1
|
Hureaux M, Vargas-Poussou R. Genetic basis of nephrogenic diabetes insipidus. Mol Cell Endocrinol 2023; 560:111825. [PMID: 36460218 DOI: 10.1016/j.mce.2022.111825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 12/02/2022]
Abstract
Nephrogenic diabetes insipidus is defined as an inability to concentrate urine due to a complete or partial alteration of the renal tubular response to arginine vasopressin hormone, resulting in excessive diluted urine excretion. Hereditary forms are caused by molecular defects in the genes encoding either of the two main renal effectors of the arginine vasopressin pathway: the AVPR2 gene, which encodes for the type 2 vasopressin receptor, or the AQP2 gene, which encodes for the water channel aquaporin-2. About 90% of cases of nephrogenic diabetes insipidus result from loss-of-function variants in the AVPR2 gene, which are inherited in a X-linked recessive manner. The remaining 10% of cases result from loss-of-function variants in the AQP2 gene, which can be inherited in either a recessive or a dominant manner. The main symptoms of the disease are polyuria, chronic dehydration and hypernatremia. These symptoms usually occur in the first year of life, although some patients present later. Diagnosis is based on abnormal response in urinary osmolality after water restriction and/or administration of exogenous vasopressin. Treatment involves ensuring adequate water intake on demand, possibly combined with thiazide diuretics, non-steroidal anti-inflammatory drugs, and a low-salt and protein diet. In this review, we provide an update on current understanding of the molecular basis of inherited nephrogenic insipidus diabetes.
Collapse
Affiliation(s)
- Marguerite Hureaux
- Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Department of Genetics, France and University of Paris Cité, Paris, France; Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
| | - Rosa Vargas-Poussou
- Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Department of Genetics, France and University of Paris Cité, Paris, France; Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France.
| |
Collapse
|
2
|
A Novel Missense Mutation of Arginine Vasopressin Receptor 2 in a Chinese Family with Congenital Nephrogenic Diabetes Insipidus: X-Chromosome Inactivation in Female CNDI Patients with Heterozygote 814A>G Mutation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7073158. [PMID: 35865667 PMCID: PMC9296320 DOI: 10.1155/2022/7073158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/10/2022] [Accepted: 06/02/2022] [Indexed: 11/27/2022]
Abstract
Background To identify novel clinical phenotypic signatures of congenital nephrogenic diabetes insipidus (CNDI). Methods A Chinese family with CNDI was recruited for participation in this study. The proband and one of his uncles suffered from polydipsia and polyuria since infancy. The results of clinical testing indicated the diagnosis of CNDI. 10 family members had similar symptoms but did not seek medical advice. Genetic testing of mutations in the coding region of the aquaporin 2 (AQP2) gene and the arginine vasopressin receptor 2 (AVPR2) gene were carried out in 11 family members. Somatic DNA from 5 female family members was used to test for methylation of polymorphic CAG repeats in the human androgen receptor (AR) gene, as an index for X-chromosome inactivation pattern (XCIP). Results AQP2 gene mutations were not found in any family members, but a novel missense mutation (814th base A>G) in exon 2 of the AVPR2 gene was identified in 10 individuals. This mutation leads to a Met 272 Val (GAT-GGT) amino acid substitution. Skewed X-chromosome inactivation patterns of the normal X allele were observed in 4 females with the AVPR2 gene mutation and symptoms of diabetes insipidus, but not in an asymptomatic female with the AVPR2 gene mutation. Conclusions Met 272 Val mutation of the AVPR2 gene was identified as a novel genetic risk factor for CDNI. The clinical NDI phenotype of female carriers with heterozygous AVPR2 mutation may be caused by X-chromosome inactivation induced by dominant methylation of the normal allele of AVPR2 gene.
