1
|
Gong T, Lu M, Wang Y, Li Z, He X, Luo Y, Zhou Y, Tu C, Min L. Is 3D-printed self-stabilizing endoprosthesis reconstruction without supplemental fixation following total sacrectomy a viable approach for sacral tumours? EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:4316-4324. [PMID: 38713447 DOI: 10.1007/s00586-024-08292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE The spinopelvic reconstruction poses significant challenges following total sacrectomy in patients with malignant or aggressive benign bone tumours encompassing the entire sacrum. In this study, we aim to assess the functional outcomes and complications of an integrated 3D-printed sacral endoprostheses featuring a self-stabilizing design, eliminating the requirement for supplemental fixation. METHODS We retrospectively analyzed patients with sacral tumours who underwent total sacrectomy followed by reconstruction with 3D-printed self-stabilizing endoprosthesis. Clinically, we evaluated functional outcomes using the 1993 version of the musculoskeletal tumour society (MSTS-93) score. Perioperative and postoperative complications were also documented. RESULTS 10 patients met final inclusion criteria. The median age was 49 years (range, 31-64 years). The median follow-up time was 26.5 months (range, 15-47 months). Median postoperative functional MSTS-93 was 22.5 (range, 13-25). The median operation time was 399.5 min (305-576 min), and the median intraoperative blood loss was and 3200 ml (2400-7800 ml). Complications include wound dehiscence in one patient, bowel, bladder, and sexual dysfunction in four patients, cerebrospinal fluid leak in one patient, and tumour recurrence in one patient. There were no mechanical complications related to the endoprosthesis at the last follow-up. CONCLUSION The utilization of 3D-printed self-stabilizing endoprosthesis proved to be a viable approach, yielding satisfactory short-term outcomes in patients undergoing total sacral reconstruction without supplemental fixation.
Collapse
Affiliation(s)
- Taojun Gong
- Department of Orthopedics, Orthopedic Research Institute, Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Minxun Lu
- Department of Orthopedics, Orthopedic Research Institute, Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yitian Wang
- Department of Orthopedics, Orthopedic Research Institute, Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhuangzhuang Li
- Department of Orthopedics, Orthopedic Research Institute, Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xuanhong He
- Department of Orthopedics, Orthopedic Research Institute, Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yi Luo
- Department of Orthopedics, Orthopedic Research Institute, Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yong Zhou
- Department of Orthopedics, Orthopedic Research Institute, Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chongqi Tu
- Department of Orthopedics, Orthopaedic Research Institute, Sichuan Model Worker and Craftsman Talent Innovation Research Studio, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Li Min
- Department of Orthopedics, Orthopedic Research Institute, Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
2
|
Kiselev R, Zheravin A. Clinical Application of 3D-Printed Artificial Vertebral Body (3DP AVB): A Review. J Pers Med 2024; 14:1024. [PMID: 39452532 PMCID: PMC11508315 DOI: 10.3390/jpm14101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction: The choice of prosthesis for vertebral body reconstruction (VBR) remains a controversial issue due to the lack of a reliable solution. The subsidence rate of the most commonly used titanium mesh cages (TMC) ranges from 42.5% to 79.7%. This problem is primarily caused by the differences in the elastic modulus between the TMC and bone. This review aims to summarize the clinical and radiological outcomes of new 3D-printed artificial vertebral bodies (3DP AVB). Methods: A literature search of PubMed, Scopus and Google Scholar was conducted to extract relevant studies. After screening the titles and abstracts, a total of 50 articles were selected for full-text analysis. Results: Preliminary data suggest fewer implant-related complications with 3DP AVB. Most comparative studies indicate significantly lower subsidence rates, reduced operation times and decreased intraoperative blood loss. However, the scarcity of randomized clinical trials and the high variability of the results warrant caution. Conclusion: Most literature data show an advantage of 3DP AVB in terms of the operation time, intraoperative blood loss and subsidence rate. However, long manufacturing times, high costs and regulatory issues are this technology's main drawbacks.
Collapse
Affiliation(s)
- Roman Kiselev
- Meshalkin National Medical Research Centre, Novosibirsk 630055, Russia;
| | | |
Collapse
|
3
|
Iqbal J, Zafar Z, Skandalakis G, Kuruba V, Madan S, Kazim SF, A Bowers C. Recent advances of 3D-printing in spine surgery. Surg Neurol Int 2024; 15:297. [PMID: 39246777 PMCID: PMC11380890 DOI: 10.25259/sni_460_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/27/2024] [Indexed: 09/10/2024] Open
Abstract
Background The emerging use of three-dimensional printing (3DP) offers improved surgical planning and personalized care. The use of 3DP technology in spinal surgery has several common applications, including models for preoperative planning, biomodels, surgical guides, implants, and teaching tools. Methods A literature review was conducted to examine the current use of 3DP technology in spinal surgery and identify the challenges and limitations associated with its adoption. Results The review reveals that while 3DP technology offers the benefits of enhanced stability, improved surgical outcomes, and the feasibility of patient-specific solutions in spinal surgeries, several challenges remain significant impediments to widespread adoption. The obvious expected limitation is the high cost associated with implementing and maintaining a 3DP facility and creating customized patient-specific implants. Technological limitations, including the variability between medical imaging and en vivo surgical anatomy, along with the reproduction of intricate high-fidelity anatomical detail, pose additional challenges. Finally, the lack of comprehensive clinical monitoring, inadequate sample sizes, and high-quality scientific evidence all limit our understanding of the full scope of 3DP's utility in spinal surgery and preclude widespread adoption and implementation. Conclusion Despite the obvious challenges and limitations, ongoing research and development efforts are expected to address these issues, improving the accessibility and efficacy of 3DP technology in spinal surgeries. With further advancements, 3DP technology has the potential to revolutionize spinal surgery by providing personalized implants and precise surgical planning, ultimately improving patient outcomes and surgical efficiency.
Collapse
Affiliation(s)
- Javed Iqbal
- Department of Neurosurgery, King Edward Medical University, Lahore, Pakistan
| | - Zaitoon Zafar
- Department of Biotechnology, University of San Francisco, San Francisco, California, United States
| | - Georgios Skandalakis
- Department of Neurosurgery, University of New Mexico, Albuquerque, New Mexico, United States
| | | | - Shreya Madan
- Department of Neurosurgery, Desert Mountain High School, Scottsdale, Arizona, United States
| | - Syed Faraz Kazim
- Department of Neurosurgery, University of New Mexico Hospital, Albuquerque, New Mexico, United States
| | - Christian A Bowers
- Department of Neurosurgery, University of New Mexico Hospital, Albuquerque, New Mexico, United States
| |
Collapse
|
4
|
Lewandrowski KU, Vira S, Elfar JC, Lorio MP. Advancements in Custom 3D-Printed Titanium Interbody Spinal Fusion Cages and Their Relevance in Personalized Spine Care. J Pers Med 2024; 14:809. [PMID: 39202002 PMCID: PMC11355268 DOI: 10.3390/jpm14080809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
3D-printing technology has revolutionized spinal implant manufacturing, particularly in developing personalized and custom-fit titanium interbody fusion cages. These cages are pivotal in supporting inter-vertebral stability, promoting bone growth, and restoring spinal alignment. This article reviews the latest advancements in 3D-printed titanium interbody fusion cages, emphasizing their relevance in modern personalized surgical spine care protocols applied to common clinical scenarios. Furthermore, the authors review the various printing and post-printing processing technologies and discuss how engineering and design are deployed to tailor each type of implant to its patient-specific clinical application, highlighting how anatomical and biomechanical considerations impact their development and manufacturing processes to achieve optimum osteoinductive and osteoconductive properties. The article further examines the benefits of 3D printing, such as customizable geometry and porosity, that enhance osteointegration and mechanical compatibility, offering a leap forward in patient-specific solutions. The comparative analysis provided by the authors underscores the unique challenges and solutions in designing cervical, and lumbar spine implants, including load-bearing requirements and bioactivity with surrounding bony tissue to promote cell attachment. Additionally, the authors discuss the clinical outcomes associated with these implants, including the implications of improvements in surgical precision on patient outcomes. Lastly, they address strategies to overcome implementation challenges in healthcare facilities, which often resist new technology acquisitions due to perceived cost overruns and preconceived notions that hinder potential savings by providing customized surgical implants with the potential for lower complication and revision rates. This comprehensive review aims to provide insights into how modern 3D-printed titanium interbody fusion cages are made, explain quality standards, and how they may impact personalized surgical spine care.
Collapse
Affiliation(s)
- Kai-Uwe Lewandrowski
- Center for Advanced Spine Care of Southern Arizona, Division Personalized Pain Research and Education, Tucson, AZ 85712, USA
- Department of Orthopaedics, Fundación Universitaria Sanitas Bogotá, Bogotá 111321, Colombia
| | - Shaleen Vira
- Orthopedic and Sports Medicine Institute, Banner-University Tucson Campus, 755 East McDowell Road, Floor 2, Phoenix, AZ 85006, USA;
| | - John C. Elfar
- Department of Orthopaedic Surgery, University of Arizona College of Medicine, Tucson, AZ 85721, USA
| | - Morgan P. Lorio
- Advanced Orthopedics, 499 East Central Parkway, Altamonte Springs, FL 32701, USA;
- Orlando College of Osteopathic Medicine, Orlando, FL 34787, USA
| |
Collapse
|
5
|
Benca E, Eckhart B, Stoegner A, Unger E, Bittner-Frank M, Strassl A, Gahleitner C, Hirtler L, Windhager R, Hobusch GM, Moscato F. Dimensional accuracy and precision and surgeon perception of additively manufactured bone models: effect of manufacturing technology and part orientation. 3D Print Med 2024; 10:5. [PMID: 38376810 PMCID: PMC10877873 DOI: 10.1186/s41205-024-00203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Additively manufactured (AM) anatomical bone models are primarily utilized for training and preoperative planning purposes. As such, they must meet stringent requirements, with dimensional accuracy being of utmost importance. This study aimed to evaluate the precision and accuracy of anatomical bone models manufactured using three different AM technologies: digital light processing (DLP), fused deposition modeling (FDM), and PolyJetting (PJ), built in three different part orientations. Additionally, the study sought to assess surgeons' perceptions of how well these models mimic real bones in simulated osteosynthesis. METHODS Computer-aided design (CAD) models of six human radii were generated from computed tomography (CT) imaging data. Anatomical models were then manufactured using the three aforementioned technologies and in three different part orientations. The surfaces of all models were 3D-scanned and compared with the original CAD models. Furthermore, an anatomical model of a proximal femur including a metastatic lesion was manufactured using the three technologies, followed by (mock) osteosynthesis performed by six surgeons on each type of model. The surgeons' perceptions of the quality and haptic properties of each model were assessed using a questionnaire. RESULTS The mean dimensional deviations from the original CAD model ranged between 0.00 and 0.13 mm with maximal inaccuracies < 1 mm for all models. In surgical simulation, PJ models achieved the highest total score on a 5-point Likert scale ranging from 1 to 5 (with 1 and 5 representing the lowest and highest level of agreement, respectively), (3.74 ± 0.99) in the surgeons' perception assessment, followed by DLP (3.41 ± 0.99) and FDM (2.43 ± 1.02). Notably, FDM was perceived as unsuitable for surgical simulation, as the material melted during drilling and sawing. CONCLUSIONS In conclusion, the choice of technology and part orientation significantly influenced the accuracy and precision of additively manufactured bone models. However, all anatomical models showed satisfying accuracies and precisions, independent of the AM technology or part orientation. The anatomical and functional performance of FDM models was rated by surgeons as poor.
