has been identified as the most important clinical feature. The AUROC of the classifier using radiomics was comparable to that of radiologic measures (0.94 ± 0.09 and 0.96 ± 0.08, respectively). CONCLUSION MR-PDFF-derived radiomics may provide a comparable alternative for grading hepatic steatosis in patients with suspected NAFLD.
Collapse
Affiliation(s)
- Ki Choon Sim
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Min Ju Kim
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea.
| | - Yongwon Cho
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
- AI Center, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Hyun Jin Kim
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Beom Jin Park
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Deuk Jae Sung
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Na Yeon Han
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Yeo Eun Han
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Tae Hyung Kim
- Department of Gastroenterology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Yoo Jin Lee
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Park S, Kwon JH, Kim SY, Kang JH, Chung JI, Jang JK, Jang HY, Shim JH, Lee SS, Kim KW, Song GW. Cutoff Values for Diagnosing Hepatic Steatosis Using Contemporary MRI-Proton Density Fat Fraction Measuring Methods. Korean J Radiol 2022; 23:1260-1268. [PMID: 36447414 PMCID: PMC9747271 DOI: 10.3348/kjr.2022.0334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/06/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE To propose standardized MRI-proton density fat fraction (PDFF) cutoff values for diagnosing hepatic steatosis, evaluated using contemporary PDFF measuring methods in a large population of healthy adults, using histologic fat fraction (HFF) as the reference standard. MATERIALS AND METHODS A retrospective search of electronic medical records between 2015 and 2018 identified 1063 adult donor candidates for liver transplantation who had undergone liver MRI and liver biopsy within a 7-day interval. Patients with a history of liver disease or significant alcohol consumption were excluded. Chemical shift imaging-based MRI (CS-MRI) PDFF and high-speed T2-corrected multi-echo MR spectroscopy (HISTO-MRS) PDFF data were obtained. By temporal splitting, the total population was divided into development and validation sets. Receiver operating characteristic (ROC) analysis was performed to evaluate the diagnostic performance of the MRI-PDFF method. Two cutoff values with sensitivity > 90% and specificity > 90% were selected to rule-out and rule-in, respectively, hepatic steatosis with reference to HFF ≥ 5% in the development set. The diagnostic performance was assessed using the validation set. RESULTS Of 921 final participants (624 male; mean age ± standard deviation, 31.5 ± 9.0 years), the development and validation sets comprised 497 and 424 patients, respectively. In the development set, the areas under the ROC curve for diagnosing hepatic steatosis were 0.920 for CS-MRI-PDFF and 0.915 for HISTO-MRS-PDFF. For ruling-out hepatic steatosis, the CS-MRI-PDFF cutoff was 2.3% (sensitivity, 92.4%; specificity, 63.0%) and the HISTO-MRI-PDFF cutoff was 2.6% (sensitivity, 88.8%; specificity, 70.1%). For ruling-in hepatic steatosis, the CS-MRI-PDFF cutoff was 3.5% (sensitivity, 73.5%; specificity, 88.6%) and the HISTO-MRI-PDFF cutoff was 4.0% (sensitivity, 74.7%; specificity, 90.6%). CONCLUSION In a large population of healthy adults, our study suggests diagnostic thresholds for ruling-out and ruling-in hepatic steatosis defined as HFF ≥ 5% by contemporary PDFF measurement methods.
