1
|
Robinson NJ, García-Párraga D, Stacy BA, Costidis AM, Blanco GS, Clyde-Brockway CE, Haas HL, Harms CA, Patel SH, Stacy NI, Fahlman A. A Baseline Model For Estimating the Risk of Gas Embolism in Sea Turtles During Routine Dives. Front Physiol 2021; 12:678555. [PMID: 34539425 PMCID: PMC8440993 DOI: 10.3389/fphys.2021.678555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Sea turtles, like other air-breathing diving vertebrates, commonly experience significant gas embolism (GE) when incidentally caught at depth in fishing gear and brought to the surface. To better understand why sea turtles develop GE, we built a mathematical model to estimate partial pressures of N2 (PN2), O2 (PO2), and CO2 (PCO2) in the major body-compartments of diving loggerheads (Caretta caretta), leatherbacks (Dermochelys coriacea), and green turtles (Chelonia mydas). This model was adapted from a published model for estimating gas dynamics in marine mammals and penguins. To parameterize the sea turtle model, we used values gleaned from previously published literature and 22 necropsies. Next, we applied this model to data collected from free-roaming individuals of the three study species. Finally, we varied body-condition and cardiac output within the model to see how these factors affected the risk of GE. Our model suggests that cardiac output likely plays a significant role in the modulation of GE, especially in the deeper diving leatherback turtles. This baseline model also indicates that even during routine diving behavior, sea turtles are at high risk of GE. This likely means that turtles have additional behavioral, anatomical, and/or physiologic adaptions that serve to reduce the probability of GE but were not incorporated in this model. Identifying these adaptations and incorporating them into future iterations of this model will further reveal the factors driving GE in sea turtles.
Collapse
Affiliation(s)
- Nathan J. Robinson
- Department of Research, Fundación Oceanogràfic de la Comunidad Valenciana, Valencia, Spain
| | - Daniel García-Párraga
- Department of Research, Fundación Oceanogràfic de la Comunidad Valenciana, Valencia, Spain
| | - Brian A. Stacy
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Protected Resources, University of Florida (duty station), Washington, DC, United States
| | | | - Gabriela S. Blanco
- Instituto de Biología de Organismos Marinos (IBIOMAR-CCT CONICET-CENPAT), Puerto Madryn, Argentina
| | | | - Heather L. Haas
- Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Woods Hole, MA, United States
| | - Craig A. Harms
- Department of Clinical Sciences and Center for Marine Sciences and Technology, North Carolina State University, Raleigh, NC, United States
| | - Samir H. Patel
- Coonamessett Farm Foundation, East Falmouth, MA, United States
| | - Nicole I. Stacy
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Andreas Fahlman
- Department of Research, Fundación Oceanogràfic de la Comunidad Valenciana, Valencia, Spain
- Global Diving Research, Inc., Ottawa, ON, Canada
| |
Collapse
|
2
|
Cook PF, Hoard VA, Dolui S, Frederick BD, Redfern R, Dennison SE, Halaska B, Bloom J, Kruse-Elliott KT, Whitmer ER, Trumbull EJ, Berns GS, Detre JA, D'Esposito M, Gulland FMD, Reichmuth C, Johnson SP, Field CL, Inglis BA. An MRI protocol for anatomical and functional evaluation of the California sea lion brain. J Neurosci Methods 2021; 353:109097. [PMID: 33581216 DOI: 10.1016/j.jneumeth.2021.109097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Domoic acid (DOM) is a neurotoxin produced by some harmful algae blooms in coastal waters. California sea lions (Zalophus californianus) exposed to DOM often strand on beaches where they exhibit a variety of symptoms, including seizures. These animals typically show hippocampal atrophy on MRI scans. NEW METHOD We describe an MRI protocol for comprehensive evaluation of DOM toxicosis in the sea lion brain. We intend to study brain development in pups exposed in utero. The protocol depicts the hippocampal formation as the primary region of interest. We include scans for quantitative morphometry, functional and structural connectivity, and a cerebral blood flow map. RESULTS High-resolution 3D anatomical scans facilitate post hoc slicing in arbitrary planes and accurate morphometry. We demonstrate the first cerebral blood flow map using MRI, and the first structural tractography from a live sea lion brain. COMPARISON WITH EXISTING METHODS Scans were compared to prior anatomical and functional studies in live sea lions, and structural connectivity in post mortem specimens. Hippocampal volumes were broadly in line with prior studies, with differences likely attributable to the 3D approach used here. Functional connectivity of the dorsal left hippocampus matched that found in a prior study conducted at a lower magnetic field, while structural connectivity in the live brain agreed with findings observed in post mortem studies. CONCLUSIONS Our protocol provides a comprehensive, longitudinal view of the functional and anatomical changes expected to result from DOM toxicosis. It can also screen for other common neurological pathologies and is suitable for any pinniped that can fit inside an MRI scanner.