Collapse
Affiliation(s)
- Emir Benca
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria.
| | - Barbara Eckhart
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
| | - Alexander Stoegner
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
| | - Ewald Unger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Martin Bittner-Frank
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Andreas Strassl
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Claudia Gahleitner
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
| | - Lena Hirtler
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Reinhard Windhager
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
| | - Gerhard M Hobusch
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
6
|
Ruiz-Cardozo MA, Trevino G, Pando A, Brehm S, Olufawo M, Barot K, Carey-Ewend A, Yahanda AT, Perdomo-Pantoja A, Jauregui JJ, Cadieux M, Costa M, Coenen J, Dorward I, Anolik RA, Sacks JM, Molina CA. Rapid Implementation of a 3-Dimensional-Printed Patient-Specific Titanium Sacrum Implant for Severe Neuropathic Spinal Arthropathy and Guide to Compassionate US Regulatory Approval. Oper Neurosurg (Hagerstown) 2023; 25:469-477. [PMID: 37584482 DOI: 10.1227/ons.0000000000000872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/31/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Rapid design and production of patient-specific 3-dimensional-printed implants (3DPIs) present a novel opportunity to restore the biomechanically demanding integrity of the lumbopelvic junction. We present a unique case of a 61-year-old patient with severe neuropathic spinal arthropathy (Charcot spine) who initially underwent a T4-to-sacrum spinal fusion. Massive bone destruction led to dissociation of his upper body from his pelvis and legs. Reconstruction of the spinopelvic continuity was planned with the aid of a personalized lumbosacral 3DPI. METHOD Using high-resolution computed tomography scans, the custom 3DPI was made using additive titanium manufacturing. The unique 3DPI consisted of (1) a sacral platform with iliac screws, (2) modular corpectomy device with rigid connection to the sacral platform, and (3) anterior plate connection with screws for proximal fixation. The procedures to obtain compassionate use Food and Drug Administration approval were followed. The patient underwent debridement of a chronically open wound before undertaking the 3-stage reconstructive procedure. The custom 3DPI and additional instrumentation were inserted as part of a salvage rebuilding procedure. RESULTS The chronology of the rapid implementation of the personalized sacral 3DPI from decision, design, manufacturing, Food and Drug Administration approval, and surgical execution lasted 28 days. The prosthesis was positioned in the defect according to the expected anatomic planes and secured using a screw-rod system and a vascularized fibular bone strut graft. The prosthesis provided an ideal repair of the lumbosacral junction and pelvic ring by merging spinal pelvic fixation, posterior pelvic ring fixation, and anterior spinal column fixation. CONCLUSION To the best of our knowledge, this is the first case of a multilevel lumbar, sacral, and sacropelvic neuropathic (Charcot) spine reconstruction using a 3DPI sacral prosthesis. As the prevalence of severe spine deformities continues to increase, adoption of 3DPIs is becoming more relevant to offer personalized treatment for complex deformities.
Collapse
Affiliation(s)
- Miguel A Ruiz-Cardozo
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Gabriel Trevino
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Alejandro Pando
- Department of Neurological Surgery, Rutgers New Jersey Medical School, New Jersey, New Jersey, USA
| | - Samuel Brehm
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Michael Olufawo
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Karma Barot
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Abigail Carey-Ewend
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Alexander T Yahanda
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Alexander Perdomo-Pantoja
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Julio J Jauregui
- Department of Orthopedic Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Magalie Cadieux
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Megan Costa
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Julie Coenen
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Ian Dorward
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Orthopedic Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Rachel A Anolik
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Justin M Sacks
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Camilo A Molina
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Orthopedic Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
7
|
Cao Y, Yang N, Wang S, Wang C, He Q, Wu Q, Zheng Y. The application of 3D-printed auto-stable artificial vertebral body in en bloc resection and reconstruction of thoracolumbar metastases. J Orthop Surg Res 2023; 18:638. [PMID: 37644570 PMCID: PMC10463335 DOI: 10.1186/s13018-023-04135-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Nerve compression symptoms and spinal instability, resulting from spinal metastases, significantly impact the quality of life for patients. A 3D-printed vertebral body is considered an effective approach to reconstruct bone defects following en bloc resection of spinal tumors. The advantage of this method lies in its customized shape and innermost porous structure, which promotes bone ingrowth and leads to reduced postoperative complications. OBJECTIVE The purpose of this study is to assess the effectiveness of 3D-printed auto-stable artificial vertebrae in the en bloc resection and reconstruction of thoracolumbar metastases. METHODS This study included patients who underwent en bloc resection of thoracolumbar metastases based on the Weinstein-Boriani-Biagini surgical staging system, between January 2019 and April 2021. The patients were divided into two groups: the observation group, which was reconstructed using 3D-printed auto-stable vertebral bodies, and the control group, treated with titanium cages and allograft bone. Evaluation criteria for the patients included assessment of implant subsidence, instrumentation-related complications, VAS score, and Frankel grading of spinal cord injury. RESULTS The median follow-up period was 21.8 months (range 12-38 months). Among the patients, 10 received a customized 3D-printed artificial vertebral body, while the remaining 10 received a titanium cage. The observation group showed significantly lower operation time, intraoperative blood loss, and postoperative drainage compared to the control group (P < 0.05). At the final follow-up, the average implant subsidence was 1.8 ± 2.1 mm for the observation group and 5.2 ± 5.1 mm for the control group (P < 0.05). The visual analog scale (VAS) scores were not statistically different between the two groups at preoperative, 24 h, 3 months, and 1 year after the operation (P < 0.05). There were no statistically significant differences in the improvements of spinal cord functions between the two groups. CONCLUSION The utilization of a 3D-printed auto-stable artificial vertebra for reconstruction following en bloc resection of thoracolumbar metastases appears to be a viable and dependable choice. The low occurrence of prosthesis subsidence with 3D-printed prostheses can offer immediate and robust stability.
Collapse
Affiliation(s)
- Yun Cao
- Department of Spine, Sichuan Science City Hospital, Mianyang, Sichuan Province, China.
| | - Nan Yang
- Department of Spine, Sichuan Science City Hospital, Mianyang, Sichuan Province, China
| | - Shengbao Wang
- Department of Spine, Sichuan Science City Hospital, Mianyang, Sichuan Province, China
| | - Cong Wang
- Department of Spine, Sichuan Science City Hospital, Mianyang, Sichuan Province, China
| | - Qiang He
- Department of Spine, Sichuan Science City Hospital, Mianyang, Sichuan Province, China
| | - Qinfan Wu
- Department of Spine, Sichuan Science City Hospital, Mianyang, Sichuan Province, China
| | - Yangyang Zheng
- Department of Spine, Sichuan Science City Hospital, Mianyang, Sichuan Province, China
| |
Collapse
|
8
|
Wu Y, Liu J, Kang L, Tian J, Zhang X, Hu J, Huang Y, Liu F, Wang H, Wu Z. An overview of 3D printed metal implants in orthopedic applications: Present and future perspectives. Heliyon 2023; 9:e17718. [PMID: 37456029 PMCID: PMC10344715 DOI: 10.1016/j.heliyon.2023.e17718] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
With the ability to produce components with complex and precise structures, additive manufacturing or 3D printing techniques are now widely applied in both industry and consumer markets. The emergence of tissue engineering has facilitated the application of 3D printing in the field of biomedical implants. 3D printed implants with proper structural design can not only eliminate the stress shielding effect but also improve in vivo biocompatibility and functionality. By combining medical images derived from technologies such as X-ray scanning, CT, MRI, or ultrasonic scanning, 3D printing can be used to create patient-specific implants with almost the same anatomical structures as the injured tissues. Numerous clinical trials have already been conducted with customized implants. However, the limited availability of raw materials for printing and a lack of guidance from related regulations or laws may impede the development of 3D printing in medical implants. This review provides information on the current state of 3D printing techniques in orthopedic implant applications. The current challenges and future perspectives are also included.
Collapse
Affiliation(s)
- Yuanhao Wu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jieying Liu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lin Kang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jingjing Tian
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xueyi Zhang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jin Hu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yue Huang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fuze Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hai Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhihong Wu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Bone and Joint Disease, Beijing, China
| |
Collapse
|
9
|
Hsieh MK, Tai CL, Li YD, Lee DM, Lin CY, Tsai TT, Lai PL, Chen WP. Finite element analysis of optimized novel additively manufactured non-articulating prostheses for cervical total disc replacement. Front Bioeng Biotechnol 2023; 11:1182265. [PMID: 37324423 PMCID: PMC10267663 DOI: 10.3389/fbioe.2023.1182265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Ball-and-socket designs of cervical total disc replacement (TDR) have been popular in recent years despite the disadvantages of polyethylene wear, heterotrophic ossification, increased facet contact force, and implant subsidence. In this study, a non-articulating, additively manufactured hybrid TDR with an ultra-high molecular weight polyethylene core and polycarbonate urethane (PCU) fiber jacket, was designed to mimic the motion of normal discs. A finite element (FE) study was conducted to optimize the lattice structure and assess the biomechanical performance of this new generation TDR with an intact disc and a commercial ball-and-socket Baguera®C TDR (Spineart SA, Geneva, Switzerland) on an intact C5-6 cervical spinal model. The lattice structure of the PCU fiber was constructed using the Tesseract or the Cross structures from the IntraLattice model in the Rhino software (McNeel North America, Seattle, WA) to create the hybrid I and hybrid II groups, respectively. The circumferential area of the PCU fiber was divided into three regions (anterior, lateral and posterior), and the cellular structures were adjusted. Optimal cellular distributions and structures were A2L5P2 in the hybrid I and A2L7P3 in the hybrid II groups. All but one of the maximum von Mises stresses were within the yield strength of the PCU material. The range of motions, facet joint stress, C6 vertebral superior endplate stress and path of instantaneous center of rotation of the hybrid I and II groups were closer to those of the intact group than those of the Baguera®C group under 100 N follower load and pure moment of 1.5 Nm in four different planar motions. Restoration of normal cervical spinal kinematics and prevention of implant subsidence could be observed from the FE analysis results. Superior stress distribution in the PCU fiber and core in the hybrid II group revealed that the Cross lattice structure of a PCU fiber jacket could be a choice for a next-generation TDR. This promising outcome suggests the feasibility of implanting an additively manufactured multi-material artificial disc that allows for better physiological motion than the current ball-and-socket design.
Collapse
Affiliation(s)
- Ming-Kai Hsieh
- Department of Orthopaedic Surgery, Spine Section, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ching-Lung Tai
- Department of Orthopaedic Surgery, Spine Section, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Yun-Da Li
- Department of Orthopaedic Surgery, Spine Section, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - De-Mei Lee
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Yi Lin
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Spine Section, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Po-Liang Lai
- Department of Orthopaedic Surgery, Spine Section, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Weng-Pin Chen
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
10
|
Lv Z, Li J, Yang Z, Li X, Yang Q, Li Z. A novel three dimensional-printed biomechanically evaluated patient-specific sacral implant in spinopelvic reconstruction after total en bloc sacrectomy. Front Bioeng Biotechnol 2023; 11:1153801. [PMID: 37214294 PMCID: PMC10198465 DOI: 10.3389/fbioe.2023.1153801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Background: Reconstruction after a total sacrectomy is a challenge due to the special anatomical and biomechanical factors. Conventional techniques of spinal-pelvic reconstruction do not reconstruct satisfactorily. We describe a novel three-dimensional-printed patient-specific sacral implant in spinopelvic reconstruction after total en bloc sacrectomy. Methods: We performed a retrospective cohort study including 12 patients with primary malignant sacral tumors, including 5 men and 7 women with a mean age of 58.25 years (range 20-66 years), undergoing total en bloc sacrectomy with 3D printed implant reconstruction from 2016 to 2021. There were 7 cases of chordoma, 3 cases of osteosarcoma, 1 case of chondrosarcoma and 1 case of undifferentiated pleomorphic sarcoma. We use CAD technology to determine surgical resection boundaries, design cutting guides, and individualized prostheses, and perform surgical simulations before surgery. The implant design was biomechanically evaluated by finite element analysis. Operative data, oncological and functional outcomes, complications, and implant osseointegration status of 12 consecutive patients were reviewed. Results: The implants were implanted successfully in 12 cases without death or severe complications during the perioperative period. Resection margins were wide in 11 patients and marginal in one patient. The average blood loss was 3875 mL (range, 2000-5,000 mL). The average surgical time was 520 min (range, 380-735 min). The mean follow-up was 38.5 months. Nine patients were alive with no evidence of disease, two patients died due to pulmonary metastases, and one patient survived with disease due to local recurrence. Overall survival was 83.33% at 24 months. The Mean VAS was 1.5 (range, 0-2). The mean MSTS score was 21 (range, 17-24). Wound complications occurred in 2 cases. A deep infection occurred in one patient and the implant was removed. No implant mechanical failure was identified. Satisfactory osseointegration was found in all patients, with a mean fusion time of 5 months (range 3-6 months). Conclusion: The 3D-printed custom sacral prosthesis has been effective in reconstructing spinal-pelvic stability after total en bloc sacrectomy with satisfactory clinical outcomes, excellent osseointegration, and excellent durability.