Collapse
|
3
|
Wang X, Ying X, Zhang F, Li X, Chen G, Zhou Z, Liao L. Upper urinary dilatation and treatment of 26 patients with diabetes insipidus: A single-center retrospective study. Front Endocrinol (Lausanne) 2022; 13:941453. [PMID: 35937824 PMCID: PMC9354454 DOI: 10.3389/fendo.2022.941453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To describe the urinary tract characteristics of diabetes insipidus (DI) patients with upper urinary tract dilatation (UUTD) using the video-urodynamic recordings (VUDS), UUTD and all urinary tract dysfunction (AUTD) systems, and to summarize the experience in the treatment of DI with UUTD. METHODS This retrospective study analyzed clinical data from 26 patients with DI, including micturition diary, water deprivation tests, imaging data and management. The UUTD and AUTD systems were used to evaluate the urinary tract characteristics. All patients were required to undergo VUDS, neurophysiologic tests to confirm the presence of neurogenic bladder (NB). RESULTS VUDS showed that the mean values for bladder capacity and bladder compliance were 575.0 ± 135.1 ml and 51.5 ± 33.6 cmH2O in DI patients, and 42.3% (11/26) had a post-void residual >100 ml. NB was present in 6 (23.1%) of 26 DI patients with UUTD, and enterocystoplasty was recommended for two patients with poor bladder capacity, compliance and renal impairment. For the 24 remaining patients, medication combined with individualized and appropriate bladder management, including intermittent catheterization, indwelling catheter and regular voiding, achieved satisfactory results. High serum creatinine decreased from 248.0 ± 115.8 μmoI/L to 177.4 ± 92.8 μmoI/L in 12 patients from a population with a median of 108.1 μmoI/L (IQR: 79.9-206.5 μmoI/L). Forty-four dilated ureters showed significant improvement in the UUTD grade, and the median grade of 52 UUTD ureters decreased from 3 to 2. CONCLUSION Bladder distension, trabeculation and decreased or absent sensations were common features for DI patients with UUTD. Individualized therapy by medication combined with appropriate bladder management can improve UUTD and renal function in DI patients.
Collapse
Affiliation(s)
- Xuesheng Wang
- Department of Urology, China Rehabilitation Research Center, School of Rehabilitation of Capital Medical University, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
| | - Xiaoqian Ying
- Department of Urology, China Rehabilitation Research Center, School of Rehabilitation of Capital Medical University, Beijing, China
| | - Fan Zhang
- Department of Urology, China Rehabilitation Research Center, School of Rehabilitation of Capital Medical University, Beijing, China
| | - Xing Li
- Department of Urology, China Rehabilitation Research Center, School of Rehabilitation of Capital Medical University, Beijing, China
| | - Guoqing Chen
- Department of Urology, China Rehabilitation Research Center, School of Rehabilitation of Capital Medical University, Beijing, China
| | - Zhonghan Zhou
- University of Health and Rehabilitation Sciences, Qingdao, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Limin Liao
- Department of Urology, China Rehabilitation Research Center, School of Rehabilitation of Capital Medical University, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Limin Liao,
| |
Collapse
|
4
|
Li Q, Tian D, Cen J, Duan L, Xia W. Novel AVPR2 mutations and clinical characteristics in 28 Chinese families with congenital nephrogenic diabetes insipidus. J Endocrinol Invest 2021; 44:2777-2783. [PMID: 34101133 DOI: 10.1007/s40618-021-01607-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/02/2021] [Indexed: 01/01/2023]
Abstract
AIMS To investigate genotype and phenotype of congenital nephrogenic diabetes insipidus caused by AVPR2 mutations, which is rare and limitedly studied in Chinese population. METHODS 88 subjects from 28 families with NDI in a department (Beijing, PUMCH) were screened for AVPR2 mutations. Medical records were retrospectively reviewed and characterized. Genotype and phenotype analysis was performed. RESULTS 23 AVPR2 mutations were identified, including six novel mutations (p.Y117D, p.W208R, p.L313R, p.S127del, p.V162Sfs*30 and p.G251Pfs*96). The onset-age ranged from 1 week to 3 years. Common presentations were polydipsia and polyuria (100%) and intermittent fever (57%). 21% and 14% of patients had short stature and mental impairment. Urine SG and osmolality were decreased, while serum osmolality and sodium were high. Urological ultrasonography results showed hydronephrosis of the kidney (52%), dilation of the ureter (48%), and thickened bladder wall or increased residual urine (32%), led to intermittent urethral catheterization (7%), cystostomy (11%) and binary nephrostomy (4%). Urological defects were developed in older patients. Genotype and phenotype analysis revealed patients with non-missense mutations had higher levels of serum sodium than missense mutations. CONCLUSION In the first and largest case series of NDI caused by AVPR2 mutations in Chinese population, we established genetic profile and characterized clinical data, reporting six novel mutations. Further, we found genotype was associated with phenotype. This knowledge broadens genotype and phenotype spectrum of rare congenital NDI caused by AVPR2 mutations, and provides basis for studying molecular biology of AVPR2.
