1
|
Biological evaluation of mimetic peptides as active molecules for a new and simple skin test in an animal model. Parasitol Res 2018; 118:317-324. [PMID: 30397777 DOI: 10.1007/s00436-018-6128-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/19/2018] [Indexed: 10/27/2022]
Abstract
A skin test is a widely used tool in diagnostic evaluations to investigate cutaneous leishmaniases (CL). The actual antigen (Montenegro skin test [MST] antigen) presents some difficulties that pertain to its manufacturing and validation. To contribute to overcoming this problem, we propose the application of new-generation molecules that are based on skin antigen tests. These antigens were obtained through biotechnology pathways by manufacturing synthetic mimetic peptides. Three peptides, which were selected by phage display, were tested as skin test antigens in an animal model (Cavia porcellus) that was immunized with Leishmania amazonensis or Leishmania braziliensis. The peptide antigens, individually (PA1, PA2, PA3) or in a mix (PAMix), promoted induration reactions at 48 and 72 h after the test was performed. The indurations varied from 0.5 to 0.7 cm. In the animals immunized with L. amazonensis, the PA3 antigen showed better results than the standard MST antigen. In animals immunized with L. braziliensis, two peptide antigens (PA2 and PAMix) promoted induration reactions for a longer period of time than the standard MST antigen. These results validate our hypothesis that peptides could be used as antigens in skin tests and may replace the current antigen for CL diagnosis.
Collapse
|
2
|
Guedes DC, Minozzo JC, Pasquali AKS, Faulds C, Soccol CR, Thomaz-Soccol V. New strategy to improve quality control of Montenegro skin test at the production level. Rev Soc Bras Med Trop 2018; 50:788-794. [PMID: 29340456 DOI: 10.1590/0037-8682-0131-2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 12/12/2017] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION The production of the Montenegro antigen for skin test poses difficulties regarding quality control. Here, we propose that certain animal models reproducing a similar immune response to humans may be used in the quality control of Montenegro antigen production. METHODS Fifteen Cavia porcellus (guinea pigs) were immunized with Leishmania amazonensis or Leishmania braziliensis , and, after 30 days, they were skin tested with standard Montenegro antigen. To validate C. porcellus as an animal model for skin tests, eighteen Mesocricetus auratus (hamsters) were infected with L. amazonensis or L. braziliensis , and, after 45 days, they were skin tested with standard Montenegro antigen. RESULTS Cavia porcellus immunized with L. amazonensis or L. braziliensis , and hamsters infected with the same species presented induration reactions when skin tested with standard Montenegro antigen 48-72h after the test. CONCLUSIONS The comparison between immunization methods and immune response from the two animal species validated C. porcellus as a good model for Montenegro skin test, and the model showed strong potential as an in vivo model in the quality control of the production of Montenegro antigen.
Collapse
Affiliation(s)
- Deborah Carbonera Guedes
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - João Carlos Minozzo
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, PR, Brasil.,Centro de Produção e Pesquisa de Imunobiológicos, Secretaria da Saúde do Estado do Paraná, Piraquara, PR, Brasil
| | - Aline Kuhn Sbruzzi Pasquali
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - Craig Faulds
- Department of Biotechnology, Université Aix Marseille, Marseille, France
| | - Carlos Ricardo Soccol
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - Vanete Thomaz-Soccol
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, PR, Brasil
| |
Collapse
|
3
|
Oliveira TL, Rizzi C, Dellagostin OA. Recombinant BCG vaccines: molecular features and their influence in the expression of foreign genes. Appl Microbiol Biotechnol 2017; 101:6865-6877. [PMID: 28779291 DOI: 10.1007/s00253-017-8439-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 01/17/2023]
Abstract
Recombinant Mycobacterium bovis BCG vaccines (rBCG) were first developed in the 1990s as a means of expressing antigens from multiple pathogens. This review examines the key structural factors of recombinant M. bovis that influence the expression of the heterologous antigens and the generation of genetic and functional stability in rBCG, which are crucial for inducing strong and lasting immune responses. The fundamental aim of this paper is to provide an overview of factors that affect the expression of recombinant proteins in BCG and the generation of the immune response against the target antigens, including mycobacterial promoters, location of foreign antigens, and stability of the vectors. The reporter systems that have been employed for evaluation of these molecular features in BCG are also reviewed here.