Collapse
Affiliation(s)
- Zhaorui Lv
- Qilu Hospital, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jianmin Li
- Qilu Hospital, Shandong University, Jinan, China
| | - Zhiping Yang
- Qilu Hospital, Shandong University, Jinan, China
| | - Xin Li
- Qilu Hospital, Shandong University, Jinan, China
| | - Qiang Yang
- Qilu Hospital, Shandong University, Jinan, China
| | - Zhenfeng Li
- Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
11
|
A novel three-dimensional-printed patient-specific sacral implant for spinopelvic reconstruction in sacral giant cell tumour. INTERNATIONAL ORTHOPAEDICS 2023; 47:1619-1628. [PMID: 36928708 DOI: 10.1007/s00264-023-05759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE Spinopelvic reconstruction after sacral tumour resection is one of the most demanding procedures in sacral tumour surgery. The aims of this study were to evaluate the feasibility of spinopelvic reconstruction with 3D-printed prostheses in sacral giant cell tumours and the clinical outcomes and complications at follow-up. METHODS We retrospectively analyzed ten consecutive patients with giant cell tumors of the sacrum who underwent intralesional nerve-sparing resection with curative intent and custom implant reconstruction between 2016 and 2021. There were four males and six females with a mean age of 40.2 years (range, 25-62 years) at surgery. A computer-aided-design implant was prepared using 3D printing technology that was both matched to the bone defect and biomechanically evaluated. A 3D-printed surgical guide was used to replicate the resection procedure as planned. We analyzed operational outcomes, oncological outcomes, functional outcomes, complications, and prosthetic outcomes. Pain at rest was assessed according to a 10-cm VAS score. The results of functional improvement were evaluated using the MSTS-93 score at the final follow-up. RESULTS All patients were observed for 26 to 61 months, with an average follow-up of 43.8 months. No deep infection or prosthetic structural failure occurred in this study. A total of 80% of patients had good neurological function and normal urinary, bowel, and ambulatory functions. The mean MSTS score was 24.1 (range, 22-26). The mean VAS score was 2 (range 0 to 2). Delayed wound healing occurred in three patients, and the wounds healed after debridement. One case had local recurrence and survived tumour-free after resection of the recurrent lesion. An aseptic loosening was found in a patient that did not require secondary surgery. By radiographical assessments, we found that 90% of implants were well osseointegrated at the final follow-up examination. CONCLUSIONS The 3D-printed sacral implants might provide a promising strategy for spinopelvic reconstruction in sacral giant cell tumours undergoing intralesional nerve-sparing surgery with satisfactory clinical outcomes, osseointegration, and excellent durability.
Collapse
|
12
|
Palmquist A, Jolic M, Hryha E, Shah FA. Complex geometry and integrated macro-porosity: Clinical applications of electron beam melting to fabricate bespoke bone-anchored implants. Acta Biomater 2023; 156:125-145. [PMID: 35675890 DOI: 10.1016/j.actbio.2022.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 01/18/2023]
Abstract
The last decade has witnessed rapid advancements in manufacturing technologies for biomedical implants. Additive manufacturing (or 3D printing) has broken down major barriers in the way of producing complex 3D geometries. Electron beam melting (EBM) is one such 3D printing process applicable to metals and alloys. EBM offers build rates up to two orders of magnitude greater than comparable laser-based technologies and a high vacuum environment to prevent accumulation of trace elements. These features make EBM particularly advantageous for materials susceptible to spontaneous oxidation and nitrogen pick-up when exposed to air (e.g., titanium and titanium-based alloys). For skeletal reconstruction(s), anatomical mimickry and integrated macro-porous architecture to facilitate bone ingrowth are undoubtedly the key features of EBM manufactured implants. Using finite element modelling of physiological loading conditions, the design of a prosthesis may be further personalised. This review looks at the many unique clinical applications of EBM in skeletal repair and the ground-breaking innovations in prosthetic rehabilitation. From a simple acetabular cup to the fifth toe, from the hand-wrist complex to the shoulder, and from vertebral replacement to cranio-maxillofacial reconstruction, EBM has experienced it all. While sternocostal reconstructions might be rare, the repair of long bones using EBM manufactured implants is becoming exceedingly frequent. Despite the various merits, several challenges remain yet untackled. Nevertheless, with the capability to produce osseointegrating implants of any conceivable shape/size, and permissive of bone ingrowth and functional loading, EBM can pave the way for numerous fascinating and novel applications in skeletal repair, regeneration, and rehabilitation. STATEMENT OF SIGNIFICANCE: Electron beam melting (EBM) offers unparalleled possibilities in producing contaminant-free, complex and intricate geometries from alloys of biomedical interest, including Ti6Al4V and CoCr. We review the diverse range of clinical applications of EBM in skeletal repair, both as mass produced off-the-shelf implants and personalised, patient-specific prostheses. From replacing large volumes of disease-affected bone to complex, multi-material reconstructions, almost every part of the human skeleton has been replaced with an EBM manufactured analog to achieve macroscopic anatomical-mimickry. However, various questions regarding long-term performance of patient-specific implants remain unaddressed. Directions for further development include designing personalised implants and prostheses based on simulated loading conditions and accounting for trabecular bone microstructure with respect to physiological factors such as patient's age and disease status.
Collapse
Affiliation(s)
- Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Martina Jolic
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eduard Hryha
- Department of Materials and Manufacturing Technologies, Chalmers University of Technology, Gothenburg, Sweden
| | - Furqan A Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
13
|
Li J, Wang J, Lv J, Bai J, Meng S, Li J, Wu H. The application of additive manufacturing technology in pelvic surgery: A bibliometrics analysis. Front Bioeng Biotechnol 2023; 11:1123459. [PMID: 37091335 PMCID: PMC10117774 DOI: 10.3389/fbioe.2023.1123459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
With the development of material science, additive manufacturing technology has been employed for pelvic surgery, addressing the challenges, such as the complex structure of the pelvis, difficulty in exposing the operative area, and poor visibility, of the traditional pelvic surgery. However, only limited studies have been done to review the research hotspots and trends of the additive manufacturing technology applied for pelvic surgery. In this study, we comprehensively analyzed the literatures related to additive manufacturing technology in pelvic surgery by a bibliometrics analysis and found that additive manufacturing technology is widely used in several aspects of preoperative diagnosis, preoperative planning, intraoperative navigation, and personalized implants for pelvic surgery. Firstly, we searched and screened 856 publications from the Web of Science Core Collection (WoSCC) with TS = (3D printing OR 3D printed OR three-dimensional printing OR additive manufacturing OR rapid prototyping) AND TS = (pelvis OR sacrum OR ilium OR pubis OR ischium OR ischia OR acetabulum OR hip) as the search strategy. Then, 565 of these were eliminated by evaluating the titles and abstracts, leaving 291 pieces of research literature whose relevant information was visually displayed using VOSviewer. Furthermore, 10 publications with high citations were selected by reading all publications extensively for carefully evaluating their Titles, Purposes, Results, Limitations, Journal of affiliation, and Citations. Our results of bibliometric analysis demonstrated that additive manufacturing technology is increasingly applied in pelvic surgery, providing readers with a valuable reference for fully comprehending the research hotspots and trends in the application of additive manufacturing technology in pelvic surgery.
Collapse
Affiliation(s)
- Jian Li
- Department of Orthopaedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jiani Wang
- Department of Paediatric Medicine, Shanxi Medical University, Taiyuan, China
| | - Jia Lv
- Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Junjun Bai
- Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Shichao Meng
- Department of Orthopaedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jinxuan Li
- Department of Orthopaedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Hua Wu
- Department of Orthopaedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hua Wu,
| |
Collapse
|
14
|
Lv Z, Li J, Yang Z, Li X, Yang Q, Li Z. Reconstruction after hemisacrectomy with a novel 3D-printed modular hemisacrum implant in sacral giant cell tumor of the bone. Front Bioeng Biotechnol 2023; 11:1155470. [PMID: 37200847 PMCID: PMC10185765 DOI: 10.3389/fbioe.2023.1155470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023] Open
Abstract
Background: There are a limited but increasing number of case reports and series describing the use of 3D-printed prostheses in bone tumor surgery. Methods: We describe a new approach to performing nerve-preserving hemisacrectomy in patients with sacral giant cell tumors with reconstruction using a novel 3D-printed patient-specific modular prosthesis. The series included four female and two male patients with a mean age of 34 years (range, 28-42 years). Surgical data, imaging assessments, tumor and functional status, implant status, and complications were retrospectively analyzed in six consecutive patients. Results: In all cases, the tumor was removed by sagittal hemisacrectomy, and the prosthesis was successfully implanted. The mean follow-up time was 25 months (range, 15-32 months). All patients in this report achieved successful surgical outcomes and symptomatic relief without significant complications. Clinical and radiological follow-up showed good results in all cases. The mean MSTS score was 27.2 (range, 26-28). The average VAS was 1 (range, 0-2). No structural failures or deep infections were detected in this study at the time of follow-up. All patients had good neurological function. Two cases had superficial wound complications. Bone fusion was good with a mean fusion time of 3.5 months (range, 3-5 months). Conclusion: These cases describe the successful use of custom 3D-printed prostheses for reconstruction after sagittal nerve-sparing hemisacrectomy with excellent clinical outcomes, osseointegration, and durability.
Collapse
Affiliation(s)
- Zhaorui Lv
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jianmin Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhiping Yang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qiang Yang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhenfeng Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- *Correspondence: Zhenfeng Li,
| |
Collapse
|
15
|
Liu P, Gao Q, Lü L, Zhang W, Fan B. [Application and research progress of three-dimentional printed porous titanium alloy after tumor resection]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:1558-1565. [PMID: 36545866 DOI: 10.7507/1002-1892.202207061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective To review the current research and application progress of three-dimentional (3D) printed porous titanium alloy after tumor resection, and provide direction and reference for the follow-up clinical application and basic research of 3D printed porous titanium alloy. Methods The related literature on research and application of 3D printed porous titanium alloy after tumor resection in recent years was reviewed from three aspects: performance of simple 3D printed porous titanium alloy, application analysis of simple 3D printed porous titanium alloy after tumor resection, and research progress of anti-tumor 3D printed porous titanium alloy. Results 3D printing technology can adjust the pore parameters of porous titanium alloy, so that it has the same biomechanical properties as bone. Appropriate pore parameters are conducive to inducing bone growth, promoting the recovery of skeletal system and related functions, and improving the quality of life of patients after operation. Simple 3D printed porous titanium alloy can more accurately match the bone defect after tumor resection through preoperative personalized design, so that it can closely fit the surgical margin after tumor resection, and improve the accuracy and efficiency of the operation. The early and mid-term follow-up results show that its application reduces the postoperative complications such as implant loosening, subsidence, fracture and so on, and enhances the bone stability. The anti-tumor performance of 3D printed porous titanium alloy mainly includes coating and drug-loading treatment of pure 3D printed porous titanium alloy, and some progress has been made in the basic research stage. Conclusion Simple 3D printed porous titanium alloy is suitable for patients with large and complex bone defects after tumor resection, and the anti-tumor effect of 3D printed porous titanium alloy can be achieved through coating and drug delivery.
