1
|
Brown TK, Alharbi S, Ho KJ, Jiang B. Prosthetic vascular grafts engineered to combat calcification: Progress and future directions. Biotechnol Bioeng 2023; 120:953-969. [PMID: 36544433 PMCID: PMC10023339 DOI: 10.1002/bit.28316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Calcification in prosthetic vascular conduits is a major challenge in cardiac and vascular surgery that compromises the long-term performance of these devices. Significant research efforts have been made to understand the etiology of calcification in the cardiovascular system and to combat calcification in various cardiovascular devices. Novel biomaterial design and tissue engineering strategies have shown promise in preventing or delaying calcification in prosthetic vascular grafts. In this review, we highlight recent advancements in the development of acellular prosthetic vascular grafts with preclinical success in attenuating calcification through advanced biomaterial design. We also discuss the mechanisms of action involved in the designs that will contribute to the further understanding of cardiovascular calcification. Lastly, recent insights into the etiology of vascular calcification will guide the design of future prosthetic vascular grafts with greater potential for translational success.
Collapse
Affiliation(s)
- Taylor K. Brown
- Department of Biomedical Engineering, Northwestern University, Chicago, IL
| | - Sara Alharbi
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Karen J. Ho
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Bin Jiang
- Department of Biomedical Engineering, Northwestern University, Chicago, IL
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
2
|
The Influence of the Matrix on the Apatite-Forming Ability of Calcium Containing Polydimethylsiloxane-Based Cements for Endodontics. Molecules 2022; 27:molecules27185750. [PMID: 36144487 PMCID: PMC9504520 DOI: 10.3390/molecules27185750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 12/04/2022] Open
Abstract
This study aimed to characterize the chemical properties and bioactivity of an endodontic sealer (GuttaFlow Bioseal) based on polydimethylsiloxane (PDMS) and containing a calcium bioglass as a doping agent. Commercial PDMS-based cement free from calcium bioglass (GuttaFlow 2 and RoekoSeal) were characterized for comparison as well as GuttaFlow 2 doped with dicalcium phosphate dihydrate, hydroxyapatite, or a tricalcium silicate-based cement. IR and Raman analyses were performed on fresh materials as well as after aging tests in Hank’s Balanced Salt Solution (28 d, 37 °C). Under these conditions, the strengthening of the 970 cm−1 Raman band and the appearance of the IR components at 1455−1414, 1015, 868, and 600−559 cm−1 revealed the deposition of B-type carbonated apatite. The Raman I970/I638 and IR A1010/A1258 ratios (markers of apatite-forming ability) showed that bioactivity decreased along with the series: GuttaFlow Bioseal > GuttaFlow 2 > RoekoSeal. The PDMS matrix played a relevant role in bioactivity; in GuttaFlow 2, the crosslinking degree was favorable for Ca2+ adsorption/complexation and the formation of a thin calcium phosphate layer. In the less crosslinked RoekoSeal, such processes did not occur. The doped cements showed bioactivity higher than GuttaFlow 2, suggesting that the particles of the mineralizing agents are spontaneously exposed on the cement surface, although the hydrophobicity of the PDMS matrix slowed down apatite deposition. Relevant properties in the endodontic practice (i.e., setting time, radiopacity, apatite-forming ability) were related to material composition and the crosslinking degree.
Collapse
|
3
|
Epigallocatechin-3-Gallate (EGCG) Mitigates Endothelial and Circulating Cells Alterations Following PLLA Electrospun Mat Placement. Biomedicines 2022; 10:biomedicines10061276. [PMID: 35740298 PMCID: PMC9220276 DOI: 10.3390/biomedicines10061276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Background. Synthetic vascular graft calcification is a serious complication of graft placement. Here, we analysed migration and osteogenic genes of human umbilical vein endothelial cells (HUVEC) cultured with a poly-L-lactic acid (PLLA) electrospun mat. The role of epigallo-catechin-3-gallate (EGCG) in pathogenic processes involving HUVEC and peripheral blood mononuclear cells (PBMCs) was also tested. Methods. HUVEC were cultured in indirect contact with PLLA for 48 h, with or without EGCG, and processed for mRNA expression. HUVEC proliferation, migration and osteogenic differentiation were evaluated after EGCG treatment. EGCG was also administrated to human PBMCs, to analyse proliferation and migration toward HUVEC cultured with PLLA. Results. HUVEC cultured with PLLA exhibited increased expression of SLUG, VIMENTIN, MMP-9 (migration, vascular remodelling) and RUNX-2 (osteogenic transcription factor). EGCG at 25 μM significantly reduced HUVEC migration, osteogenic differentiation, without affecting cell viability, and mitigated PLLA influence on SLUG, MMP-9, VIMENTIN and RUNX-2 expression. EGCG affected PBMC proliferation and migration toward PLLA in a transwell co-culture system with HUVEC. Conclusion. Our study suggests the pro-calcific effect of PLLA, proposing EGCG as an anti-inflammatory modulatory approach. Research efforts need to deepen PLLA-vascular wall interactions for preventing vascular graft failure.