Collapse
Affiliation(s)
- Sohee Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jae Hyun Kwon
- Department of Surgery, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - So Yeon Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Ji Hun Kang
- Department of Radiology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Jung Il Chung
- University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jong Keon Jang
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hye Young Jang
- Department of Radiology, National Cancer Center, Goyang, Korea
| | - Ju Hyun Shim
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung Soo Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Kyoung Won Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Gi-Won Song
- Department of Surgery, Division of Hepatobiliary and Liver Transplantation Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Şendur AB, Şendur HN. A Standardized Approach for MRI-PDFF is Necessary in the Assessment of Diagnostic Performances of the Ultrasound-Based Hepatic Fat Quantification Tools. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:3159-3161. [PMID: 36149356 DOI: 10.1002/jum.16102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
The recently developed ultrasound-based hepatic fat quantification tools have the potential to be implemented in daily practice with wide acceptance due to inherited advantages of ultrasound technology. Researchers intensively focused on this topic and the accumulated evidences that support clinical usefulness of these tools. However, differences in the researcher-dependent factors of the utilized MRI-PDFF technique, the recommended reference standard, may hinder the better understanding of the diagnostic performances of these tools. Therefore, a standardized approach for MRI-PDFF technique, which is established with international consensus may be considered as important.
Collapse
Affiliation(s)
| | - Halit Nahit Şendur
- Department of Radiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
28
|
Hari A. Ultrasound-Based Diagnostic Methods: Possible Use in Fatty Liver Disease Area. Diagnostics (Basel) 2022; 12:diagnostics12112822. [PMID: 36428882 PMCID: PMC9689357 DOI: 10.3390/diagnostics12112822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Liver steatosis is a chronic liver disease that is becoming one of the most important global health problems, due to its direct connection with metabolic syndrome, its significant impact on patients' socioeconomic status and frailty, and the occurrence of advanced chronic liver disease. In recent years, there has been rapid technological progress in the ultrasound-based diagnostics field that can help us to quantitatively assess liver steatosis, including continuous attenuation parameters in A and B ultrasound modes, backscatter coefficients (e.g., speed of sound) and ultrasound envelope statistic parametric imaging. The methods used in this field are widely available, have favorable time and financial profiles, and are well accepted by patients. Less is known about their reliability in defining the presence and degree of liver steatosis. Numerous study reports have shown the methods' favorable negative and positive predictive values in comparison with reference investigations (liver biopsy and MRI). Important research has also evaluated the role of these methods in diagnosing and monitoring non-alcoholic fatty liver disease (NAFLD). Since NAFLD is becoming the dominant global cause of liver cirrhosis, and due to the close but complex interplay of liver steatosis with the coexistence of liver fibrosis, knowledge regarding NAFLD's influence on the progression of liver fibrosis is of crucial importance. Study findings, therefore, indicate the possibility of using these same diagnostic methods to evaluate the impact of NAFLD on the patient's liver fibrosis progression risk, metabolic risk factors, cardiovascular complications, and the occurrence of hepatocellular carcinoma. The mentioned areas are particularly important in light of the fact that most of the known chronic liver disease etiologies are increasingly intertwined with the simultaneous presence of NAFLD.
Collapse
Affiliation(s)
- Andrej Hari
- Oddelek za Bolezni Prebavil, Splošna Bolnišnica Celje, Oblakova Cesta 3, 3000 Celje, Slovenia
| |
Collapse
|
29
|
Bozic D, Podrug K, Mikolasevic I, Grgurevic I. Ultrasound Methods for the Assessment of Liver Steatosis: A Critical Appraisal. Diagnostics (Basel) 2022; 12:2287. [PMID: 36291976 PMCID: PMC9600709 DOI: 10.3390/diagnostics12102287] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 08/10/2023] Open
Abstract
The prevalence of the non-alcoholic fatty liver disease has reached major proportions, being estimated to affect one-quarter of the global population. The reference techniques, which include liver biopsy and the magnetic resonance imaging proton density fat fraction, have objective practical and financial limitations to their routine use in the detection and quantification of liver steatosis. Therefore, there has been a rising necessity for the development of new inexpensive, widely applicable and reliable non-invasive diagnostic tools. The controlled attenuation parameter has been considered the point-of-care technique for the assessment of liver steatosis for a long period of time. Recently, many ultrasound (US) system manufacturers have developed proprietary software solutions for the quantification of liver steatosis. Some of these methods have already been extensively tested with very good performance results reported, while others are still under evaluation. This manuscript reviews the currently available US-based methods for diagnosing and grading liver steatosis, including their classification and performance results, with an appraisal of the importance of this armamentarium in daily clinical practice.