Collapse
Affiliation(s)
- Peng Liu
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, P. R. China
- Orthopaedic Center, the 940th Hospital of Chinese PLA Joint Logistics Support Force, Lanzhou Gansu, 730000, P. R. China
| | - Qiuming Gao
- Orthopaedic Center, the 940th Hospital of Chinese PLA Joint Logistics Support Force, Lanzhou Gansu, 730000, P. R. China
| | - Lijun Lü
- Orthopaedic Center, the 940th Hospital of Chinese PLA Joint Logistics Support Force, Lanzhou Gansu, 730000, P. R. China
| | - Wenhua Zhang
- Orthopaedic Center, the 940th Hospital of Chinese PLA Joint Logistics Support Force, Lanzhou Gansu, 730000, P. R. China
| | - Bo Fan
- Orthopaedic Center, the 940th Hospital of Chinese PLA Joint Logistics Support Force, Lanzhou Gansu, 730000, P. R. China
| |
Collapse
|
16
|
Costanzo R, Ferini G, Brunasso L, Bonosi L, Porzio M, Benigno UE, Musso S, Gerardi RM, Giammalva GR, Paolini F, Palmisciano P, Umana GE, Sturiale CL, Di Bonaventura R, Iacopino DG, Maugeri R. The Role of 3D-Printed Custom-Made Vertebral Body Implants in the Treatment of Spinal Tumors: A Systematic Review. Life (Basel) 2022; 12:life12040489. [PMID: 35454979 PMCID: PMC9030237 DOI: 10.3390/life12040489] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
In spinal surgery, 3D prothesis represents a useful instrument for spinal reconstruction after the removal of spinal tumors that require an “en bloc” resection. This represents a complex and demanding procedure, aiming to restore spinal length, alignment and weight-bearing capacity and to provide immediate stability. Thus, in this systematic review the authors searched the literature to investigate and discuss the advantages and limitations of using 3D-printed custom-made vertebral bodies in the treatment of spinal tumors. A systematic literature review was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement, with no limits in terms of date of publication. The collected studies were exported to Mendeley. The articles were selected according to the following inclusion criteria: availability of full articles, full articles in English, studies regarding the implant of 3D custom-made prothesis after total or partial vertebral resection, studies regarding patients with a histologically confirmed diagnosis of primary spinal tumor or solitary bone metastasis; studies evaluating the implant of 3d custom-made prothesis in the cervical, thoracic, and lumbar spine. Nineteen published studies were included in this literature review, and include a total of 87 patients, 49 males (56.3%) and 38 females (43.7%). The main tumoral location and primary tumor diagnosis were evaluated. The 3D custom-made prothesis represents a feasible tool after tumor en-bloc resection in spinal reconstruction. This procedure is still evolving, and long-term follow-ups are mandatory to assess its safeness and usefulness.
Collapse
Affiliation(s)
- Roberta Costanzo
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
- Correspondence: ; Tel.: +39-0916554656
| | - Gianluca Ferini
- Department of Radiation Oncology, REM Radioterapia s.r.l., 95125 Catania, Italy;
| | - Lara Brunasso
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Lapo Bonosi
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Massimiliano Porzio
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Umberto Emanuele Benigno
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Sofia Musso
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Rosa Maria Gerardi
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Giuseppe Roberto Giammalva
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Federica Paolini
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Paolo Palmisciano
- Trauma Center, Gamma Knife Center, Department of Neurosurgery, Cannizzaro Hospital, 95100 Catania, Italy; (P.P.); (G.E.U.)
| | - Giuseppe Emmanuele Umana
- Trauma Center, Gamma Knife Center, Department of Neurosurgery, Cannizzaro Hospital, 95100 Catania, Italy; (P.P.); (G.E.U.)
| | - Carmelo Lucio Sturiale
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00100 Rome, Italy; (C.L.S.); (R.D.B.)
| | - Rina Di Bonaventura
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00100 Rome, Italy; (C.L.S.); (R.D.B.)
| | - Domenico Gerardo Iacopino
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Rosario Maugeri
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| |
Collapse
|
17
|
Contemporary Management of Locally Advanced and Recurrent Rectal Cancer: Views from the PelvEx Collaborative. Cancers (Basel) 2022; 14:1161. [PMID: 35267469 PMCID: PMC8909015 DOI: 10.3390/cancers14051161] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Pelvic exenteration is a complex operation performed for locally advanced and recurrent pelvic cancers. The goal of surgery is to achieve clear margins, therefore identifying adjacent or involved organs, bone, muscle, nerves and/or vascular structures that may need resection. While these extensive resections are potentially curative, they can be associated with substantial morbidity. Recently, there has been a move to centralize care to specialized units, as this facilitates better multidisciplinary care input. Advancements in pelvic oncology and surgical innovation have redefined the boundaries of pelvic exenterative surgery. Combined with improved neoadjuvant therapies, advances in diagnostics, and better reconstructive techniques have provided quicker recovery and better quality of life outcomes, with improved survival This article provides highlights of the current management of advanced pelvic cancers in terms of surgical strategy and potential future developments.
Collapse
|
18
|
Abstract
The technique of 3D printing offers a high potential for further optimization of spinal surgery. This new technology has been published for different areas in the field of spinal surgery, e.g. in preoperative planning, intraoperative use as well as to create patient-specific implants. For example, it has been demonstrated that preoperative 3‑dimensional visualization of spinal deformities is helpful in planning procedures. Moreover, insertion of pedicle screws seems to be more accurate when using individualized templates to guide the drill compared to freehand techniques. This review summarizes the current literature dealing with 3D printing in spinal surgery with special consideration of the current applications, the limitations and the future potential.
Collapse
|
19
|
Dang J, Fu J, Liu D, Zhang Z, Mi Z, Cheng D, Liu X, Zhang Y, Zhu D, Wang L, Shi Y, Fan H. Clinical application of 3D-printed patient-specific guide plate combined with computer navigation in acetabular reconstruction following resection of periacetabular tumors. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:76. [PMID: 35282055 PMCID: PMC8848447 DOI: 10.21037/atm-21-7013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/13/2022] [Indexed: 11/24/2022]
Abstract
Background The precise acetabular reconstruction has historically been a challenging procedure. 3D-printed patient-specific guide (PSG) and computer navigation (CN) technologies have been used to assist acetabular component positioning and pelvic reconstruction. This precise reconstruction approach may translate into clinical benefit. Methods The clinical data of 84 patients who underwent periacetabular malignant tumor resection and screw-rod-acetabular cage system reconstruction in our center from January 2013 to December 2020 were retrospectively analyzed. Patients were divided into four groups: free hand (FH) group, PSG group, CN group, and PSG combined with computer navigation (PSG + CN) group. The operation time, intraoperative blood loss, and number of fluoroscopy views were recorded. The oncological prognosis, radiographic measurements of the acetabulum, limb function data, and postoperative complications were compared among groups. And finally, we evaluated the risk factors for mechanical failure of the prosthesis. Results The postoperative X-ray and computed tomography (CT) scan revealed that the vertical offset discrepancy (VOD) between affected side and contralateral side was 8.4±1.9, 5.9±2.2, 4.1±1.3, and 2.4±1.2 mm in each groups; the horizontal offset discrepancy (HOD) was 9.0±1.9, 6.1±2.2, 3.2±1.3, and 2.1±1.2 mm, correspondingly; the abduction angle discrepancy (ABAD) was 8.6°±1.8°, 5.6°±2.0°, 2.5°±1.3°, and 1.8°±0.9°, respectively; the anteversion angle discrepancy (ANAD) was 5.9°±1.6°, 3.6°±1.7°, 2.9°±1.6°, and 1.9°±0.9°, correspondingly. Statistical results show that the PSG + CN group was superior to the FH group and the PSG group in terms of acetabular position and limb function (P<0.05). Body mass index (P=0.040) and resection type (P=0.042) were found to be the high-risk factors for mechanical failure of the prosthesis. Conclusions PSG + CN has potential advantages in improving the accuracy and safety of acetabular positioning and reconstruction.
Collapse
Affiliation(s)
- Jingyi Dang
- Department of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jun Fu
- Department of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dong Liu
- Department of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhao Zhang
- Department of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenzhou Mi
- Department of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Debin Cheng
- Department of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xincheng Liu
- Department of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yushen Zhang
- Department of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dongze Zhu
- Department of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lei Wang
- Department of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yubo Shi
- Department of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongbin Fan
- Department of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
20
|
McGregor M, Patel S, McLachlin S, Vlasea M. Data related to architectural bone parameters and the relationship to Ti lattice design for powder bed fusion additive manufacturing. Data Brief 2021; 39:107633. [PMID: 34917699 PMCID: PMC8646123 DOI: 10.1016/j.dib.2021.107633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022] Open
Abstract
The data included in this article provides additional supporting information on our publication (McGregor et al. [1]) on the review of the natural lattice architecture in human bone and its implication towards titanium (Ti) lattice design for laser powder bed fusion and electron beam powder bed fusion. For this work, X-ray computed tomography was deployed to understand and visualize a Ti-6Al-4V lattice structure manufactured by laser powder bed fusion. This manuscript includes details about the manufacturing of the lattice structure using laser powder bed fusion and computed tomography methods used for analyzing the lattice structure. Additionally, a comprehensive literature review was conducted to understand how lattice parameters are controlled in additively manufactured Ti and Ti-alloy parts aimed at replacing or augmenting human bone. From this literature review, lattice design information was collected and is summarized in tabular form in this manuscript.
Collapse
Affiliation(s)
- Martine McGregor
- University of Waterloo, Department of Mechanical and Mechatronics Engineering, Waterloo, ON N2L 3G1, Canada
| | - Sagar Patel
- University of Waterloo, Department of Mechanical and Mechatronics Engineering, Waterloo, ON N2L 3G1, Canada
| | - Stewart McLachlin
- University of Waterloo, Department of Mechanical and Mechatronics Engineering, Waterloo, ON N2L 3G1, Canada
| | - Mihaela Vlasea
- University of Waterloo, Department of Mechanical and Mechatronics Engineering, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
21
|
Kermavnar T, Shannon A, O'Sullivan KJ, McCarthy C, Dunne CP, O'Sullivan LW. Three-Dimensional Printing of Medical Devices Used Directly to Treat Patients: A Systematic Review. 3D PRINTING AND ADDITIVE MANUFACTURING 2021; 8:366-408. [PMID: 36655011 PMCID: PMC9828627 DOI: 10.1089/3dp.2020.0324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Until recently, three-dimensional (3D) printing/additive manufacturing has not been used extensively to create medical devices intended for actual clinical use, primarily on patient safety and regulatory grounds. However, in recent years there have been advances in materials, printers, and experience, leading to increased clinical use. The aim of this study was to perform a structured systematic review of 3D-printed medical devices used directly in patient treatment. A search of 13 databases was performed to identify studies of 3D-printed medical devices, detailing fabrication technology and materials employed, clinical application, and clinical outcome. One hundred and ten papers describing one hundred and forty medical devices were identified and analyzed. A considerable increase was identified in the use of 3D printing to produce medical devices directly for clinical use in the past 3 years. This is dominated by printing of patient-specific implants and surgical guides for use in orthopedics and orthopedic oncology, but there is a trend of increased use across other clinical specialties. The prevailing material/3D-printing technology used were titanium alloy/electron beam melting for implants, and polyamide/selective laser sintering or polylactic acid/fused deposition modeling for surgical guides and instruments. A detailed analysis across medical applications by technology and materials is provided, as well as a commentary regarding regulatory aspects. In general, there is growing familiarity with, and acceptance of, 3D printing in clinical use.
Collapse
Affiliation(s)
| | - Alice Shannon
- School of Design, University of Limerick, Limerick, Ireland
| | | | - Conor McCarthy
- School of Medicine, University of Limerick, Limerick, Ireland
| | - Colum P. Dunne
- Confirm Smart Manufacturing Centre, University of Limerick, Limerick, Ireland
| | - Leonard W. O'Sullivan
- School of Design, University of Limerick, Limerick, Ireland
- School of Medicine, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
22
|
Cole TS, Graham DT, Wakim AA, Bohl MA, Morgan CD, Catapano JS, Smith KA, Sanai N, Lawton MT. Local 3-Dimensional Printing of a Calvarium-Anchored Ventricular Catheter Occlusion Device. NEUROSURGERY OPEN 2021. [DOI: 10.1093/neuopn/okab024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Triwidodo A, Rahyussalim AJ, Yulisa ND, Pandelaki J, Huraiby LS, Hadi IAN, Liosha FY, Dilogo IH. Sacrum morphometry and spinopelvic parameters among the Indonesian population using computed tomography scans. Medicine (Baltimore) 2021; 100:e27955. [PMID: 34964781 PMCID: PMC8615351 DOI: 10.1097/md.0000000000027955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT This is a cross-sectional study. This study aims to describe the characteristics of sacrum vertebrae and spinopelvic parameters among the Indonesian population and compare them with studies from other populations. This study also intends to determine the sexual dimorphism of sacrum vertebrae and find the correlations between spinopelvic parameters.Morphometry of the sacrum is necessary for designing sacral prosthesis and instrumentations. Knowledge of spinopelvic parameters further supports the prosthesis installation procedure to restore the physiological spinal alignment of the patients. However, previous studies showed varied results among different populations. This is the first study to be conducted among the Indonesian population.Morphometric dimensions of sacrum vertebrae and the spinopelvic parameters (pelvic incidence, pelvic tilt, sacral slope, lumbar lordosis) were analyzed using thin-cut (1 mm) computed tomography images in 150 males and 150 females, aged 25 to 50 years without any spinal pathology.Generally, the size of the sacrum vertebrae was greater in males (P < .05). The sacral index, curvature index, and corporo-basal index were statistically different between genders (P < .001). Lumbar lordosis was the only spinopelvic parameter found significantly greater in females (P < .001). Significant positive correlations between all spinopelvic parameters, except for lumbar lordosis and pelvic tilt, were found in the present study (P < .001).The study serves as the first large series database of sacrum morphometric characteristics and spinopelvic parameters of the Indonesian population. There was significant gender-associated differences in various dimensions of sacrum vertebrae. The sacral index was found to be the most useful parameter for sex determination. There were strong significant positive correlations between various spinopelvic parameters. A comparison of populations revealed morphometric characteristic differences, which is proved to be critical in surgical implications.
