1
|
Zhang H, Wang J, Qu Y, Yang Y, Guo ZN. Brain Injury Biomarkers and Applications in Neurological Diseases. Chin Med J (Engl) 2024:00029330-990000000-01116. [PMID: 38915214 DOI: 10.1097/cm9.0000000000003061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 06/26/2024] Open
Abstract
ABSTRACT Neurological diseases are a major health concern, and brain injury is a typical pathological process in various neurological disorders. Different biomarkers in the blood or the cerebrospinal fluid are associated with specific physiological and pathological processes. They are vital in identifying, diagnosing, and treating brain injuries. In this review, we described biomarkers for neuronal cell body injury (neuron-specific enolase, ubiquitin C-terminal hydrolase-L1, αII-spectrin), axonal injury (neurofilament proteins, tau), astrocyte injury (S100β, glial fibrillary acidic protein), demyelination (myelin basic protein), autoantibodies, and other emerging biomarkers (extracellular vesicles, microRNAs). We aimed to summarize the applications of these biomarkers and their related interests and limits in the diagnosis and prognosis for neurological diseases, including traumatic brain injury, status epilepticus, stroke, Alzheimer's disease, and infection. In addition, a reasonable outlook for brain injury biomarkers as ideal detection tools for neurological diseases is presented.
Collapse
Affiliation(s)
- Han Zhang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, Jilin 130021, China
| | - Jing Wang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, Jilin 130021, China
| | - Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, Jilin 130021, China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, Jilin 130021, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, Jilin 130021, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, Jilin 130021, China
| |
Collapse
|
2
|
Zhang X, Pan L, Zhang P, Wang L, Shen Y, Xu P, Ren Y, Huang W, Liu P, Wu Q, Li F. Single-cell analysis of the miRNA activities in tuberculous meningitis (TBM) model mice injected with the BCG vaccine. Int Immunopharmacol 2023; 124:110871. [PMID: 37708706 DOI: 10.1016/j.intimp.2023.110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Our previous study revealed the transcriptome atlas of specific cell types in tuberculous meningitis (TBM) model mice injected with the BCG vaccine via scRNA sequencing. However, the activities of miRNAs in TBM at single-cell resolution remain to be explored. METHOD Cell type-specific miRNA activities were investigated by using motif enrichment analyses (miReact) on the transcriptome data of 15 cell types. The target mRNAs of miRNAs were predicted and subjected to enrichment analysis. Furthermore, miRNAs and their target mRNAs with opposite expression trends were chosen to construct functional networks. Besides, qRT-PCR and RNA scope were performed to verify the expression level of representative miRNA. RESULTS The tSNE dimensionality reduction presented 15 cell types in TBM model mice, in which microglia and endothelial cells accounted for the majority. Target mRNAs of each cell type were predicted for verification or network construction. The immune and inflammation-related miRNA-mRNA networks of macrophages and microglia, oxidative phosphorylation-related miRNA-mRNA networks of neurons, ion and protein transport-related networks of epididymal cells, and angiogenesis-related miRNA-mRNA networks of VSMCs were constructed. The miRNA activity analysis revealed that miR-21a-3p activity was increased in microglia, macrophages, neurons and epididymal cells. The result of qRT-PCR and RNA scope indicate that miR-21a-3p was significantly higher-expressed in TBM brain tissue compared with normal brain tissue. CONCLUSION In our study, an in-depth exploration of the mRNA expression and miRNA activity of macrophages, microglia, epididymal cells, neurons and vascular smooth muscle cells during TBM progression was conducted using scRNA-Seq, which provided novel insights into the immune cell engagement in TBM patients.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Lei Pan
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Peng Zhang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Lei Wang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yidan Shen
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Ping Xu
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yang Ren
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Wei Huang
- Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Department of Tuberculosis, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Ping Liu
- Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Department of Tuberculosis, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Qingguo Wu
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Feng Li
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Heparin-Binding Protein (HBP), Neutrophil Gelatinase-Associated Lipocalin (NGAL) and S100 Calcium-Binding Protein B (S100B) Can Confirm Bacterial Meningitis and Inform Adequate Antibiotic Treatment. Antibiotics (Basel) 2022; 11:antibiotics11060824. [PMID: 35740230 PMCID: PMC9220165 DOI: 10.3390/antibiotics11060824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 01/27/2023] Open
Abstract
The empirical administration of antibiotics for suspected bacterial meningitis denotes a poor bacterial stewardship. In this context, the use of biomarkers can distinguish between bacterial and viral infections before deciding treatment. Our study assesses how levels of heparin-binding protein (HBP), neutrophil gelatinase-associated lipocalin (NGAL), S100 calcium-binding protein B (S100B), and neuron-specific enolase (NSE) in cerebrospinal fluid (CSF) and in blood can promptly confirm bacterial etiology and the need for antibiotic treatment. The CSF and blood levels of HBP, NGAL, S100B, and NSE of 81 patients with meningitis were measured and analyzed comparatively. Statistical sensitivity, specificity, and positive and negative predictive values were evaluated. CSF levels of HBP and NGAL and the blood level of S100B in the bacterial meningitis group were significantly higher (p < 0.05). The area under curve (AUC) for predicting bacterial meningitis was excellent for the CSF level of HBP (0.808 with 93.54% sensitivity and 80.64% specificity), good for the CSF level of NGAL (0.685 with 75.00% sensitivity and 65.62% specificity), and good for the blood level of S100B (0.652 with 65.90% sensitivity and 57.14% specificity). CSF levels of HBP and NGAL, as well as the blood level of S100B, could help discriminate between bacterial and viral meningitis before considering antibiotic treatment.