Collapse
Affiliation(s)
- Dorotea Bozic
- Department of Gastroenterology and Hepatology, University Hospital Center Split, Spinčićeva 1, 21 000 Split, Croatia
| | - Kristian Podrug
- Department of Gastroenterology and Hepatology, University Hospital Center Split, Spinčićeva 1, 21 000 Split, Croatia
| | - Ivana Mikolasevic
- Department of Gastroenterology and Hepatology, University Hospital Center Rijeka, Krešimirova 42, 51 000 Rijeka, Croatia
| | - Ivica Grgurevic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, Avenija Gojka Šuška 6, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 2, 10 000 Zagreb, Croatia
| |
Collapse
|
30
|
Şendur HN, Özdemir Kalkan D, Cerit MN, Kalkan G, Şendur AB, Özhan Oktar S. Hepatic Fat Quantification With Novel Ultrasound Based Techniques: A Diagnostic Performance Study Using Magnetic Resonance Imaging Proton Density Fat Fraction as Reference Standard. Can Assoc Radiol J 2022; 74:362-369. [PMID: 36113064 DOI: 10.1177/08465371221123696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose: To assess the diagnostic performances of novel Tissue attenuation imaging (TAI) and Tissue scatter distribution imaging (TSI) tools in quantification of liver fat content using magnetic resonance imaging proton density fat fraction (MRI PDFF) as reference standard. Methods: Eighty consecutive patients with known or suspected non-alcoholic fatty liver disease (NAFLD) who volunteered to participate in the study comprised the study cohort. All patients underwent MRI PDFF scan and quantitative ultrasound (QUS) imaging using TAI and TSI tools. The cutoff values of ≥5%, ≥16.3% and ≥21.7% on MRI PDFF were used for mild, moderate and severe steatosis, respectively. Area under the Receiver operating characteristic (AUROC) curves were used to assess the diagnostic performance of TAI and TSI in detecting different grades of hepatic steatosis. Results: The AUROCs of TAI and TSI tools in detecting hepatosteatosis (MRI PDFF ≥5%), were 0.95 [95% Confidence Interval (CI): 0.91–0.99] ( P < 0.001) and 0.96 (95% CI: 0.93–0.99) ( P < 0.001), respectively. In distinguishing between different grades of steatosis, the values of 0.75, 0.86 and 0.96 dB/cm/MHz have 88%, 88% and 100% sensitivity, respectively, for TAI tool; and the values of 92.44, 96.64 and 99.45 have 90%, 92% and 91.7% sensitivity, respectively, for TSI tool. Conclusion: TAI and TSI tools accurately quantify liver fat content and can be used for the assessment and grading of hepatosteatosis in patients with known or suspected NAFLD.