Collapse
Affiliation(s)
- Arsanto Triwidodo
- Department of Orthopaedic and Traumatology, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Ahmad Jabir Rahyussalim
- Department of Orthopaedic and Traumatology, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Nyimas Diana Yulisa
- Department of Radiology, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Jacub Pandelaki
- Department of Radiology, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Lina Saleh Huraiby
- Department of Radiology, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | | | - Faza Yuspa Liosha
- Department of Orthopaedic and Traumatology, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Ismail Hadisoebroto Dilogo
- Department of Orthopaedic and Traumatology, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
24
|
Girolami M, Sartori M, Monopoli-Forleo D, Ghermandi R, Tedesco G, Evangelisti G, Pipola V, Pesce E, Falzetti L, Fini M, Gasbarrini A. Histological examination of a retrieved custom-made 3D-printed titanium vertebra : Do the fine details obtained by additive manufacturing really promote osteointegration? EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:2775-2781. [PMID: 34279722 DOI: 10.1007/s00586-021-06926-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 06/19/2021] [Accepted: 07/07/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE In the present report it is described the design, the manufacturing and the successful surgical implant of one of the first 3D custom titanium vertebra realized with Additive Manufacturing technique and its use for the spinal reconstruction after en-bloc resection for primary osteogenic sarcoma. METHODS Clinical case presentation and the design of the 3D custom titanium vertebra was reported. It was also described the complex procedures adopted to evaluate the retrieved device from the histological point of view, as a tumor relapse hit the patient, one year after the reconstruction procedure. RESULTS The histological evaluation confirmed that the resection technique exerts an important role in promoting bone formation: vertebral body osteotomies favored the reconstruction procedure and maximized the contact area between host bone/vertebral prosthesis thus favoring the bone tissue penetration and device colonization. CONCLUSION The sharing of these results is very important as they represent the starting point for improving the knowledge starting from the evidence obtained in a challenging clinical condition and with post-operative treatments that could be never reproduced in preclinical model.
Collapse
Affiliation(s)
- Marco Girolami
- Department of Oncologic and Degenerative Spine Surgery, IRCCS - Istituto Ortopedico Rizzoli, via G.C.Pupilli, 1, 40136, Bologna, Italy
| | - Maria Sartori
- Surgical Sciences and Technologies Complex Structure, IRCCS - Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | | | - Riccardo Ghermandi
- Department of Oncologic and Degenerative Spine Surgery, IRCCS - Istituto Ortopedico Rizzoli, via G.C.Pupilli, 1, 40136, Bologna, Italy
| | - Giuseppe Tedesco
- Department of Oncologic and Degenerative Spine Surgery, IRCCS - Istituto Ortopedico Rizzoli, via G.C.Pupilli, 1, 40136, Bologna, Italy
| | - Gisberto Evangelisti
- Department of Oncologic and Degenerative Spine Surgery, IRCCS - Istituto Ortopedico Rizzoli, via G.C.Pupilli, 1, 40136, Bologna, Italy
| | - Valerio Pipola
- Department of Oncologic and Degenerative Spine Surgery, IRCCS - Istituto Ortopedico Rizzoli, via G.C.Pupilli, 1, 40136, Bologna, Italy
| | - Eleonora Pesce
- Department of Oncologic and Degenerative Spine Surgery, IRCCS - Istituto Ortopedico Rizzoli, via G.C.Pupilli, 1, 40136, Bologna, Italy
| | - Luigi Falzetti
- Department of Oncologic and Degenerative Spine Surgery, IRCCS - Istituto Ortopedico Rizzoli, via G.C.Pupilli, 1, 40136, Bologna, Italy
| | - Milena Fini
- Surgical Sciences and Technologies Complex Structure, IRCCS - Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy
| | - Alessandro Gasbarrini
- Department of Oncologic and Degenerative Spine Surgery, IRCCS - Istituto Ortopedico Rizzoli, via G.C.Pupilli, 1, 40136, Bologna, Italy
| |
Collapse
|
25
|
Fiani B, Newhouse A, Cathel A, Sarhadi K, Soula M. Implications of 3-Dimensional Printed Spinal Implants on the Outcomes in Spine Surgery. J Korean Neurosurg Soc 2021; 64:495-504. [PMID: 34139795 PMCID: PMC8273772 DOI: 10.3340/jkns.2020.0272] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
Three-dimensional printing (3DP) applications possess substantial versatility within surgical applications, such as complex reconstructive surgeries and for the use of surgical resection guides. The capability of constructing an implant from a series of radiographic images to provide personalized anatomical fit is what makes 3D printed implants most appealing to surgeons. Our objective is to describe the process of integration of 3DP implants into the operating room for spinal surgery, summarize the outcomes of using 3DP implants in spinal surgery, and discuss the limitations and safety concerns during pre-operative consideration. 3DP allows for customized, light weight, and geometrically complex functional implants in spinal surgery in cases of decompression, tumor, and fusion. However, there are limitations such as the cost of the technology which is prohibitive to many hospitals. The novelty of this approach implies that the quantity of longitudinal studies is limited and our understanding of how the human body responds long term to these implants is still unclear. Although it has given surgeons the ability to improve outcomes, surgical strategies, and patient recovery, there is a need for prospective studies to follow the safety and efficacy of the usage of 3D printed implants in spine surgery.
Collapse
Affiliation(s)
- Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, CA, USA
| | - Alexander Newhouse
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Alessandra Cathel
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, CA, USA
| | - Kasra Sarhadi
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Marisol Soula
- New York University School of Medicine, New York, NY, USA
| |
Collapse
|
26
|
Comparison in clinical performance of surgical guides for mandibular surgery and temporomandibular joint implants fabricated by additive manufacturing techniques. J Mech Behav Biomed Mater 2021; 119:104512. [PMID: 33930652 DOI: 10.1016/j.jmbbm.2021.104512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/01/2020] [Accepted: 04/07/2021] [Indexed: 01/27/2023]
Abstract
Additive manufacturing (AM) offers great design freedom that enables objects with desired unique and complex geometry and topology to be readily and cost-effectively fabricated. The overall benefits of AM are well known, such as increased material and resource efficiency, enhanced design and production flexibility, the ability to create porous structures and on-demand manufacturing. When AM is applied to medical devices, these benefits are naturally assumed. However, hard clinical evidence collected from clinical trials and studies seems to be lacking and, as a result, systematic assessment is yet difficult. In the present work, we have reviewed 23 studies on the clinical use of AM patient-specific surgical guides (PSGs) for the mandible surgeries (n = 17) and temporomandibular joint (TMJ) patient-specific implants (PSIs) (n = 6) with respect to expected clinical outcomes. It is concluded that the data published on these AM medical devices are often lacking in comprehensive evaluation of clinical outcomes. A complete set of clinical data, including those on time management, costs, clinical outcomes, range of motion, accuracy of the placement with respect to the pre-operative planning, and extra complications, as well as manufacturing data are needed to demonstrate the real benefits gained from applying AM to these medical devices and to satisfy regulatory requirements.
Collapse
|
27
|
Abstract
Rapid prototyping (RP), also known as three-dimensional printing (3DP), allows the rapid conversion of anatomical images into physical components by the use of special printers. This novel technology has also become a promising innovation for spine surgery. As a result of the developments in 3DP technology, production speeds have increased, and costs have decreased. This technological development can be used extensively in different parts of spine surgery such as preoperative planning, surgical simulations, patient-clinician communication, education, intraoperative guidance, and even implantable devices. However, similar to other emerging technologies, the usage of RP in spine surgery has various drawbacks that are needed to be addressed through further studies.
Collapse
Affiliation(s)
- Alpaslan Senkoylu
- Department of Orthopaedics and Traumatology, Gazi University, Besevler, Ankara, Turkey
| | - Ismail Daldal
- Department of Orthopaedics and Traumatology, Lokman Hekim Akay Hospital, Ankara, Turkey
| | - Mehmet Cetinkaya
- Department of Orthopaedics and Traumatology, Memorial Ankara Hospital, Ankara, Turkey
| |
Collapse
|
28
|
Francoisse CA, Sescleifer AM, King WT, Lin AY. Three-dimensional printing in medicine: a systematic review of pediatric applications. Pediatr Res 2021; 89:415-425. [PMID: 32503028 DOI: 10.1038/s41390-020-0991-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Three-dimensional printing (3DP) addresses distinct clinical challenges in pediatric care including: congenital variants, compact anatomy, high procedural risk, and growth over time. We hypothesized that patient-specific applications of 3DP in pediatrics could be categorized into concise, discrete categories of use. METHODS Terms related to "three-dimensional printing" and "pediatrics" were searched on PubMed, Scopus, Ovid MEDLINE, Cochrane CENTRAL, and Web of Science. Initial search yielded 2122 unique articles; 139 articles characterizing 508 patients met full inclusion criteria. RESULTS Four categories of patient-specific 3DP applications were identified: Teaching of families and medical staff (9.3%); Developing intervention strategies (33.9%); Procedural applications, including subtypes: contour models, guides, splints, and implants (43.0%); and Material manufacturing of shaping devices or prosthetics (14.0%). Procedural comparative studies found 3DP devices to be equivalent or better than conventional methods, with less operating time and fewer complications. CONCLUSION Patient-specific applications of Three-Dimensional Printing in Medicine can be elegantly classified into four major categories: Teaching, Developing, Procedures, and Materials, sharing the same TDPM acronym. Understanding this schema is important because it promotes further innovation and increased implementation of these devices to improve pediatric care. IMPACT This article classifies the pediatric applications of patient-specific three-dimensional printing. This is a first comprehensive review of patient-specific three-dimensional printing in both pediatric medical and surgical disciplines, incorporating previously described classification schema to create one unifying paradigm. Understanding these applications is important since three-dimensional printing addresses challenges that are uniquely pediatric including compact anatomy, unique congenital variants, greater procedural risk, and growth over time. We identified four classifications of patient-specific use: teaching, developing, procedural, and material uses. By classifying these applications, this review promotes understanding and incorporation of this expanding technology to improve the pediatric care.
Collapse
Affiliation(s)
- Caitlin A Francoisse
- Division of Plastic Surgery, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Anne M Sescleifer
- Division of Plastic Surgery, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Wilson T King
- Division of Pediatric Cardiology, Saint Louis University School of Medicine, St. Louis, MO, USA.,SSM Health Cardinal Glennon Children's Hospital at SLU, St. Louis, MO, USA
| | - Alexander Y Lin
- Division of Plastic Surgery, Saint Louis University School of Medicine, St. Louis, MO, USA. .,SSM Health Cardinal Glennon Children's Hospital at SLU, St. Louis, MO, USA.
| |
Collapse
|
29
|
Kim KR, Kim KH, Park JY, Shin DA, Ha Y, Kim KN, Chin DK, Kim KS, Cho YE, Kuh SU. Surgical Strategy for Sacral Tumor Resection. Yonsei Med J 2021; 62:59-67. [PMID: 33381935 PMCID: PMC7820448 DOI: 10.3349/ymj.2021.62.1.59] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE This study aimed to present our experiences with a precise surgical strategy for sacrectomy. MATERIALS AND METHODS This study comprised a retrospective review of 16 patients (6 males and 10 females) who underwent sacrectomy from 2011 to 2019. The average age was 42.4 years old, and the mean follow-up period was 40.8 months. Clinical data, including age, sex, history, pathology, radiographs, surgical approaches, onset of recurrence, and prognosis, were analyzed. RESULTS The main preoperative symptom was non-specific local pain. Nine patients (56%) complained of bladder and bowel symptoms. All patients required spinopelvic reconstruction after sacrectomy. Three patients, one high, one middle, and one hemi-sacrectomy, underwent spinopelvic reconstruction. The pathology findings of tumors varied (chordoma, n=7; nerve sheath tumor, n=4; giant cell tumor, n=3, etc.). Adjuvant radiotherapy was performed for 5 patients, chemotherapy for three, and combined chemoradiotherapy for another three. Six patients (38%) reported postoperative motor weakness, and newly postoperative bladder and bowel symptoms occurred in 5 patients. Three patients (12%) experienced recurrence and expired. CONCLUSION In surgical resection of sacral tumors, the surgical approach depends on the size, location, extension, and pathology of the tumors. The recommended treatment option for sacral tumors is to remove as much of the tumor as possible. The level of root sacrifice is a predicting factor for postoperative neurologic functional impairment and the potential for morbidity. Pre-operative angiography and embolization are recommended to prevent excessive bleeding during surgery. Spinopelvic reconstruction must be considered following a total or high sacrectomy or sacroiliac joint removal.