Collapse
|
4
|
Ayaydın H, Kirmit A, Çelik H, Akaltun İ, Koyuncu İ, Bilgen Ulgar Ş. High Serum Levels of Serum 100 Beta Protein, Neuron-specific Enolase, Tau, Active Caspase-3, M30 and M65 in Children with Autism Spectrum Disorders. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:270-278. [PMID: 32329316 PMCID: PMC7242104 DOI: 10.9758/cpn.2020.18.2.270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 12/27/2022]
Abstract
Objective The purpose of this study was therefore to investigate whether neuronal, axonal, and glial cell markers (Neuron-specific enolase [NSE], tau, serum 100 beta protein [S100B], respectively) and apoptosis markers (active caspase 3, M30, M65) and whether these parameters can be used as diagnostic biomarkers in autism spectrum disorders (ASD). Methods This study measured the serum S100B, NSE, tau, active caspase 3, M30, and M65 levels in 43 patients with ASD (aged 3−12 years) and in 41 age- and sex-matched healthy controls. ASD severity was rated using the Childhood Autism Rating Scale. The serum levels were determined in the biochemistry laboratory using the ELISA technique. The receiver operator characteristics curve method was employed to evaluate the accuracy of the parameters in diagnosing ASD. Results Serum S100B, tau, NSE, active caspase-3, M30, and M65 levels were significantly higher in the patient group than in the control group (p < 0.001, p = 0.002, p = 0.002, p = 0.005, p < 0.001, and p = 0.004, respectively). The cut-off value of S100B was 48.085 pg/ml (sensitivity: 74.4%, specificity: 80.5%, areas under the curve: 0.879, p < 0.001). Conclusion Apoptosis increased in children with ASD, and neuronal, axonal, and glial cell injury was observed. In addition, S100B may be an important diagnostic biomarker in patients with ASD. Apoptosis, and neuronal, axonal and astrocyte pathologies may play a significant role in the pathogenesis of ASD, and further studies are now required to confirm this.
Collapse
Affiliation(s)
- Hamza Ayaydın
- Departments of Child and Adolescent Psychiatry, Gaziantep Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| | - Adnan Kirmit
- Departments of Biochemistry, Gaziantep Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| | - Hakim Çelik
- Departments of Physiology, Faculty of Medicine, Harran University, Şanlıurfa, Gaziantep Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| | - İsmail Akaltun
- Department of Child and Adolescent Psychiatry, Gaziantep Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| | - İsmail Koyuncu
- Departments of Biochemistry, Gaziantep Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| | - Şermin Bilgen Ulgar
- Departments of Child and Adolescent Psychiatry, Gaziantep Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| |
Collapse
|
5
|
The CD14 (-159 C/T) SNP is associated with sCD14 levels and allergic asthma, but not with CD14 expression on monocytes. Sci Rep 2018. [PMID: 29515128 PMCID: PMC5841440 DOI: 10.1038/s41598-018-20483-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
LPS-ligation to CD14/TLR-4 on monocytes/macrophages triggers the production of IL-12-family cytokines. IL12/18 promote TH1-differentiation, counteracting the TH2-driven asthma. Therefore, CD14 modulation could alter the TH2-differentiation and should be taken into account when studying asthma. To analyse the alteration in CD14 levels and its association with CD14 (−159 C/T) SNP (rs2569190) in Caucasian adults with stable allergic asthma, we performed a cross-sectional study (277 healthy subjects vs. 277 patients) where clinical parameters, CD14 values and the CD14 (−159 C/T) SNP were studied. Apart from typical biomarkers, we found an increment of neuron-specific enolase (NSE) in allergic asthma, probably linked to monocyte activity. Indeed, we evidenced increased monocyte numbers, but lower CD14 expression and normalised sCD14 values in patients. Moreover, we noticed an association of the T allele (P = 0.0162) and TT genotype (P = 0.0196) of the CD14 SNP with a decreased risk of allergic asthma and augmented sCD14 levels. In conclusion, monocyte CD14 expression and normalized sCD14 values were reduced in stable state asthmatics, and this could be related to the presence of an expanded CD14low monocyte subset. This study also demonstrates that the CD14 (−159 C/T) polymorphism is a risk factor for moderate-severe allergic asthma in adult Caucasians.