Collapse
Affiliation(s)
- Q Li
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - D Tian
- Department of Nuclear Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, People's Republic of China
| | - J Cen
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - L Duan
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China.
| | - W Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
5
|
Li Q, Lu B, Yang J, Li C, Li Y, Chen H, Li N, Duan L, Gu F, Zhang J, Xia W. Molecular Characterization of an Aquaporin-2 Mutation Causing Nephrogenic Diabetes Insipidus. Front Endocrinol (Lausanne) 2021; 12:665145. [PMID: 34512542 PMCID: PMC8429928 DOI: 10.3389/fendo.2021.665145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022] Open
Abstract
The aquaporin 2 (AQP2) plays a critical role in water reabsorption to maintain water homeostasis. AQP2 mutation leads to nephrogenic diabetes insipidus (NDI), characterized by polyuria, polydipsia, and hypernatremia. We previously reported that a novel AQP2 mutation (G215S) caused NDI in a boy. In this study, we aimed to elucidate the cell biological consequences of this mutation on AQP2 function and clarify the molecular pathogenic mechanism for NDI in this patient. First, we analyzed AQP2 expression in Madin-Darby canine kidney (MDCK) cells by AQP2-G215S or AQP2-WT plasmid transfection and found significantly decreased AQP2-G215S expression in cytoplasmic membrane compared with AQP2-WT, independent of forskolin treatment. Further, we found co-localization of endoplasmic reticulum (ER) marker (Calnexin) with AQP2-G215S rather than AQP2-WT in MDCK cells by immunocytochemistry. The functional analysis showed that MDCK cells transfected with AQP2-G215S displayed reduced water permeability compared with AQP2-WT. Visualization of AQP2 structure implied that AQP2-G215S mutation might interrupt the folding of the sixth transmembrane α-helix and/or the packing of α-helices, resulting in the misfolding of monomer and further impaired formation of tetramer. Taken together, these findings suggested that AQP2-G215S was misfolded and retained in the ER and could not be translocated to the apical membrane to function as a water channel, which revealed the molecular pathogenic mechanism of AQP2-G215S mutation and explained for the phenotype of NDI in this patient.
Collapse
Affiliation(s)
- Qian Li
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Bichao Lu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Jia Yang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Chao Li
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yanchun Li
- Department of Radiation Oncology, Stanford University, School of Medicine, Stanford, CA, United States
| | - Hui Chen
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Naishi Li
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Lian Duan
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Gu
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianmin Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Li Q, Tian D, Cen J, Duan L, Xia W. Novel AQP2 Mutations and Clinical Characteristics in Seven Chinese Families With Congenital Nephrogenic Diabetes Insipidus. Front Endocrinol (Lausanne) 2021; 12:686818. [PMID: 34177810 PMCID: PMC8225504 DOI: 10.3389/fendo.2021.686818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Mutations in AQP2 (aquaporin-2) lead to rare congenital nephrogenic diabetes insipidus (NDI), which has been limitedly studied in Chinese population. METHODS Twenty-five subjects from seven families with NDI in a department (Beijing, PUMCH) were screened for AQP2 mutations. Clinical characteristics were described and genotype-phenotype correlation analysis was performed. RESULTS We identified 9 AQP2 mutations in 13 patients with NDI, including 3 novel AQP2 mutations (p.G165D, p.Q255RfsTer72 and IVS3-3delC). Missense mutations were the most common mutation type, followed by splicing mutations, and frameshift mutations caused by small deletion or insertion. The onset-age in our patients was younger than 1 year old. Common manifestations included polydipsia, polyuria (7/7) and intermittent fever (6/7). Less common presentations included short stature (3/7) and mental impairment (1/7). High osmotic hypernatremia and low osmotic urine were the main biochemical features. Dilation of the urinary tract was a common complication of NDI (3/6). Level of serum sodium in NDI patients with compound het AQP2 mutations was higher than non-compound het mutations. CONCLUSION In the first and largest case series of NDI caused by AQP2 mutation in Chinese population, we identified 9 AQP2 mutations, including 3 novel mutations. Phenotype was found to correlate with genotypes, revealed by higher level of serum sodium in patients with compound het AQP2 mutations than non-compound het mutations. This knowledge broadens genotypic and phenotypic spectrum for rare congenital NDI and provided basis for studying molecular biology of AQP2.