Collapse
Affiliation(s)
- Halit Nahit Şendur
- Faculty of Medicine, Department of Radiology, Gazi University, Ankara, Turkey
| | | | - Mahi Nur Cerit
- Faculty of Medicine, Department of Radiology, Gazi University, Ankara, Turkey
| | - Gökalp Kalkan
- Medicana International Ankara Hospital, Radiology Unit, Ankara, Turkey
| | | | - Suna Özhan Oktar
- Faculty of Medicine, Department of Radiology, Gazi University, Ankara, Turkey
| |
Collapse
|
31
|
Guan X, Chen YC, Xu HX. New horizon of ultrasound for screening and surveillance of non-alcoholic fatty liver disease spectrum. Eur J Radiol 2022; 154:110450. [PMID: 35917757 DOI: 10.1016/j.ejrad.2022.110450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 12/07/2022]
|
32
|
Rónaszéki AD, Budai BK, Csongrády B, Stollmayer R, Hagymási K, Werling K, Fodor T, Folhoffer A, Kalina I, Győri G, Maurovich-Horvat P, Kaposi PN. Tissue attenuation imaging and tissue scatter imaging for quantitative ultrasound evaluation of hepatic steatosis. Medicine (Baltimore) 2022; 101:e29708. [PMID: 35984128 PMCID: PMC9387959 DOI: 10.1097/md.0000000000029708] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We aimed to assess the feasibility of ultrasound-based tissue attenuation imaging (TAI) and tissue scatter distribution imaging (TSI) for quantification of liver steatosis in patients with nonalcoholic fatty liver disease (NAFLD). We prospectively enrolled 101 participants with suspected NAFLD. The TAI and TSI measurements of the liver were performed with a Samsung RS85 Prestige ultrasound system. Based on the magnetic resonance imaging proton density fat fraction (MRI-PDFF), patients were divided into ≤5%, 5-10%, and ≥10% of MRI-PDFF groups. We determined the correlation between TAI, TSI, and MRI-PDFF and used multiple linear regression analysis to identify any association with clinical variables. The diagnostic performance of TAI, TSI was determined based on the area under the receiver operating characteristic curve (AUC). The intraclass correlation coefficient (ICC) was calculated to assess interobserver reliability. Both TAI (rs = 0.78, P < .001) and TSI (rs = 0.68, P < .001) showed significant correlation with MRI-PDFF. TAI overperformed TSI in the detection of both ≥5% MRI-PDFF (AUC = 0.89 vs 0.87) and ≥10% (AUC = 0.93 vs 0.86). MRI-PDFF proved to be an independent predictor of TAI (β = 1.03; P < .001), while both MRI-PDFF (β = 50.9; P < .001) and liver stiffness (β = -0.86; P < .001) were independent predictors of TSI. Interobserver analysis showed excellent reproducibility of TAI (ICC = 0.95) and moderate reproducibility of TSI (ICC = 0.73). TAI and TSI could be used successfully to diagnose and estimate the severity of hepatic steatosis in routine clinical practice.
Collapse
Affiliation(s)
- Aladár D. Rónaszéki
- Department of Radiology, Medical Imaging Centre, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- *Correspondence: Aladár D. Rónaszéki, MD, Department of Radiology, Medical Imaging Centre, Faculty of Medicine, Semmelweis University, Korányi Sándor str. 2., H-1082 Budapest, Hungary (e-mail: )
| | - Bettina K. Budai
- Department of Radiology, Medical Imaging Centre, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Barbara Csongrády
- Department of Radiology, Medical Imaging Centre, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Róbert Stollmayer
- Department of Radiology, Medical Imaging Centre, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Krisztina Hagymási
- Department of Surgery, Transplantation and Gastroenterology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Klára Werling
- Department of Surgery, Transplantation and Gastroenterology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Fodor
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anikó Folhoffer
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ildikó Kalina
- Department of Radiology, Medical Imaging Centre, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gabriella Győri
- Department of Radiology, Medical Imaging Centre, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Pál Maurovich-Horvat
- Department of Radiology, Medical Imaging Centre, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Pál N. Kaposi
- Department of Radiology, Medical Imaging Centre, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
33
|