Collapse
|
6
|
Almani SA, Shaikh TZ, Khoharo HK, Ujjan I. Serum enolase-2, high-sensitivity C-reactive protein, and serum cholesterol in smear-positive drug-naïve pulmonary tuberculosis. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2017; 22:49. [PMID: 28567068 PMCID: PMC5426096 DOI: 10.4103/jrms.jrms_808_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/07/2017] [Accepted: 01/20/2017] [Indexed: 11/17/2022]
Abstract
Background: Pulmonary tuberculosis (PTB) is a chronic granulomatous disease caused by Mycobacterium tuberculosis. The present study determined the serum human enolase-2 (ENO-2), high-sensitive C-reactive protein (hs-CRP), and serum cholesterol levels as biological marker of disease activity and treatment response in smear-positive drug-naïve PTB. Materials and Methods: This case–control study was done in the Department of Medicine, Liaquat University of Medical and Health Sciences (LUMHS), Jamshoro/Hyderabad, Sindh, from January 2015 to April 2016. Thirty-five sputum smear-positive drug-naïve PTB patients and thirty controls were studied. MTB culture and drug sensitivity were performed at the Diagnostic and Research Laboratory of LUMHS. Serum ENO-2, hs-CRP, and serum cholesterol were estimated at baseline, 3rd and 6th month of antituberculosis (TB) therapy. Results: Serum ENO-2 and hs-CRP were found raised in PTB compared to controls and showed decrease of 13% and 21.55%, 19.6% and 31.5% at 3rd and 6th month, respectively (P = 0.0001). Serum ENO-2 revealed positive correlation with hs-CRP (r = 0.734, P = 0.0001), and serum cholesterol revealed negative correlation with ENO-2 and hs-CRP (r = −0.509, P = 0.0001) and (r = −0.566, P = 0.0001), respectively. Conclusion: The present study reports the baseline ENO-2 and hs-CRP were raised, and serum cholesterol was low in smear-positive PTB patients and the ENO-2 and hs-CRP were reduced by anti-TB drug therapy.
Collapse
Affiliation(s)
- Suhail Ahmed Almani
- Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Tariq Zaffar Shaikh
- Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Haji Khan Khoharo
- Faculty of Medicine and Allied Medical Sciences, Isra University, Hyderabad, Sindh, Pakistan
| | - Ikramuddin Ujjan
- Department of Pathology, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| |
Collapse
|
7
|
Nam SJ, Jeong JY, Jang TW, Jung MH, Chun BK, Cha HJ, Oak CH. Neuron-specific enolase as a novel biomarker reflecting tuberculosis activity and treatment response. Korean J Intern Med 2016; 31:694-702. [PMID: 27271274 PMCID: PMC4939508 DOI: 10.3904/kjim.2015.407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/12/2016] [Accepted: 03/21/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS It is not clear which tests are indicative of the activity and severity of tuberculosis (TB). This study aimed to investigate the predictive value of neuron-specific enolase (NSE) and to determine the origin of NSE in TB patients. METHODS A single-center retrospective analysis was conducted on newly diagnosed TB patients between January and December 2010. Patients were categorized into one of two disease groups (focal segmental or extensive) based on chest X-ray. Pre- and post-treatment NSE concentrations were evaluated. To determine the origin of serum NSE concentration, NSE staining was compared with macrophage-specific CD68 staining in lung tissues and with a tissue microarray using immunohistochemistry and immunofluorescence. RESULTS A total of 60 newly diagnosed TB patients were analyzed. In TB patients, NSE serum concentration was significantly increased and NSE level decreased after treatment (p < 0.001). In proportion to serum high-sensitivity C-reactive protein concentration, the mean serum concentration of NSE in the extensive group (25.12 ng/mL) was significantly higher than that in the focal segmental group (20.23 ng/mL, p = 0.04). Immunohistochemical staining revealed a large number of macrophages that stained positively for both NSE and CD68 in TB tissues. In addition, NSE signals mostly co-localized with CD68 signals in the tissue microarray of TB patients. CONCLUSIONS Our results suggest that NSE may be a practical parameter that can be used to monitor TB activity and treatment response. Elevated serum NSE level originates, at least in part, from macrophages in granulomatous lesions.