Collapse
Affiliation(s)
- Qian Li
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Tian
- Department of Nuclear Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Cen
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Lian Duan
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Weibo Xia, ; Lian Duan,
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Weibo Xia, ; Lian Duan,
| |
Collapse
|
7
|
Sueyoshi K, Kawasaki T, Miyoshi Y, Inoue J, Kumakawa Y, Kudo T, Maki C, Takeuchi Y, Suginaka M, Nakamura Y, Murata K, Ishihara T, Hirano Y, Morikawa M, Kondo Y, Matsuda S, Okamoto K, Tanaka H. Congenital nephrogenic diabetes insipidus presenting with bilateral hydronephrosis and dilatation of the ureter and bladder. Acute Med Surg 2020; 7:e579. [PMID: 33101696 PMCID: PMC7568958 DOI: 10.1002/ams2.579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022] Open
Affiliation(s)
- Koichiro Sueyoshi
- Department of Emergency and Critical Care Medicine Juntendo University Urayasu Hospital Urayasu Chiba Japan
| | - Takaaki Kawasaki
- Department of Emergency and Critical Care Medicine Juntendo University Urayasu Hospital Urayasu Chiba Japan
| | - Yukari Miyoshi
- Department of Emergency and Critical Care Medicine Juntendo University Urayasu Hospital Urayasu Chiba Japan
| | - Juri Inoue
- Department of Emergency and Critical Care Medicine Juntendo University Urayasu Hospital Urayasu Chiba Japan
| | - Yasuaki Kumakawa
- Department of Emergency and Critical Care Medicine Juntendo University Urayasu Hospital Urayasu Chiba Japan
| | - Tomohiro Kudo
- Department of Emergency and Critical Care Medicine Juntendo University Urayasu Hospital Urayasu Chiba Japan
| | - Chika Maki
- Department of Emergency and Critical Care Medicine Juntendo University Urayasu Hospital Urayasu Chiba Japan
| | - Yuji Takeuchi
- Department of Emergency and Critical Care Medicine Juntendo University Urayasu Hospital Urayasu Chiba Japan
| | - Miwa Suginaka
- Department of Emergency and Critical Care Medicine Juntendo University Urayasu Hospital Urayasu Chiba Japan
| | - Yuki Nakamura
- Department of Emergency and Critical Care Medicine Juntendo University Urayasu Hospital Urayasu Chiba Japan
| | - Kensuke Murata
- Department of Emergency and Critical Care Medicine Juntendo University Urayasu Hospital Urayasu Chiba Japan
| | - Tadashi Ishihara
- Department of Emergency and Critical Care Medicine Juntendo University Urayasu Hospital Urayasu Chiba Japan
| | - Yohei Hirano
- Department of Emergency and Critical Care Medicine Juntendo University Urayasu Hospital Urayasu Chiba Japan
| | - Miki Morikawa
- Department of Emergency and Critical Care Medicine Juntendo University Urayasu Hospital Urayasu Chiba Japan
| | - Yutaka Kondo
- Department of Emergency and Critical Care Medicine Juntendo University Urayasu Hospital Urayasu Chiba Japan
| | - Shigeru Matsuda
- Department of Emergency and Critical Care Medicine Juntendo University Urayasu Hospital Urayasu Chiba Japan
| | - Ken Okamoto
- Department of Emergency and Critical Care Medicine Juntendo University Urayasu Hospital Urayasu Chiba Japan
| | - Hiroshi Tanaka
- Department of Emergency and Critical Care Medicine Juntendo University Urayasu Hospital Urayasu Chiba Japan
| |
Collapse
|
8
|
Lou H, Shen Y, Xu Y, Zhang W, Ren Y. Nephrogenic diabetes insipidus induced by ureter obstruction due to benign prostatic hyperplasia: A case report. Medicine (Baltimore) 2020; 99:e22082. [PMID: 32925747 PMCID: PMC7489606 DOI: 10.1097/md.0000000000022082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Diabetes insipidus can be a common cause of polyuria and hydronephrosis in the kidneys. However, there is few reported case of urinary obstruction induced nephrogenic diabetes insipidus. PATIENT CONCERNS A 60-year-old Chinese man came to our hospital with the complaints of polydipsia and polyuria for 1 month. His examination showed chronic kidney disease stage III with eGFR of 48.274 ml/min, and the plasma osmolality was 338.00 mOsm/(kg·H2O) with a urinary osmolality of 163.00 mOsm/(kg·H2O). Moreover, imagological examination of the urinary system showed benign prostatic hyperplasia and hydronephrosis. DIAGNOSIS He was considered with benign prostatic hyperplasia induced ureter hydronephrosis and nephrogenic diabetes insipidus. INTERVENTIONS He got the transurethral resection of the prostate to alleviate urinary retention. OUTCOMES After that, the urine output gradually decreased, and the administered hydrochlorothiazide was stopped due to the improved renal function. CONCLUSION Our study presents a case of nephrogenic diabetes insipidus caused by urinary obstruction. Differential diagnoses for diabetes insipidus as well as the relationship between nephrogenic diabetes insipidus and urinary obstruction are also considered in this study.