Collapse
|
4
|
Vesel A, Zaplotnik R, Primc G, Mozetič M, Katan T, Kargl R, Mohan T, Kleinschek KS. Rapid Functionalization of Polytetrafluorethylene (PTFE) Surfaces with Nitrogen Functional Groups. Polymers (Basel) 2021; 13:4301. [PMID: 34960856 PMCID: PMC8708819 DOI: 10.3390/polym13244301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
The biocompatibility of body implants made from polytetrafluoroethylene (PTFE) is inadequate; therefore, the surface should be grafted with biocompatible molecules. Because PTFE is an inert polymer, the adhesion of the biocompatible film may not be appropriate. Therefore, the PFTE surface should be modified to enable better adhesion, preferably by functionalization with amino groups. A two-step process for functionalization of PTFE surface is described. The first step employs inductively coupled hydrogen plasma in the H-mode and the second ammonia plasma. The evolution of functional groups upon treatment with ammonia plasma in different modes is presented. The surface is saturated with nitrogen groups within a second if ammonia plasma is sustained in the H-mode at the pressure of 35 Pa and forward power of 200 W. The nitrogen-rich surface film persists for several seconds, while prolonged treatment causes etching. The etching is suppressed but not eliminated using pulsed ammonia plasma at 35 Pa and 200 W. Ammonia plasma in the E-mode at the same pressure, but forward power of 25 W, causes more gradual functionalization and etching was not observed even at prolonged treatments up to 100 s. Detailed investigation of the XPS spectra enabled revealing the surface kinetics for all three cases.
Collapse
Affiliation(s)
- Alenka Vesel
- Department of Surface Engineering, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (R.Z.); (G.P.); (M.M.)
| | - Rok Zaplotnik
- Department of Surface Engineering, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (R.Z.); (G.P.); (M.M.)
| | - Gregor Primc
- Department of Surface Engineering, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (R.Z.); (G.P.); (M.M.)
| | - Miran Mozetič
- Department of Surface Engineering, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (R.Z.); (G.P.); (M.M.)
| | - Tadeja Katan
- Institute for Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria; (T.K.); (R.K.); (T.M.); (K.S.K.)
| | - Rupert Kargl
- Institute for Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria; (T.K.); (R.K.); (T.M.); (K.S.K.)
| | - Tamilselvan Mohan
- Institute for Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria; (T.K.); (R.K.); (T.M.); (K.S.K.)
| | - Karin Stana Kleinschek
- Institute for Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria; (T.K.); (R.K.); (T.M.); (K.S.K.)
| |
Collapse
|
5
|
Chantawong P, Tanaka T, Uemura A, Shimada K, Higuchi A, Tajiri H, Sakura K, Murakami T, Nakazawa Y, Tanaka R. Silk fibroin-Pellethane® cardiovascular patches: Effect of silk fibroin concentration on vascular remodeling in rat model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:191. [PMID: 29138940 DOI: 10.1007/s10856-017-5999-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Life-threatening cardiovascular anomalies require surgery for structural repair with cardiovascular patches. The biomaterial patch, derived from Bombyx mori silk fibroin (SF), is used as an alternative material due to its excellent tissue affinity and biocompatibility. However, SF lacks the elastomeric characteristics required for a cardiovascular patch. In order to overcome this shortcoming, we combined the thermoplastic polyurethane, Pellethane® (PU) with SF to develop an elastic biocompatible patch. Therefore, the purpose of this study was to investigate the feasibility of the blended SF/PU patch in a vascular model. Additionally, we focused on the effects of different SF concentrations in the SF/PU patch on its biological and physical properties. Three patches of different compositions (SF, SF7PU3 and SF4PU6) were created using an electrospinning method. Each patch type (n = 18) was implanted into rat abdominal aorta and histopathology was assessed at 1, 3, and 6 months post-implantation. The results showed that with increasing SF content the tensile strength and elasticity decreased. Histological evaluation revealed that inflammation gradually decreased in the SF7PU3 and SF patches throughout the study period. At 6 months post-implantation, the SF7PU3 patch demonstrated progressive remodeling, including significantly higher tissue infiltration, elastogenesis and endothelialization compared with SF4PU6. In conclusion, an increase of SF concentration in the SF/PU patch had effects on vascular remodeling and physical properties. Moreover, our blended patch might be an attractive alternative material that could induce the growth of a neo-artery composed of tissue present in native artery.