Collapse
Affiliation(s)
- Thaís Larré Oliveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Caroline Rizzi
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir Antônio Dellagostin
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil. .,Unidade de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário, Caixa Postal 354, Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
4
|
Zheng YQ, Naguib YW, Dong Y, Shi YC, Bou S, Cui Z. Applications of bacillus Calmette–Guerin and recombinant bacillus Calmette–Guerin in vaccine development and tumor immunotherapy. Expert Rev Vaccines 2015. [DOI: 10.1586/14760584.2015.1068124] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuan-qiang Zheng
- 1Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot 010059, China
| | - Youssef W Naguib
- 2Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yixuan Dong
- 2Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yan-chun Shi
- 1Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot 010059, China
| | - Shorgan Bou
- 3National Research Center for Animal Transgenic Biotechnology, Inner Mongolia University, Hohhot, China
| | - Zhengrong Cui
- 1Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot 010059, China
- 2Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
5
|
Stable Expression of Lentiviral Antigens by Quality-Controlled Recombinant Mycobacterium bovis BCG Vectors. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:726-41. [PMID: 25924766 PMCID: PMC4478521 DOI: 10.1128/cvi.00075-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/22/2015] [Indexed: 12/14/2022]
Abstract
The well-established safety profile of the tuberculosis vaccine strain, Mycobacterium bovis bacille Calmette-Guérin (BCG), makes it an attractive vehicle for heterologous expression of antigens from clinically relevant pathogens. However, successful generation of recombinant BCG strains possessing consistent insert expression has encountered challenges in stability. Here, we describe a method for the development of large recombinant BCG accession lots which stably express the lentiviral antigens, human immunodeficiency virus (HIV) gp120 and simian immunodeficiency virus (SIV) Gag, using selectable leucine auxotrophic complementation. Successful establishment of vaccine stability stems from stringent quality control criteria which not only screen for highly stable complemented BCG ΔleuCD transformants but also thoroughly characterize postproduction quality. These parameters include consistent production of correctly sized antigen, retention of sequence-pure plasmid DNA, freeze-thaw recovery, enumeration of CFU, and assessment of cellular aggregates. Importantly, these quality assurance procedures were indicative of overall vaccine stability, were predictive for successful antigen expression in subsequent passaging both in vitro and in vivo, and correlated with induction of immune responses in murine models. This study has yielded a quality-controlled BCG ΔleuCD vaccine expressing HIV gp120 that retained stable full-length expression after 10(24)-fold amplification in vitro and following 60 days of growth in mice. A second vaccine lot expressed full-length SIV Gag for >10(68)-fold amplification in vitro and induced potent antigen-specific T cell populations in vaccinated mice. Production of large, well-defined recombinant BCG ΔleuCD lots can allow confidence that vaccine materials for immunogenicity and protection studies are not negatively affected by instability or differences between freshly grown production batches.