Collapse
Affiliation(s)
- Hanyu Lou
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 310009
| | - Yimin Shen
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 310009
| | - Yi Xu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 310009
| | - Wei Zhang
- Department of Endocrinology, Zhejiang Provincial People's Hospital, Zhejiang 310003, China
| | - Yuezhong Ren
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 310009
| |
Collapse
|
9
|
Zheng K, Xie Y, Li H. Congenital Nephrogenic Diabetes Insipidus Presented With Bilateral Hydronephrosis and Urinary Infection: A Case Report. Medicine (Baltimore) 2016; 95:e3464. [PMID: 27258490 PMCID: PMC4900698 DOI: 10.1097/md.0000000000003464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nephrogenic diabetes insipidus (NDI) is a condition resulting from the kidney's impaired response to circulating antidiuretic hormone (ADH), leading to polydipsia and polyuria. Urinary tract dilatation caused by NDI is a rare situation. Here, we report a case of congenital NDI presented with bilateral hydronephrosis.A 15-year-old boy complaining a history of intermittent fever was admitted to Peking Union Medical College Hospital. He voided 10 to 15 L of urine daily. Radiographic examination revealed severe dilatation of bilateral renal pelvis, ureter, and bladder. Urinalysis shows hyposthenuria.He was diagnosed NDI since born. Transient insertion of a urethral catheter helped to relieve fever. Medical therapy of hydrochlorothiazide and amiloride was prescribed and effective.Dilatation of urinary tract caused by diabetes insipidus is rare, but may be present in severe condition. Therefore, it is crucial for clinicians to perform early treatment to avoid impairment of renal function.
Collapse
Affiliation(s)
- Kewen Zheng
- From the Department of Urology (KZ), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University; and Department of Urology (KZ, YX, HL), Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, P.R. China
| | | | | |
Collapse
|
10
|
|
11
|
Bockenhauer D, Bichet DG. Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus. Nat Rev Nephrol 2015; 11:576-88. [PMID: 26077742 DOI: 10.1038/nrneph.2015.89] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Healthy kidneys maintain fluid and electrolyte homoeostasis by adjusting urine volume and composition according to physiological needs. The final urine composition is determined in the last tubular segment: the collecting duct. Water permeability in the collecting duct is regulated by arginine vasopressin (AVP). Secretion of AVP from the neurohypophysis is regulated by a complex signalling network that involves osmosensors, barosensors and volume sensors. AVP facilitates aquaporin (AQP)-mediated water reabsorption via activation of the vasopressin V2 receptor (AVPR2) in the collecting duct, thus enabling concentration of urine. In nephrogenic diabetes insipidus (NDI), inability of the kidneys to respond to AVP results in functional AQP deficiency. Consequently, affected patients have constant diuresis, resulting in large volumes of dilute urine. Primary forms of NDI result from mutations in the genes that encode the key proteins AVPR2 and AQP2, whereas secondary forms are associated with biochemical abnormalities, obstructive uropathy or the use of certain medications, particularly lithium. Treatment of the disease is informed by identification of the underlying cause. Here we review the clinical aspects and diagnosis of NDI, the various aetiologies, current treatment options and potential future developments.