Collapse
Affiliation(s)
- Pinkarn Chantawong
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan
| | - Takashi Tanaka
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan
| | - Akiko Uemura
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan
| | - Kazumi Shimada
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan
| | - Akira Higuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, 184-8588, Tokyo, Japan
| | - Hirokazu Tajiri
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, 184-8588, Tokyo, Japan
| | - Kohta Sakura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, 184-8588, Tokyo, Japan
| | - Tomoaki Murakami
- Department of Veterinary Toxicology, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan
| | - Yasumoto Nakazawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, 184-8588, Tokyo, Japan.
| | - Ryou Tanaka
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan.
| |
Collapse
|
6
|
Biomaterials-Potential nucleation agents in blood and possible implications. Biointerphases 2016; 11:029901. [PMID: 27316221 DOI: 10.1116/1.4954191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Blood, simulated body fluids, and many cell culture media are supersaturated solutions with respect to several calcium phosphates. Therefore biomaterials can act as nucleation agents and evoke heterogeneous nucleation of salts on the surface of immersed biomaterials. Depending on the field of application, this can be either beneficial or disadvantageous. Although nucleation from supersaturated solutions is an old and well-known scientific phenomenon it is not standard to test new developed materials with surface analytical methods for their ability to initiate nucleation in vitro. Therefore, this communication aims to review the mineralization effect and to emphasize the possible negative implications, especially to functionalized bone implants. Surface coatings with proteins, growth factors, and, etc., can become ineffective due to deposition of a dense calcium phosphate layer. In the case of drug loaded implants, drug release might be inhibited.
Collapse
|
7
|
Soldani G, Losi P, Bernabei M, Burchielli S, Chiappino D, Kull S, Briganti E, Spiller D. Long term performance of small-diameter vascular grafts made of a poly(ether)urethane–polydimethylsiloxane semi-interpenetrating polymeric network. Biomaterials 2010; 31:2592-605. [DOI: 10.1016/j.biomaterials.2009.12.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
|
8
|
Calcification of synthetic polymers functionalized with negatively ionizable groups: A critical review. REACT FUNCT POLYM 2007. [DOI: 10.1016/j.reactfunctpolym.2006.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Schwenter F, Bouche N, Pralong WF, Aebischer P. In vivo calcium deposition on polyvinyl alcohol matrix used in hollow fiber cell macroencapsulation devices. Biomaterials 2004; 25:3861-8. [PMID: 15020162 DOI: 10.1016/j.biomaterials.2003.10.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Accepted: 10/08/2003] [Indexed: 11/19/2022]
Abstract
The encapsulation of genetically modified cells represents a promising approach for the delivery of therapeutic proteins. The functionality of the device is dependent on the characteristics of the biomaterials, the procedures used in its confection and the adaptability of the encapsulated cells in the host. We report conditions leading to the development of calcifications on the polyvinyl alcohol (PVA) matrix introduced in hollow fiber devices for the encapsulation of primary human fibroblasts implanted in mice. The manufacturing procedures, batches of PVA matrix and cell lineages were assessed for their respective role in the development of the phenomenon. The results showed that the calcification is totally prevented by substituting phosphate-buffer saline with ultra-pure sterile water in the rinsing procedure of the matrix. Moreover, a positive correlation was found, when comparing two fibroblast cell lineages, between the level of lactate dehydrogenase (LDH) activity measured in the cells and the degree of calcium deposition. Higher LDH activity may decrease calcium depositions because it generates in the device a more acidic microenvironment inhibiting calcium precipitation. The present study defines optimized conditions for the encapsulation of primary human fibroblasts in order to avoid potentially detrimental calcifications and to allow long-term survival of encapsulated cells.
Collapse
Affiliation(s)
- F Schwenter
- Division of Surgical Research and Gene Therapy Center, CHUV, Lausanne University Medical School, Lausanne, Switzerland
| | | | | | | |
Collapse
|
10
|
Butany J, Collins MJ, David TE. Ruptured synthetic expanded polytetrafluoroethylene chordae tendinae. Cardiovasc Pathol 2004; 13:182-4. [PMID: 15081477 DOI: 10.1016/s1054-8807(04)00006-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Revised: 01/08/2004] [Accepted: 01/14/2004] [Indexed: 11/24/2022] Open
Abstract
Synthetic sutures are used for mitral valve repair and as synthetic chordae tendinae to resuspend the mitral valve. The sutures soon get covered with connective tissue and work well for long periods. We report the first instance (in the literature) of rupture of a synthetic (PTFE) chordae tendinae. The synthetic suture (PTFE) was associated with calcification.
Collapse
Affiliation(s)
- Jagdish Butany
- Department of Pathology, Toronto Medical Laboratories, Toronto General Hospital/University Health Network, Toronto, ON, Canada M5G 2C4.
| | | | | |
Collapse
|
11
|
García-Honduvilla N, Gimeno M, López-Sánchez R, Corrales C, Soldani G, Samouillan V, Buján J, Bellón J. Caracterización y biocompatibilidad de las prótesis vasculares de poliuretano estabilizado con polidimetilsiloxano. ANGIOLOGIA 2002. [DOI: 10.1016/s0003-3170(02)74753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|