Collapse
Affiliation(s)
- Kwang Ryeol Kim
- Department of Neurosurgery, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, Korea
- Department of Neurosurgery, Spine and Spinal Cord Institute, Gangnam Severance Spine Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Hyun Kim
- Department of Neurosurgery, Spine and Spinal Cord Institute, Gangnam Severance Spine Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Yoon Park
- Department of Neurosurgery, Spine and Spinal Cord Institute, Gangnam Severance Spine Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Ah Shin
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Ha
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Keung Nyun Kim
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Kyu Chin
- Department of Neurosurgery, Spine and Spinal Cord Institute, Gangnam Severance Spine Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Keun Su Kim
- Department of Neurosurgery, Spine and Spinal Cord Institute, Gangnam Severance Spine Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Eun Cho
- Department of Neurosurgery, Spine and Spinal Cord Institute, Gangnam Severance Spine Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Uk Kuh
- Department of Neurosurgery, Spine and Spinal Cord Institute, Gangnam Severance Spine Hospital, Yonsei University College of Medicine, Seoul, Korea
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
30
|
Chen Y, Li W, Zhang C, Wu Z, Liu J. Recent Developments of Biomaterials for Additive Manufacturing of Bone Scaffolds. Adv Healthc Mater 2020; 9:e2000724. [PMID: 32743960 DOI: 10.1002/adhm.202000724] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/09/2020] [Indexed: 12/11/2022]
Abstract
Recent years have witnessed surging demand for bone repair/regeneration implants due to the increasing number of bone defects caused by trauma, cancer, infection, and arthritis worldwide. In addition to bone autografts and allografts, biomaterial substitutes have been widely used in clinical practice. Personalized implants with precise and personalized control of shape, porosity, composition, surface chemistry, and mechanical properties will greatly facilitate the regeneration of bone tissue and satiate the clinical needs. Additive manufacturing (AM) techniques, also known as 3D printing, are drawing fast growing attention in the fabrication of implants or scaffolding materials due to their capability of manufacturing complex and irregularly shaped scaffolds in repairing bone defects in clinical practice. This review aims to provide a comprehensive overview of recent progress in the development of materials and techniques used in the additive manufacturing of bone scaffolds. In addition, clinical application, pre-clinical trials and future prospects of AM based bone implants are also summarized and discussed.
Collapse
Affiliation(s)
- You Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Weilin Li
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Chao Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Zhaoying Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Jie Liu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
31
|
Wallace N, Schaffer NE, Aleem IS, Patel R. 3D-printed Patient-specific Spine Implants: A Systematic Review. Clin Spine Surg 2020; 33:400-407. [PMID: 32554986 DOI: 10.1097/bsd.0000000000001026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
STUDY DESIGN Systematic review. OBJECTIVE To review the current clinical use of 3-dimensional printed (3DP) patient-specific implants in the spine. SUMMARY OF BACKGROUND DATA Additive manufacturing is a transformative manufacturing method now being applied to spinal implants. Recent innovations in technology have allowed the production of medical-grade implants with unprecedented structure and customization, and the complex anatomy of the spine is ideally suited for patient-specific devices. Improvement in implant design through the process of 3DP may lead to improved osseointegration, lower subsidence rates, and faster operative times. METHODS A comprehensive search of the literature was conducted using Ovid MEDLINE, EMBASE, Scopus, and other sources that resulted in 1842 unique articles. All manuscripts describing the use of 3DP spinal implants in humans were included. Two independent reviewers (N.W. and N.E.S.) assessed eligibility for inclusion. The following outcomes were collected: pain score, Japanese Orthopedic Association (JOA) score, subsidence, fusion, Cobb angle, vertebral height, and complications. No conflicts of interest existed. No funding was received for this work. RESULTS A total of 17 studies met inclusion criteria with a total of 35 patients. Only case series and case reports were identified. Follow-up times ranged from 3 to 36 months. Implant types included vertebral body replacement cages, interbody cages, sacral reconstruction prostheses, iliolumbar rods, and a posterior cervical plate. All studies reported improvement in both clinical and radiographic outcomes. 11 of 35 cases showed subsidence >3 mm, but only 1 case required a revision procedure. No migration, loosening, or pseudarthrosis occurred in any patient on the basis of computed tomography or flexion-extension radiographs. CONCLUSIONS Results of the systematic review indicate that 3DP technology is a viable means to fabricate patient-matched spinal implants. The effects on clinical and radiographic outcome measures are still in question, but these devices may produce favorable subsidence and pseudoarthrosis rates. Currently, the technology is ideally suited for complex tumor pathology and atypical bone defects. Future randomized controlled trials and cost analyses are still needed. LEVEL OF EVIDENCE IV-systematic review.
Collapse
Affiliation(s)
- Nicholas Wallace
- Department of Orthopedic Surgery, Division of Spine Surgery, University of Michigan, Ann Arbor, MI
| | | | | | | |
Collapse
|
32
|
Chatain GP, Finn M. Compassionate use of a custom 3D-printed sacral implant for revision of failing sacrectomy: case report. J Neurosurg Spine 2020; 33:513-518. [PMID: 32442976 DOI: 10.3171/2020.3.spine191497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/20/2020] [Indexed: 11/06/2022]
Abstract
Reconstruction of the spinopelvic continuity after sacral resection for primary sacral tumors remains challenging. Complex anatomical and biomechanical factors of this transition zone may be addressed with the advancement of 3D-printed implants. Here, the authors report on a 67-year-old patient with a sacral chordoma who initially underwent total en bloc sacrectomy followed by standard spinopelvic reconstruction. Pseudarthrosis and instrumentation failure of the lumbosacral junction construct subsequently developed. A custom 3D-printed sacral prosthesis was created using high-resolution CT images. Emergency Food and Drug Administration approval was obtained, and the custom device was implanted as a salvage reconstruction surgery. Made of porous titanium mesh, the custom artificial sacrum was placed in the defect based on the anticipated osteotomic planes and was fixed with a screw-rod system along with a fibular bone strut graft. At the 18-month follow-up, the patient was disease free and walking short distances with assistance. CT revealed excellent bony incorporation into the graft.The use of a custom 3D-printed prosthesis in spinal reconstruction has been rarely reported, and its application in sacral reconstruction and long-term outcome are novel. While the implant was believed to be critical in endowing the region with enough biomechanical stability to promote healing, the procedure was difficult and several key learning points were discovered along the way.
Collapse
|
33
|
Leary OP, Crozier J, Liu DD, Niu T, Pertsch NJ, Camara-Quintana JQ, Svokos KA, Syed S, Telfeian AE, Oyelese AA, Woo AS, Gokaslan ZL, Fridley JS. Three-Dimensional Printed Anatomic Modeling for Surgical Planning and Real-Time Operative Guidance in Complex Primary Spinal Column Tumors: Single-Center Experience and Case Series. World Neurosurg 2020; 145:e116-e126. [PMID: 33010507 DOI: 10.1016/j.wneu.2020.09.145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Three-dimensional (3D) printing has emerged as a visualization tool for clinicians and patients. We sought to use patient-specific 3D-printed anatomic modeling for preoperative planning and live intraoperative guidance in a series of complex primary spine tumors. METHODS Over 9 months, patients referred to a single neurosurgical provider for complex primary spinal column tumors were included. Most recent spinal magnetic resonance and computed tomography (CT) imaging were semiautomatically segmented for relevant anatomy and models were printed using polyjet multicolor printing technology. Models were available to surgical teams before and during the operative procedure. Patients also viewed the models preoperatively during surgeon explanation of disease and surgical plan to aid in their understanding. RESULTS Tumor models were prepared for 9 patients, including 4 with chordomas, 2 with schwannomas, 1 with osteosarcoma, 1 with chondrosarcoma, and 1 with Ewing-like sarcoma. Mean age was 50.7 years (range, 15-82 years), including 6 males and 3 females. Mean tumor volume was 129.6 cm3 (range, 3.3-250.0 cm3). Lesions were located at cervical, thoracic, and sacral levels and were treated by various surgical approaches. Models were intraoperatively used as patient-specific anatomic references throughout 7 cases and were found to be technically useful by the surgical teams. CONCLUSIONS We present the largest case series of 3D-printed spine tumor models reported to date. 3D-printed models are broadly useful for operative planning and intraoperative guidance in spinal oncology surgery.
Collapse
Affiliation(s)
- Owen P Leary
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.
| | - Joseph Crozier
- Department of Plastic Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - David D Liu
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Tianyi Niu
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Nathan J Pertsch
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Joaquin Q Camara-Quintana
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Konstantina A Svokos
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Sohail Syed
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Albert E Telfeian
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Adetokunbo A Oyelese
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Albert S Woo
- Department of Plastic Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Ziya L Gokaslan
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Jared S Fridley
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
34
|
Dion C, Yamomo G, Howard J, Teeter M, Willing R, Lanting B. Revision total knee arthroplasty using a novel 3D printed titanium augment: A biomechanical cadaveric study. J Mech Behav Biomed Mater 2020; 110:103944. [DOI: 10.1016/j.jmbbm.2020.103944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 05/27/2020] [Accepted: 06/21/2020] [Indexed: 10/23/2022]
|
35
|
Implementation of the three-dimensional printing technology in treatment of bone tumours: a case series. INTERNATIONAL ORTHOPAEDICS 2020; 45:1079-1085. [PMID: 32901331 DOI: 10.1007/s00264-020-04787-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE With the ability to overcome specific anatomical and pathological challenges, 3D printing technology is setting itself as an important tool in patient-specific orthopaedics, delivering anatomical models, patient-specific instruments, and custom-made implants. One of the most demanding procedures in limb salvage surgery is the reconstruction of bony defects after tumour resection. Even though still limited in clinical practice, early results of the use of 3D technology are gradually revealing its potentially huge impact in bone tumour surgery. Here, we present a case series illustrating our experience with the use of 3D printing technology in the reconstruction of bone defects after tumour resection, and its impact on cosmesis and quality of life. METHODS We performed a retrospective analysis of 11 patients in whom a custom-made 3D-printed prosthesis was used to reconstruct a bone defect after resection for a bone tumour. Ten out of 11 patients were children (aged between 5 and 16 years) with osteosarcoma or Ewing sarcoma of the pelvis (2 children) or the arm (8 children), and one patient was a 67-year-old lady with a chondrosarcoma of the pelvis. All underwent wide resections resulting in considerable bone defects necessitating further reconstruction. RESULTS Custom-made implants were extremely useful both in reconstruction of bone defects and in terms of cosmesis, recovery facilitation, and quality of life. In this respect, pelvic and humeral reconstructions with 3D-printed custom implants particularly showed a great potential. The mean follow-up was 33 months. Four patients died of disease (36%) and overall the major and minor complication rate was 54% (6 out of 11 patients). Three patients had implant dislocation (27% [3/11 cases]), one had leg-compartment syndrome, and one patient reported limited range of motion. Only two out of 11 patients developed local recurrence. CONCLUSION Use of 3D customized implant helped us achieve two major goals in orthopaedic oncology-clear surgical resection and functional recovery with a good quality of life. Large studies with long-term follow-up are needed to reveal the value and future of 3D printing in orthopaedic oncology.