Collapse
Affiliation(s)
- Detlef Bockenhauer
- University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Daniel G Bichet
- Departments of Medicine and Molecular and Integrative Physiology, Université de Montréal Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Boulevard Gouin Ouest, Montréal, QC H4J 1C5 Canada
| |
Collapse
|
12
|
Hong CR, Kang HG, Choi HJ, Cho MH, Lee JW, Kang JH, Park HW, Koo JW, Ha TS, Kim SY, Il Cheong H. X-linked recessive nephrogenic diabetes insipidus: a clinico-genetic study. J Pediatr Endocrinol Metab 2014; 27:93-9. [PMID: 24030030 DOI: 10.1515/jpem-2013-0231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/14/2013] [Indexed: 11/15/2022]
Abstract
A retrospective genotype and phenotype analysis of X-linked congenital nephrogenic diabetes insipidus (NDI) was conducted on a nationwide cohort of 25 (24 male, 1 female) Korean children with AVPR2 gene mutations, comparing non-truncating and truncating mutations. In an analysis of male patients, the median age at diagnosis was 0.9 years old. At a median follow-up of 5.4 years, urinary tract dilatations were evident in 62% of patients and their median glomerular filtration rate was 72 mL/min/1.73 m2. Weights and heights were under the 3rd percentile in 22% and 33% of patients, respectively. One patient had low intelligence quotient and another developed end-stage renal disease. No statistically significant genotype-phenotype correlation was found between non-truncating and truncating mutations. One patient was female; she was analyzed separately because inactivation and mosaicism of the X chromosome may influence clinical manifestations in female patients. Current unsatisfactory long-term outcome of congenital NDI necessitates a novel therapeutic strategy.
Collapse
|
13
|
Spanakis E, Milord E, Gragnoli C. AVPR2 variants and mutations in nephrogenic diabetes insipidus: review and missense mutation significance. J Cell Physiol 2008; 217:605-17. [PMID: 18726898 DOI: 10.1002/jcp.21552] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Almost 90% of nephrogenic diabetes insipidus (NDI) is due to mutations in the arginine-vasopressin receptor 2 gene (AVPR2). We retrospectively examined all the published mutations/variants in AVPR2. We planned to perform a comprehensive review of all the AVPR2 mutations/variants and to test whether any amino acid change causing a missense mutation is significantly more or less common than others. We performed a Medline search and collected detailed information regarding all AVPR2 mutations and variants. We performed a frequency comparison between mutated and wild-type amino acids and codons. We predicted the mutation effect or reported it based on published in vitro studies. We also reported the ethnicity of each mutation/variant carrier. In summary, we identified 211 AVPR2 mutations which cause NDI in 326 families and 21 variants which do not cause NDI in 71 NDI families. We described 15 different types of mutations including missense, frameshift, inframe deletion, deletion, insertion, nonsense, duplication, splicing and combined mutations. The missense mutations represent the 55.83% of all the NDI published families. Arginine and tyrosine are significantly (P = 4.07E-08 and P = 3.27E-04, respectively) the AVPR2 most commonly mutated amino acids. Alanine and glutamate are significantly (P = 0.009 and P = 0.019, respectively) the least mutated AVPR2 amino acids. The spectrum of mutations varies from rare gene variants or polymorphisms not causing NDI to rare mutations causing NDI, among which arginine and tyrosine are the most common missense. The AVPR2 mutations are spread world-wide. Our study may serve as an updated review, comprehensive of all AVPR2 variants and specific gene locations. J. Cell. Physiol. 217: 605-617, 2008. (c) 2008 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Elias Spanakis
- Laboratory of Molecular Genetics of Complex and Monogenic Disorders, Department of Medicine and Cellular & Molecular Physiology, M. S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
14
|
Hora M, Reischig T, Hes O, Ferda J, Klecka J. Urological complications of congenital nephrogenic diabetes insipidus--long-term follow-up of one patient. Int Urol Nephrol 2006; 38:531-2. [PMID: 17111080 DOI: 10.1007/s11255-006-0093-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 03/08/2006] [Indexed: 11/24/2022]
Abstract
A male with a severe form of congenital nephrogenic diabetes insipidus (diuresis 10 l per day) had megaureters, megavesica, large residuum and a history of three traumatic ruptures of the megavesica and a recurrent urinary tract infection (RUTI). Hemodialysis was introduced at 41 years of age. At age of 42, he underwent a bilateral retroperitoneoscopic nephrectomy to prevent further RUTI and 8 months later transplantation of a cadaver kidney. Intermittent catheterization is necessary due to residual urine in the urinary bladder.
Collapse
Affiliation(s)
- M Hora
- Department of Urology, Charles University Hospital, E. Benese 13, 305 99, Plzen, Czech Republic.
| | | | | | | | | |
Collapse
|