Collapse
Affiliation(s)
- Peter F Cook
- Department of Biopsychology, New College of Florida, 5800 Bay Shore Road, Sarasota, FL, 34243, USA
| | - Vanessa A Hoard
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA, 94965, USA
| | - Sudipto Dolui
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Blaise deB Frederick
- Department of Psychiatry, Harvard University Medical School, 25 Shattuck St, Boston, MA, 02115, USA; McLean Hospital Brain Imaging Center, 115 Mill St., Belmont, MA, 02478, USA
| | - Richard Redfern
- Henry H. Wheeler, Jr. Brain Imaging Center, 188 Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, CA, 94720, USA
| | | | - Barbie Halaska
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA, 94965, USA
| | - Josh Bloom
- AnimalScan Advanced Veterinary Imaging, 934 Charter St, Redwood City, CA, 94063, USA
| | - Kris T Kruse-Elliott
- AnimalScan Advanced Veterinary Imaging, 934 Charter St, Redwood City, CA, 94063, USA
| | - Emily R Whitmer
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA, 94965, USA
| | - Emily J Trumbull
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA, 94965, USA
| | - Gregory S Berns
- Psychology Department, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| | - John A Detre
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA, 19104, USA; Department of Neurology, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Mark D'Esposito
- Henry H. Wheeler, Jr. Brain Imaging Center, 188 Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, CA, 94720, USA; Helen Wills Neuroscience Institute, University of California, 132 Barker Hall, Berkeley, CA, 94720, USA
| | - Frances M D Gulland
- School of Veterinary Medicine Wildlife Health Center, University of California at Davis, 1089 Veterinary Medicine Dr, Davis, CA, 95616, USA
| | - Colleen Reichmuth
- Long Marine Laboratory, Institute of Marine Sciences, University of California at Santa Cruz, 115 McAllister Way, Santa Cruz, CA, 95060, USA
| | - Shawn P Johnson
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA, 94965, USA
| | - Cara L Field
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA, 94965, USA
| | - Ben A Inglis
- Henry H. Wheeler, Jr. Brain Imaging Center, 188 Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
3
|
Thompson LA, Hindle AG, Black SR, Romano TA. Variation in the hemostatic complement (C5a) responses to in vitro nitrogen bubbles in monodontids and phocids. J Comp Physiol B 2020; 190:811-822. [PMID: 32815023 DOI: 10.1007/s00360-020-01297-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 11/26/2022]
Abstract
Immune responses to nitrogen gas bubbles, particularly activation of inflammation via the complement cascade, have been linked to the development of symptoms and damage associated with decompression sickness (DCS) in humans. Marine mammals were long thought not to be susceptible to such dive-related injury, yet evidence of DCS-like injury and new models of tissue nitrogen super-saturation suggest that bubbles may routinely form. As such, it is possible that marine mammals have protective adaptations that allow them to deal with a certain level of bubble formation during normal dives, without acute adverse effects. This work evaluated the complement response, indicative of inflammation, to in vitro nitrogen bubble exposures in several marine mammal species to assess whether a less-responsive immune system serves a protective role against DCS-like injury in these animals. Serum samples from beluga (Delphinapterus leucas), and harbor seals (Phoca vitulina) (relatively shallow divers) and deep diving narwhal (Monodon monoceros), and Weddell seals (Leptonychotes weddellii) were exposed to nitrogen bubbles in vitro. Complement activity was evaluated by measuring changes in the terminal protein C5a in serum, and results suggest marine mammal complement is less sensitive to gas bubbles than human complement, but the response varies between species. Species-specific differences may be related to dive ability, and suggest moderate or shallow divers may be more susceptible to DCS-like injury. This information is an important consideration in assessing the impact of changing dive behaviors in response to anthropogenic stressors, startle responses, or changing environmental conditions that affect prey depth distributions.