Şendur HN, Cerit MN. Reliable Assessment of US Performance for Liver Fat Quantification. Radiology 2022; 305:E70. [PMID: 35972358 DOI: 10.1148/radiol.220258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Halit Nahit Şendur
- Department of Radiology, Gazi University Faculty of Medicine, Mevlana Bulvarı No. 29, 06560 Yenimahalle, Ankara, Turkey
| | - Mahi Nur Cerit
- Department of Radiology, Gazi University Faculty of Medicine, Mevlana Bulvarı No. 29, 06560 Yenimahalle, Ankara, Turkey
| |
Collapse
|
34
|
Yang L, Lin Y, Zhu YF, Zhu YY, Liang ZM, Wu GS. Controlled attenuation parameter in the diagnosis of different liver steatosis groups in children with obesity. Pediatr Obes 2022; 17:e12893. [PMID: 35092183 DOI: 10.1111/ijpo.12893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the utility of the controlled attenuation parameter (CAP), as measured by a liver elastography technique, in predicting varying degrees of liver steatosis in children with obesity. METHODS Children with obesity attending the pediatric obesity clinic at the Affiliated Hospital of Hangzhou Normal University from July 2020 to May 2021 were retrospectively analysed. The 71 subjects were divided into four groups according to the degree of liver steatosis obtained by magnetic resonance imaging-proton density fat fraction (MRI-PDFF). The gender, age, CAP, LSM, ALT, AST, BMI, uric acid, fasting blood glucose, total cholesterol, triglyceride, high-density lipoprotein, low-density lipoprotein, insulin, and blood 25-hydroxyvitamin D levels of the four groups were compared, and the differences were analysed. Clinical data with significant differences were included in the logistic regression analysis. The receiver operating characteristic (ROC) curve for the CAP for the 71 subjects with different degrees of liver steatosis was plotted to evaluate the diagnostic value. RESULTS The 71 children were divided into groups according to the degree of hepatic steatosis obtained by MRI-PDFF, and the clinical data for each group were compared. It was found that there was statistical significance for CAP, ALT, and AST in cases of moderate and severe hepatic steatosis (p < 0.05). Logistic regression analysis was conducted between CAP, ALT, AST, and moderate to severe hepatic steatosis in children with obesity, and it was found that CAP was a factor related to moderate to severe hepatic steatosis in children with obesity. The ROC curve indicated that CAP has diagnostic value for NAFLD in children with obesity. CONCLUSION There is diagnostic value in the use of CAP for hepatic steatosis in children with obesity, and there is greater diagnostic value in the use of CAP for children with moderate to severe hepatic steatosis.
Collapse
Affiliation(s)
- Lin Yang
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yan Lin
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ya Fei Zhu
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yin Yan Zhu
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhen Ming Liang
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Guang Sheng Wu
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
35
|
Park J, Lee JM, Lee G, Jeon SK, Joo I. Quantitative Evaluation of Hepatic Steatosis Using Advanced Imaging Techniques: Focusing on New Quantitative Ultrasound Techniques. Korean J Radiol 2022; 23:13-29. [PMID: 34983091 PMCID: PMC8743150 DOI: 10.3348/kjr.2021.0112] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease, characterized by excessive accumulation of fat in the liver, is the most common chronic liver disease worldwide. The current standard for the detection of hepatic steatosis is liver biopsy; however, it is limited by invasiveness and sampling errors. Accordingly, MR spectroscopy and proton density fat fraction obtained with MRI have been accepted as non-invasive modalities for quantifying hepatic steatosis. Recently, various quantitative ultrasonography techniques have been developed and validated for the quantification of hepatic steatosis. These techniques measure various acoustic parameters, including attenuation coefficient, backscatter coefficient and speckle statistics, speed of sound, and shear wave elastography metrics. In this article, we introduce several representative quantitative ultrasonography techniques and their diagnostic value for the detection of hepatic steatosis.
Collapse
Affiliation(s)
- Junghoan Park
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.