Collapse
|
36
|
Sarkar N, Morton H, Bose S. Effects of vitamin C on osteoblast proliferation and osteosarcoma inhibition using plasma coated hydroxyapatite on titanium implants. SURFACE & COATINGS TECHNOLOGY 2020; 394:125793. [PMID: 32612317 PMCID: PMC7328859 DOI: 10.1016/j.surfcoat.2020.125793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plasma-sprayed hydroxyapatite (HAp) coated titanium (Ti) implants are being extensively used in orthopedic surgeries and post-tumor resection to repair load-bearing segmental bone defects. In this study, vitamin C, an abundantly available natural biomolecule, is loaded onto plasma-sprayed HAp-coated commercially pure titanium (cpTi) surface to evaluate its chemopreventive and osteogenic properties, suggesting its clinical significance as an alternative or adjunct therapy in the treatment for osteosarcoma bone resection. Controlled release of vitamin C from HAp coated cpTi implant is assessed by in vitro drug release study, where Korsmeyer-Peppas model was applied to understand the release kinetics. After 21 days, the implants loaded with 400 and 800 μg of vitamin C showed a cumulative release of 62.7 and 74.1% in acidic microenvironment, whereas, 50.9% and 53.1% of total vitamin C release were observed by the implants loaded with 400 and 800 μg of vitamin C in physiological pH, respectively. To observe the effects of in vitro vitamin C release on osteosarcoma and osteoblast cellular activity, MG-63 (human osteosarcoma) and hFOB (human fetal osteoblast) cells were cultured on the surface of the implant and MTT cell viability assay and FESEM were carried out at 3 and 7 days of culture. Presence of high dosages 25 mM vitamin C shows a statistically significant (p≤0.05) decrease in osteosarcoma cell viability after 3 days, while both 5 mM and 25mM vitamin C reduced cellular viability by 2.5 folds (p≤0.05) compared to the control after 7 days. Interestingly, the presence of vitamin C showed no obvious signs of cytotoxicity towards osteoblast cell-line at day 3 and day 7, as confirmed by the MTT assay. Additionally, the FESEM images depict layers of hFOB cellular morphology on the surface of the implants, suggesting excellent cytocompatibility towards the osteoblast cells. These results suggest that vitamin C loaded HAp coated cpTi implant with improved osteogenic and chemopreventive properties can be considered as a promising reconstructive option to repair the post-tumor resection defects in osteosarcoma.
Collapse
|
37
|
Tong Y, Kaplan DJ, Spivak JM, Bendo JA. Three-dimensional printing in spine surgery: a review of current applications. Spine J 2020; 20:833-846. [PMID: 31731009 DOI: 10.1016/j.spinee.2019.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 02/03/2023]
Abstract
In recent years, the use of three-dimensional printing (3DP) technology has gained traction in orthopedic spine surgery. Although research on this topic is still primarily limited to case reports and small cohort studies, it is evident that there are many avenues for 3DP innovation in the field. This review article aims to discuss the current and emerging 3DP applications in spine surgery, as well as the challenges of 3DP production and limitations in its use. 3DP models have been presented as helpful tools for patient education, medical training, and presurgical planning. Intraoperatively, 3DP devices may serve as patient-specific surgical guides and implants that improve surgical outcomes. However, the time, cost, and learning curve associated with constructing a 3DP model are major barriers to widespread use in spine surgery. Considering the costs and benefits of 3DP along with the varying risks associated with different spine procedures, 3DP technology is likely most valuable for complex or atypical spine disorder cases. Further research is warranted to gain a better understanding of how 3DP can and will impact spine surgery.
Collapse
Affiliation(s)
- Yixuan Tong
- New York University Grossman School of Medicine, 550 1st Ave, New York, NY 10016, USA
| | - Daniel James Kaplan
- Spine Division, New York University Langone Orthopedic Hospital, 301 E 17th St, New York, NY 10010, USA
| | - Jeffrey M Spivak
- Spine Division, New York University Langone Orthopedic Hospital, 301 E 17th St, New York, NY 10010, USA
| | - John A Bendo
- Spine Division, New York University Langone Orthopedic Hospital, 301 E 17th St, New York, NY 10010, USA.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Biologic bone graft materials continue to be an important component of various spinal fusion procedures. Given the known risks and morbidity of harvesting iliac crest bone graft, the historical gold standard for spinal fusion, these biologic materials serve the purpose of improving both the efficacy and safety of spinal fusion procedures. Recent advances in biomedical and materials sciences have enabled the design of many novel materials that have shown promise as effective bone graft materials. This review will discuss current research pertaining to several of these materials, including functionalized peptide amphiphiles and other nanocomposites, novel demineralized bone matrix applications, 3D-printed materials, and Hyperelastic Bone®, among others. RECENT FINDINGS Recent investigation has demonstrated that novel technologies, including nanotechnology and 3D printing, can be used to produce biomaterials with significant osteogenic potential. Notably, peptide amphiphile nanomaterials functionalized to bind BMP-2 have demonstrated significant bone regenerative capacity in a pre-clinical rodent posterolateral lumbar fusion (PLF) model. Additionally, 3D-printed Hyperelastic Bone® has demonstrated promising bone regenerative capacity in several in vivo animal models. Composite materials such as TrioMatrix® (demineralized bone matrix, hydroxyapatite, and nanofiber-based collagen scaffold) have also demonstrated significant osteogenic potential in both in vitro and in vivo settings. Advances in materials science and engineering have allowed for the design and implementation of several novel biologic materials, including nanocomposites, 3D-printed materials, and various biologic composites. These materials provide significant bone regenerative capacity and have the potential to be alternatives to other bone graft materials, such as autograft and BMP-2, which have known complications.
Collapse
Affiliation(s)
- Mark A Plantz
- Department of Orthopaedic Surgery, Northwestern University - Feinberg School of Medicine, 676 N. St. Clair St. #1350, Chicago, IL, 60611, USA
| | - Wellington K Hsu
- Department of Orthopaedic Surgery, Northwestern University - Feinberg School of Medicine, 676 N. St. Clair St. #1350, Chicago, IL, 60611, USA
| |
Collapse
|
39
|
Yang HS, Park JY. 3D Printer Application for Endoscope-Assisted Spine Surgery Instrument Development: From Prototype Instruments to Patient-Specific 3D Models. Yonsei Med J 2020; 61:94-99. [PMID: 31887805 PMCID: PMC6938781 DOI: 10.3349/ymj.2020.61.1.94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/21/2019] [Accepted: 11/21/2019] [Indexed: 01/17/2023] Open
Abstract
Developing new surgical instruments is challenging. While making surgical instruments could be a good field of application for 3D printers, attempts to do so have proven limited. We designed a new endoscope-assisted spine surgery system, and using a 3D printer, attempted to create a complex surgical instrument and to evaluate the feasibility thereof. Developing the new surgical instruments using a 3D printer consisted of two parts: one part was the creation of a prototype instrument, and the other was the production of a patient model. We designed a new endoscope-assisted spine surgery system with a cannula for the endoscope and working instruments and extra cannula that could be easily added. Using custom-made patient-specific 3D models, we conducted discectomies for paramedian and foraminal discs with both the newly designed spine surgery system and conventional tubular surgery. The new spine surgery system had an extra portal that can be well bonded in by a magnetic connector and greatly expanded the range of access for instruments without unnecessary bone destruction. In foraminal discectomy, the newly designed spine surgery system showed less facet resection, compared to conventional surgery. We were able to develop and demonstrate the usefulness of a new endoscope-assisted spine surgery system relying on 3D printing technology. Using the extra portal, the usability of endoscope-assisted surgery could be greatly increased. We suggest that 3D printing technology can be very useful for the realization and evaluation of complex surgical instrument systems.
Collapse
Affiliation(s)
- Hee Seok Yang
- Department of Neurosurgery, Seoul Barunsesang Hospital, Seoul, Korea
| | - Jeong Yoon Park
- Department of Neurosurgery, Spine and Spinal Cord Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
40
|
Wake N, Alexander AE, Christensen AM, Liacouras PC, Schickel M, Pietila T, Matsumoto J. Creating patient-specific anatomical models for 3D printing and AR/VR: a supplement for the 2018 Radiological Society of North America (RSNA) hands-on course. 3D Print Med 2019; 5:17. [PMID: 31889235 PMCID: PMC6937827 DOI: 10.1186/s41205-019-0054-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/13/2019] [Indexed: 01/09/2023] Open
Abstract
Advanced visualization of medical image data in the form of three-dimensional (3D) printing continues to expand in clinical settings and many hospitals have started to adapt 3D technologies to aid in patient care. It is imperative that radiologists and other medical professionals understand the multi-step process of converting medical imaging data to digital files. To educate health care professionals about the steps required to prepare DICOM data for 3D printing anatomical models, hands-on courses have been delivered at the Radiological Society of North America (RSNA) annual meeting since 2014. In this paper, a supplement to the RSNA 2018 hands-on 3D printing course, we review methods to create cranio-maxillofacial (CMF), orthopedic, and renal cancer models which can be 3D printed or visualized in augmented reality (AR) or virtual reality (VR).
Collapse
Affiliation(s)
- Nicole Wake
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467 USA
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, NYU School of Medicine, New York, NY USA
| | | | | | - Peter C. Liacouras
- 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, MD USA
| | | | | | | |
Collapse
|
41
|
Lv ZR, Li ZF, Yang ZP, Li X, Yang Q, Li K, Li J. One-Step Reconstruction with a Novel Suspended, Modular, and 3D-Printed Total Sacral Implant Resection of Sacral Giant Cell Tumor with Preservation of Bilateral S 1-3 Nerve Roots via a Posterior-Only Approach. Orthop Surg 2019; 12:58-66. [PMID: 31854115 PMCID: PMC7031587 DOI: 10.1111/os.12582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Objective To investigate the efficacy and safety of spinopelvic reconstruction based on a novel suspended, modular, and 3D‐printed total sacral implant after total piecemeal resection of a sacral giant cell tumor (SGCT) with the preservation of bilateral S1–3 nerve roots via a posterior‐only approach. Methods Five patients who had undergone total piecemeal resection of SGCT involving upper sacral segments (S1 and S2) and the midline with the preservation of bilateral S1–3 nerve roots via a posterior‐only approach between September 2017 and July 2018 were retrospectively reviewed. A novel suspended, modular, and 3D‐printed total sacral implant had been used for reconstruction. This series included two female and three male patients, with a mean age of 42.2 years (range, 31–53 years). Surgical time, blood loss, complications, preoperative and postoperative neurological function, instrumentation failure, and local control were presented and analyzed. Results All patients underwent the operation without death or serious complications. The implant was installed on the defect, connecting the ilium and lumbar vertebrae, and fixed with a screw–rod system up to the level of L3–4 or L4–5. The mean operative time was 502 min (range, 360–640 min) and the mean operative blood loss 4400 mL (range, 3000–7000 mL). The mean follow‐up was 15 months. After the operation, pain was significantly relieved, and the patients resumed walking as early as 2 weeks later. The patients showed no neurogenic bladder dysfunction and no fecal incontinence or gait disturbance. Wound healing was poor in one patient. Patients recovered well without evidence of local recurrence. No implant failures or related clinical symptoms were detected during follow up. Satisfactory bone ingrowth and osseointegration at the bone‐implant junctions was found in follow‐up CT. Conclusion Although technically challenging, it is feasible and safe to use a suspended, modular, and 3D‐printed implant for reconstruction after total piecemeal resection with the preservation of bilateral S1–3 nerve roots in patients with SGCT. We believe that this implant can be applied to sacral reconstruction in a wide variety of diseases.