Collapse
Affiliation(s)
- Laura A Thompson
- Mystic Aquarium, a Division of SeaResearch Inc., Mystic, CT, 06355, USA.
| | | | | | - Tracy A Romano
- Mystic Aquarium, a Division of SeaResearch Inc., Mystic, CT, 06355, USA
| |
Collapse
|
4
|
Simeone C, Fauquier D, Skidmore J, Cook P, Colegrove K, Gulland F, Dennison S, Rowles TK. Clinical signs and mortality of non-released stranded California sea lions housed in display facilities: the suspected role of prior exposure to algal toxins. Vet Rec 2019; 185:304. [PMID: 31427410 PMCID: PMC6817987 DOI: 10.1136/vr.105371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/28/2019] [Accepted: 07/09/2019] [Indexed: 01/19/2023]
Abstract
Stranded California sea lions considered unable to survive in the wild are often placed in public display facilities. Exposure to the biotoxin domoic acid (DA) is a common cause of stranding, and chronic effects are observed long after initial exposure. Medical records for 171 sea lions placed in US institutions between 2000 and 2016 were reviewed, including results from clinical examinations, histopathology, behavioural testing and advanced imaging. There was a statistically significant increase in neurological disease detected in neonates (24%) compared with other age classes (11%). Sixty per cent of all neurological cases died during the study period. In the 11 neurological neonate cases, six died (55%) and five are still alive with three of five developing epilepsy during placement. Of the six neurological neonate cases that died, one was attributed to DA toxicosis, one to seizures and four to acute unexplained neurological disease. This survey suggests delayed neurological disease can develop in sea lions after stranding as neonates. These data coupled with stranding records and epidemiological data on DA-producing algal blooms suggest further research into effects of neonatal exposure to DA on risk of neurological disease in later life is warranted. California sea lions offer a natural model of DA exposure to study such effects.
Collapse
Affiliation(s)
- Claire Simeone
- The Marine Mammal Center, Sausalito, California, USA .,Office of Protected Resources, National Marine Fisheries Service, Silver Spring, Maryland, USA
| | - Deborah Fauquier
- Office of Protected Resources, National Marine Fisheries Service, Silver Spring, Maryland, USA
| | - Jennifer Skidmore
- Office of Protected Resources, National Marine Fisheries Service, Silver Spring, Maryland, USA
| | - Peter Cook
- New College of Florida, Sarasota, Florida, USA
| | - Kathleen Colegrove
- Zoological Pathology Program, University of Illinois at Urbana-Champaign College of Veterinary Medicine, Urbana, Illinois, USA
| | - Frances Gulland
- The Marine Mammal Center, Sausalito, California, USA.,Wildlife Health Center, University of California-Davis, Davis, California, USA
| | | | - Teresa K Rowles
- Office of Protected Resources, National Marine Fisheries Service, Silver Spring, Maryland, USA
| |
Collapse
|
5
|
Cook PF, Reichmuth C, Rouse A, Dennison S, Van Bonn B, Gulland F. Natural exposure to domoic acid causes behavioral perseveration in Wild Sea lions: Neural underpinnings and diagnostic application. Neurotoxicol Teratol 2016; 57:95-105. [DOI: 10.1016/j.ntt.2016.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 01/27/2023]
|
6
|
Updating a gas dynamics model using estimates for California sea lions (Zalophus californianus). Respir Physiol Neurobiol 2016; 234:1-8. [PMID: 27562522 DOI: 10.1016/j.resp.2016.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 07/24/2016] [Accepted: 08/21/2016] [Indexed: 11/22/2022]
Abstract
Theoretical models are used to predict how breath-hold diving vertebrates manage O2, CO2, and N2 while underwater. One recent gas dynamics model used available lung and tracheal compliance data from various species. As variation in respiratory compliance significantly affects alveolar compression and pulmonary shunt, the current study objective was to evaluate changes in model output when using species-specific parameters from California sea lions (Zalophus californianus). We explored the effects of lung and dead space compliance on the uptake of N2, O2, and CO2 in various tissues during a series of hypothetical dives. The updated parameters allowed for increased compliance of the lungs and an increased stiffness in the trachea. When comparing updated model output with a model using previous compliance values, there was a large decrease in N2 uptake but little change in O2 and CO2 levels. Therefore, previous models may overestimate N2 tensions and the risk of gas-related disease, such as decompression sickness (DCS), in marine mammals.