| | - Gunwoo Lee
- Ultrasound R&D 2 Group, Health & Medical Equipment Business, Samsung Electronics Co., Ltd., Seoul, Korea
| | - Sun Kyung Jeon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Gao F, He Q, Li G, Huang OY, Tang LJ, Wang XD, Targher G, Byrne CD, Luo JW, Zheng MH. A novel quantitative ultrasound technique for identifying non-alcoholic steatohepatitis. Liver Int 2022; 42:80-91. [PMID: 34564946 DOI: 10.1111/liv.15064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/09/2021] [Accepted: 09/19/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS There remains a need to develop a non-invasive, accurate and easy-to-use tool to identify patients with non-alcoholic steatohepatitis (NASH). Successful clinical and preclinical applications demonstrate the ability of quantitative ultrasound (QUS) techniques to improve medical diagnostics. We aimed to develop and validate a diagnostic tool, based on QUS analysis, for identifying NASH. METHODS A total of 259 Chinese individuals with biopsy-proven non-alcoholic fatty liver disease (NAFLD) were enrolled in the study. The histological spectrum of NAFLD was classified according to the NASH clinical research network scoring system. Radiofrequency (RF) data, raw data of iLivTouch, was acquired for further QUS analysis. The least absolute shrinkage and selection operator (LASSO) method was used to select the most useful predictive features. RESULTS Eighteen candidate RF parameters were reduced to two significant parameters by shrinking the regression coefficients with the LASSO method. We built a novel QUS score based on these two parameters, and this QUS score showed good discriminatory capacity and calibration for identifying NASH both in the training set (area under the ROC curve [AUROC]: 0.798, 95% confidence interval [CI] 0.731-0.865; Hosmer-Lemeshow test, P = .755) and in the validation set (AUROC: 0.816, 95% CI 0.725-0.906; Hosmer-Lemeshow test, P = .397). Subgroup analysis showed that the QUS score performed well in different subgroups. CONCLUSIONS The QUS score, which was developed from QUS, provides a novel, non-invasive and practical way for identifying NASH.
Collapse
Affiliation(s)
- Feng Gao
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences Department, Tsinghua University, Beijing, China
| | - Gang Li
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ou-Yang Huang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang-Jie Tang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Dong Wang
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Jian-Wen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.,Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
37
|
Jeon SK, Lee JM, Joo I, Yoon JH. Assessment of the inter-platform reproducibility of ultrasound attenuation examination in nonalcoholic fatty liver disease. Ultrasonography 2021; 41:355-364. [PMID: 34933319 PMCID: PMC8942738 DOI: 10.14366/usg.21167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/31/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose This study aimed to assess the inter-platform reproducibility of ultrasound attenuation examination in patients with nonalcoholic fatty liver disease (NAFLD). Methods Between March 2021 and April 2021, patients with clinically suspected or known NAFLD were prospectively enrolled; each patient underwent ultrasound attenuation examinations with three different platforms (Attenuation Imaging [ATI], Canon Medical System; Tissue Attenuation Imaging [TAI], Samsung Medison; and Ultrasound-Guided Attenuation Parameter [UGAP], GE Healthcare) on the same day. The mean attenuation coefficient (AC) values of the three platforms were compared using repeated-measures analysis of variance with the Bonferroni correction. To evaluate inter-platform reproducibility, the AC values obtained for each platform were compared using Bland-Altman analysis with the calculation of 95% limits of agreement (LOA), intraclass correlation coefficients (ICCs), and coefficients of variation (CVs). Results Forty-six patients (23 men; mean age±standard deviation, 52.3±12.4 years) were enrolled. The mean AC values showed significant differences among the three platforms (0.75±0.12, 0.80±0.11, and 0.74±0.09 dB/cm/MHz for ATI, TAI, and UGAP, respectively; P<0.001). For inter-platform reproducibility, the 95% LOAs were -0.22 to 0.11 dB/cm/MHz between ATI and TAI, -0.17 to 0.18 dB/cm/MHz between ATI and UGAP, and -0.08 to 0.20 dB/cm/MHz between TAI and UGAP, respectively. The pairwise ICCs were 0.790-0.797 in terms of absolute agreement among the three platforms; the CVs were 8.23%-9.47%. Conclusion The AC values obtained from different ultrasound attenuation examination platforms showed significant differences, with significant inter-platform variability. Therefore, the AC values measured using different ultrasound attenuation examination techniques should not be used interchangeably for longitudinal follow-up of patients with NAFLD.
Collapse
Affiliation(s)
- Sun Kyung Jeon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|