Collapse
Affiliation(s)
- Zhao-Rui Lv
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhen-Feng Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Zhi-Ping Yang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Qiang Yang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Ka Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Jianmin Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
42
|
Parr WCH, Burnard JL, Singh T, McEvoy A, Walsh WR, Mobbs RJ. C3-C5 Chordoma Resection and Reconstruction with a Three-Dimensional Printed Titanium Patient-Specific Implant. World Neurosurg 2019; 136:226-233. [PMID: 31811966 DOI: 10.1016/j.wneu.2019.11.167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 01/25/2023]
Abstract
BACKGROUND With this case report, we aim to add to the clinical literature on the use of three-dimensional printed patient-specific implants in spinal surgery, show the current state of the art in patient-specific implant device design, present thorough clinical and radiographic outcomes, and discuss the suitability of titanium alloy as an implant material for patients with cancer. CASE DESCRIPTION A 45-year-old man presented with neck and left arm pain combined with shoulder weakness. Imaging revealed significant destruction of the C3-C5 vertebrae, and chordoma diagnosis was confirmed by biopsy. Gross total tumor resection including multilevel corpectomy was performed in combination with reconstruction using a three-dimensional printed titanium custom implant. Custom-designed features aimed to reduce reconstruction time and result in good clinical and radiographic outcomes. Clinical scores improved postoperatively and remained improved at 17-month postoperative follow-up: visual analog scale score 10/10 preoperatively improved to 2-6/10 at 17 months; Neck Disability Index 46% preoperatively improved to 32% at 17 months. Neither dysphagia nor dysphonia remained after surgical soft tissue swelling subsided. The patient was successfully treated with proton beam therapy after surgery, with no tumor recurrence at 17-month follow-up. Radiographic assessment showed incomplete fusion at 3 months, with clinically insignificant implant subsidence (2.7 mm) and no implant migration or failure at 14 months. CONCLUSIONS Computer-aided preoperative planning with three-dimensional printed biomodels and custom implant resulted in relatively quick and simple reconstruction after tumor resection, with good clinical and radiographic outcomes at 17 and 14 months, respectively. For patients with primary tumors who may require follow-up radiotherapy or postoperative magnetic resonance imaging, metals used in the devices cause significant imaging artifact.
Collapse
Affiliation(s)
- William C H Parr
- Faculty of Medicine, University of New South Wales, Sydney, Australia; Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia; NeuroSpine Surgery Research Group, Sydney, Australia; 3DMorphic Pty Ltd., Sydney, Australia.
| | - Joshua L Burnard
- Faculty of Medicine, University of New South Wales, Sydney, Australia; Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia; NeuroSpine Surgery Research Group, Sydney, Australia
| | - Telvinderjit Singh
- Faculty of Medicine, University of New South Wales, Sydney, Australia; Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia; NeuroSpine Surgery Research Group, Sydney, Australia
| | - Aidan McEvoy
- Matrix Medical Innovations Pty Ltd., Sydney, Australia
| | - William R Walsh
- Faculty of Medicine, University of New South Wales, Sydney, Australia; Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Ralph J Mobbs
- Faculty of Medicine, University of New South Wales, Sydney, Australia; Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia; NeuroSpine Surgery Research Group, Sydney, Australia; Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| |
Collapse
|
43
|
3D-printed spine surgery implants: a systematic review of the efficacy and clinical safety profile of patient-specific and off-the-shelf devices. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 29:1248-1260. [DOI: 10.1007/s00586-019-06236-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/05/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
|
44
|
Maharubin S, Hu Y, Sooriyaarachchi D, Cong W, Tan GZ. Laser engineered net shaping of antimicrobial and biocompatible titanium-silver alloys. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110059. [DOI: 10.1016/j.msec.2019.110059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 02/08/2023]
|
45
|
Warburton A, Girdler SJ, Mikhail CM, Ahn A, Cho SK. Biomaterials in Spinal Implants: A Review. Neurospine 2019; 17:101-110. [PMID: 31694360 PMCID: PMC7136103 DOI: 10.14245/ns.1938296.148] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/27/2019] [Indexed: 01/26/2023] Open
Abstract
The aim to find the perfect biomaterial for spinal implant has been the focus of spinal research since the 1800s. Spinal surgery and the devices used therein have undergone a constant evolution in order to meet the needs of surgeons who have continued to further understand the biomechanical principles of spinal stability and have improved as new technologies and materials are available for production use. The perfect biomaterial would be one that is biologically inert/compatible, has a Young’s modulus similar to that of the bone where it is implanted, high tensile strength, stiffness, fatigue strength, and low artifacts on imaging. Today, the materials that have been most commonly used include stainless steel, titanium, cobalt chrome, nitinol (a nickel titanium alloy), tantalum, and polyetheretherketone in rods, screws, cages, and plates. Current advancements such as 3-dimensional printing, the ProDisc-L and ProDisc-C, the ApiFix, and the Mobi-C which all aim to improve range of motion, reduce pain, and improve patient satisfaction. Spine surgeons should remain vigilant regarding the current literature and technological advancements in spinal materials and procedures. The progression of spinal implant materials for cages, rods, screws, and plates with advantages and disadvantages for each material will be discussed.
Collapse
Affiliation(s)
| | | | | | - Amy Ahn
- Mount Sinai Health System, New York, NY, USA
| | | |
Collapse
|
46
|
Chua AW, Chua MJ, Kam PC, Broekhuis D, Karunaratne S, Stalley PD. Anaesthetic challenges for pelvic reconstruction with custom three-dimensional-printed titanium implants: A retrospective cohort study. Anaesth Intensive Care 2019; 47:368-377. [PMID: 31430173 DOI: 10.1177/0310057x19864599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Custom 3D printed titanium implant pelvic reconstructive surgery was implemented as a novel technique at our institutions in the last five years. It provided an option for pelvic bone malignancy patients who were previously deemed unsuitable for re-implantation of irradiated resected bone segments, as well as in revision total hip arthroplasty associated with excessive acetabular bone loss. A retrospective cohort study of the anaesthetic management of patients who underwent pelvic reconstructive surgery using custom 3D printed titanium implants from August 2013 to July 2018 was conducted. Twenty-seven patients were included in the study; 23 patients completed single-stage procedures with a mean (standard deviation) duration of surgery of 7.5 (3.3) hours (median 6.8, range 3.0–15.8 hours), and mean intraoperative blood loss of 5400 (3100) mL (median 6000, range 1400–10,000 mL). Surgery involving the sacrum ( n = 7) was associated with longer intensive care stay, longer total length of hospital stay and, in three cases, unplanned two-stage procedures. The twenty procedures not involving the sacrum were successfully completed in a single stage. The major anaesthetic challenges included massive blood loss, prolonged surgery, interventions to prevent calf compartment syndrome, and perioperative thromboembolism. Preoperative pelvic radiotherapy, malignant tumours, and procedures involving the sacrum were associated with massive intraoperative blood loss and more prolonged surgery.
Collapse
Affiliation(s)
- Alfred Wy Chua
- Department of Anaesthetics, Royal Prince Alfred Hospital, Camperdown, Australia
| | | | - Peter Ca Kam
- Department of Anaesthetics, Royal Prince Alfred Hospital, Camperdown, Australia.,University of Sydney, Sydney, Australia
| | | | - Sascha Karunaratne
- Surgical Outcomes Research Centre, Sydney Local Health District, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Paul D Stalley
- Department of Orthopaedic Surgery, Royal Prince Alfred Hospital, Camperdown, Australia
| |
Collapse
|
47
|
What is the optimal protocol to decontaminate a dropped custom polyethylene component? Knee 2019; 26:444-450. [PMID: 30711216 DOI: 10.1016/j.knee.2019.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/30/2018] [Accepted: 01/08/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND With advancements in manufacturing technology, custom orthopedic implants have become commercially available. A new concern with these implants is what to do when custom heat-sensitive components are contaminated. While intraoperative decontamination protocols for dropped autograft tissue have been described, no literature describes an intraoperative protocol for decontaminating one-of-a-kind polyethylene implants. The purpose of this work is to describe and evaluate polyethylene decontamination protocols using materials found in the average operating suite that could be used intraoperatively. METHODS Sixteen custom polyethylene inserts were contaminated with potting soil and processed in one of four protocols: 1) hydrogen peroxide, 2) chlorhexidine gluconate, 3) povidone-iodine, or 4) control. Following processing, the implants were cultured with swabs or sonication. Each implant was evaluated with one aerobic, one anaerobic, and one fungal culture. RESULTS All cultures from implants processed with both the chlorhexidine and povidone-iodine protocols were negative. One colony of Ralstonia species was isolated on the aerobic culture from one of the implants processed with hydrogen peroxide. The remainder of the cultures from implants processed with the hydrogen peroxide protocol were negative. All of the cultures for each culture modality from all of the control implants were positive with florid proliferation. CONCLUSION In the rare situation that a custom polyethylene insert becomes contaminated intraoperatively, the surgeon should consider all salvage options. Chlorhexidine and povidone-iodine decontamination protocols eliminated bacterial growth following culture swabs or sonicate taken from the contaminated polyethylene inserts while hydrogen peroxide failed in one case to completely eradicate growth.
Collapse
|
48
|
Vertebral Reconstruction with Customized 3-Dimensional-Printed Spine Implant Replacing Large Vertebral Defect with 3-Year Follow-up. World Neurosurg 2019; 126:90-95. [PMID: 30797911 DOI: 10.1016/j.wneu.2019.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 02/12/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Destruction of the spine is a huge complication of infectious spondylitis and surgical intervention is required. However, vertebral defect is a major problem after surgical intervention and numerous methods have been researched to solve this problem. There are known methods that use variously designed, patient-customized 3-dimensional (3D)-printed implants in various medical fields. The use of 3D-printed implants has also been attempted in treating defects in the spine. We present a case of failure of expandable titanium cage fusion after infection, treated using a 3D-printed implant. CASE DESCRIPTION The patient had undergone reconstruction surgery with expandable titanium cage due to infectious spondylitis and needed reoperation owing to recurrence of infections and failure of bone fusion. The problem we faced in this operation was a large vertebral defect, for which we used a 3D-printed implant. After 3 years of follow-up, the implant and bone fusion were intact and infection or mechanical complications were not seen. CONCLUSIONS A 3D-printed implant could be an acceptable and alternative treatment option for replacing a large vertebral defect.
Collapse
|
49
|
Combined Application of Modified Three-Dimensional Printed Anatomic Templates and Customized Cutting Blocks in Pelvic Reconstruction After Pelvic Tumor Resection. J Arthroplasty 2019; 34:338-345.e1. [PMID: 30497901 DOI: 10.1016/j.arth.2018.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/20/2018] [Accepted: 10/02/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Common three-dimensional (3D)-printed anatomic templates have generally been used to reconstruct the pelvis after zone II and III borderline pelvic tumor resection. However, gradual increases in postoperative implant complications and the tumor recurrence rate have been observed. This study aimed to introduce the innovative application of a modified 3D-printed anatomic template with a customized cutting block for pelvic reconstruction and to comparatively analyze the common and modified 3D-printed anatomic templates. METHODS A total of 38 patients were included in this study and were allocated to 2 groups (19 patients/group). Group A received innovative therapy, and Group B received traditional therapy. All patients were questioned in detail about age, location, and duration of the mass and associated symptoms, and routine blood tests, such as serological tests, were administered. RESULTS We found that the modified 3D-printed anatomic template with a customized cutting block resulted in a shorter operating time, smaller bleeding loss, and simpler operation than the common 3D-printed anatomic template. Additionally, the tumor recurrence rate was lower and the accuracy of tumor resection was much greater for the modified 3D-printed anatomic template with a customized cutting block. However, compared with the traditional therapy, the innovative therapy had a significantly higher rate of implant loosening. CONCLUSION The innovative therapy can increase surgical safety and reduce recurrence after tumor resection relative to the traditional therapy. Additionally, the innovative therapy reconstructs the pelvis of zone III to improve the quality of patient life. However, the innovative therapy with implant loosening should be improved.
Collapse
|
50
|
Abstract
Implants are being continuously developed to achieve personalized therapy. With the advent of 3-dimensional (3D) printing, it is becoming possible to produce customized precisely fitting implants that can be derived from 3D images fed into 3D printers. In addition, it is possible to combine various materials, such as ceramics, to render these constructs osteoconductive or growth factors to make them osteoinductive. Constructs can be seeded with cells to engineer bone tissue. Alternatively, it is possible to load cells into the biomaterial to form so called bioink and print them together to from 3D bioprinted constructs that are characterized by having more homogenous cell distribution in their matrix. To date, 3D printing was applied in the clinic mostly for surgical training and for planning of surgery, with limited use in producing 3D implants for clinical application. Few examples exist so far, which include mostly the 3D printed implants applied in maxillofacial surgery and in orthopedic surgery, which are discussed in this report. Wider clinical application of 3D printing will help the adoption of 3D printers as essential tools in the clinics in future and thus, contribute to realization of personalized medicine.
Collapse
|