Collapse
|
6
|
Zheng YQ, Naguib YW, Dong Y, Shi YC, Bou S, Cui Z. Applications of bacillus Calmette-Guerin and recombinant bacillus Calmette-Guerin in vaccine development and tumor immunotherapy. Expert Rev Vaccines 2015; 14:1255-75. [PMID: 26268434 PMCID: PMC4920355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bacillus Calmette-Guerin (BCG) vaccines are attenuated live strains of Mycobacterium bovis and are among the most widely used vaccines in the world. BCG is proven to be effective in preventing severe infant meningitis and miliary tuberculosis. Intravesical instillation of BCG is also a standard treatment for non-muscle invasive bladder cancer. In the past few decades, recombinant BCG (rBCG) technology had been extensively applied to develop vaccine candidates for a variety of infectious diseases, including bacterial, viral, and parasite infections, and to improve the efficacy of BCG in bladder cancer therapy. This review is intended to show the vast applications of BCG and recombinant BCG (rBCG) in the prevention of infectious diseases and cancer immunotherapy, with a special emphasis on recent approaches and trends on both pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Yuan-qiang Zheng
- Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot 010059, China
- National Research Center for Animal Transgenic Biotechnology, Inner Mongolia University, Hohhot, China
| | - Youssef W. Naguib
- Pharmaceutics Division, College of Pharmacy, the University of Texas at Austin, Austin, TX 78712, USA
| | - Yixuan Dong
- Pharmaceutics Division, College of Pharmacy, the University of Texas at Austin, Austin, TX 78712, USA
| | - Yan-chun Shi
- Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot 010059, China
| | - Shorgan Bou
- National Research Center for Animal Transgenic Biotechnology, Inner Mongolia University, Hohhot, China
| | - Zhengrong Cui
- Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot 010059, China
- Pharmaceutics Division, College of Pharmacy, the University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
7
|
Saubi N, Gea-Mallorquí E, Ferrer P, Hurtado C, Sánchez-Úbeda S, Eto Y, Gatell JM, Hanke T, Joseph J. Engineering new mycobacterial vaccine design for HIV-TB pediatric vaccine vectored by lysine auxotroph of BCG. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14017. [PMID: 26015961 PMCID: PMC4362382 DOI: 10.1038/mtm.2014.17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/26/2014] [Indexed: 02/05/2023]
Abstract
In this study, we have engineered a new mycobacterial vaccine design by using an antibiotic-free plasmid selection system. We assembled a novel Escherichia coli (E. coli)–mycobacterial shuttle plasmid p2auxo.HIVA, expressing the HIV-1 clade A immunogen HIVA. This shuttle vector employs an antibiotic resistance-free mechanism for plasmid selection and maintenance based on glycine complementation in E. coli and lysine complementation in mycobacteria. This plasmid was first transformed into glycine auxotroph of E. coli strain and subsequently transformed into lysine auxotroph of Mycobacterium bovis BCG strain to generate vaccine BCG.HIVA2auxo. We demonstrated that the episomal plasmid p2auxo.HIVA was stable in vivo over a 7-week period and genetically and phenotypically characterized the BCG.HIVA2auxo vaccine strain. The BCG.HIVA2auxo vaccine in combination with modified vaccinia virus Ankara (MVA). HIVA was safe and induced HIV-1 and Mycobacterium tuberculosis-specific interferon-γ-producing T-cell responses in adult BALB/c mice. Polyfunctional HIV-1-specific CD8+ T cells, which produce interferon-γ and tumor necrosis factor-α and express the degranulation marker CD107a, were induced. Thus, we engineered a novel, safer, good laboratory practice–compatible BCG-vectored vaccine using prototype immunogen HIVA. This antibiotic-free plasmid selection system based on “double” auxotrophic complementation might be a new mycobacterial vaccine platform to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective response soon after birth.
Collapse
Affiliation(s)
- Narcís Saubi
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| | - Ester Gea-Mallorquí
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| | - Pau Ferrer
- Department of Chemical Engineering, Group of Bioprocess Engineering and Applied Biocatalysis, School of Engineering, Autonomous University of Barcelona , Barcelona, Catalonia, Spain
| | - Carmen Hurtado
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| | - Sara Sánchez-Úbeda
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| | - Yoshiki Eto
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| | - Josep M Gatell
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| | - Tomáš Hanke
- The Jenner Institute, University of Oxford , Oxford, UK ; MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford , Oxford, UK
| | - Joan Joseph
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| |
Collapse
|