Collapse
Affiliation(s)
- Sung-Jin Nam
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Jee-Yeong Jeong
- Department of Biochemistry, Kosin University College of Medicine, Busan, Korea
- Cancer Research Institute, Kosin University College of Medicine, Busan, Korea
| | - Tae-Won Jang
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - Mann-Hong Jung
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - Bong-Kwon Chun
- Department of Pathology, Kosin University College of Medicine, Busan, Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, Korea
| | - Chul-Ho Oak
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
- Correspondence to Chul-Ho Oak, M.D. Department of Internal Medicine, Kosin University College of Medicine, 262 Gamcheon-ro, Seo-gu, Busan 49267, Korea Tel: +82-51-990-6104 Fax: +82-51-990-3010 E-mail:
| |
Collapse
|
8
|
Yang Y, Mu J, Chen G, Zhan Y, Zhong J, Wei Y, Cheng K, Qin B, You H, Xie P. iTRAQ-based quantitative proteomic analysis of cerebrospinal fluid reveals NELL2 as a potential diagnostic biomarker of tuberculous meningitis. Int J Mol Med 2015; 35:1323-32. [PMID: 25760060 DOI: 10.3892/ijmm.2015.2131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 02/17/2015] [Indexed: 11/06/2022] Open
Abstract
Tuberculous meningitis (TBM) is a serious complication of tuberculosis that affects the central nervous system. As TBM may result in permanent sequelae and death, rapid, accurate diagnostic tests using novel biomarkers are required for the early diagnosis and treatment of TBM. A quantitative proteomic study was therefore performed to identify differential proteins in the cerebrospinal fluid (CSF) obtained from TBM patients (n=12) and healthy controls (n=12). CSF samples were labelled with iTRAQ™ and analyzed by LC-MS/MS. Gene ontology and Pathway analysis were conducted using DAVID bioinformatics resources. Neural epidermal growth factor-like like 2 (NELL2) with the largest fold-change value was selected for validation by western blotting. Proteomic phenotyping revealed over-representation in two inflammation-associated processes, complement and coagulation cascades as well as cell adhesion molecules. Western blotting showed a significant decrease in NELL2 levels in TBM subjects compared to healthy controls. The AUC analysis revealed NELL2 was able to distinguish TBM subjects from healthy controls with 83.3% sensitivity and 75% specificity. In conclusion, the results showed that CSF NELL2 is a potential diagnostic biomarker for TBM. Further evaluation of these findings in larger studies including anti-tuberculosis medicated and unmedicated patient cohorts with other intracranial infectious diseases is required for clinical translation.
Collapse
Affiliation(s)
- Yongtao Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jun Mu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Guanghui Chen
- Institute of Neuroscience, Chongqing Medical University, Chongqing, P.R. China
| | - Yuan Zhan
- Institute of Neuroscience, Chongqing Medical University, Chongqing, P.R. China
| | - Jiaju Zhong
- Institute of Neuroscience, Chongqing Medical University, Chongqing, P.R. China
| | - Youdong Wei
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Ke Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Bin Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Hongmin You
- Institute of Neuroscience, Chongqing Medical University, Chongqing, P.R. China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
9
|
Abstract
Abstract
BACKGROUND
Central nervous system (CNS) infections present a major burden of disease worldwide and are associated with high rates of mortality and morbidity. Swift diagnosis and initiation of appropriate treatment are vital to minimize the risk of poor outcome; however, tools are lacking to accurately diagnose infection, assess injury severity, and predict outcome. Biomarkers of structural neurological injury could provide valuable information in addressing some of these challenges.
CONTENT
In this review, we summarize experimental and clinical research on biomarkers of neurological injury in a range of CNS infectious diseases. Data suggest that in both adults and children, the biomarkers S100B and neuron-specific enlose (NSE), among others, can provide insight into the pathophysiology of CNS infection and injury severity, evolution, and response to treatment. Research into the added utility of combining a panel of biomarkers and in assessing biomarker association with clinical and radiological outcomes warrants further work. Various factors, including age, the establishment of normative values, and comparison of biomarker concentrations across different testing platforms still present challenges in biomarker application.
SUMMARY
Research regarding the value of biomarkers in CNS infections is still in its infancy. However, early evidence supports their utility in diagnosis and prognosis, and potentially as effective surrogate end points in the assessment of novel interventions.
Collapse
Affiliation(s)
- Ursula K Rohlwink
- Paediatric Neurosurgery, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Anthony A Figaji
- Paediatric Neurosurgery, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Bilgin E, Dizdar Y, Serilmez M, Soydinc HO, Yasasever CT, Duranyildiz D, Yasasever V. For Which Cancer Types can Neuron-Specific Enolase be Clinically Helpful in Turkish Patients? Asian Pac J Cancer Prev 2013; 14:2541-4. [DOI: 10.7314/apjcp.2013.14.4.2541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|