Collapse
|
7
|
Lonati GL, Westgate AJ, Pabst DA, Koopman HN. Nitrogen solubility in odontocete blubber and mandibular fats in relation to lipid composition. J Exp Biol 2015; 218:2620-30. [DOI: 10.1242/jeb.122606] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Understanding toothed whale (odontocete) diving gas dynamics is important given the recent atypical mass strandings of odontocetes (particularly beaked whales) associated with mid-frequency naval sonar. Some stranded whales have exhibited gas emboli (pathologies resembling decompression sickness) in their specialized intramandibular and extramandibular fat bodies used for echolocation and hearing. These tissues have phylogenetically unique, endogenous lipid profiles with poorly understood biochemical properties. Current diving gas dynamics models assume an Ostwald nitrogen (N2) solubility of 0.07 ml N2 ml−1 oil in odontocete fats, although solubility in blubber from many odontocetes exceeds this value. The present study examined N2 solubility in the blubber and mandibular fats of seven species across five families, relating it to lipid composition. Across all species, N2 solubility increased with wax ester content and was generally higher in mandibular fats (0.083±0.002 ml N2 ml−1 oil) than in blubber (0.069±0.007 ml N2 ml−1 oil). This effect was more pronounced in mandibular fats with higher concentrations of shorter, branched fatty acids/alcohols. Mandibular fats of short-finned pilot whales, Atlantic spotted dolphins and Mesoplodon beaked whales had the highest N2 solubility values (0.097±0.005, 0.081±0.007 and 0.080±0.003 ml N2 ml−1 oil, respectively). Pilot and beaked whales may experience high N2 loads during their relatively deeper dives, although more information is needed about in vivo blood circulation to mandibular fats. Future diving models should incorporate empirically measured N2 solubility of odontocete mandibular fats to better understand N2 dynamics and potential pathologies from gas/fat embolism.
Collapse
Affiliation(s)
- Gina L. Lonati
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA
| | - Andrew J. Westgate
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA
| | - D. Ann Pabst
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA
| | - Heather N. Koopman
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA
| |
Collapse
|
8
|
Van Bonn W, Dennison S, Cook P, Fahlman A. Gas Bubble Disease in the Brain of a Living California Sea Lion (Zalophus californianus). Front Physiol 2013; 4:5. [PMID: 23372553 PMCID: PMC3557455 DOI: 10.3389/fphys.2013.00005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/08/2013] [Indexed: 12/03/2022] Open
Abstract
A yearling California sea lion (Zalophus californianus) was admitted into rehabilitation with signs of cerebellar pathology. Diagnostic imaging that included radiography and magnetic resonance imaging (MRI) demonstrated space-occupying lesions predominantly in the cerebellum that were filled partially by CSF-like fluid and partially by gas, and cerebral lesions that were fluid filled. Over a maximum period of 4 months, the brain lesions reduced in size and the gas resorbed and was replaced by CSF-like fluid. In humans, the cerebellum is known to be essential for automating practiced movement patterns (e.g., learning to touch-type), also known as procedural learning or the consolidation of “motor memory.” To test the animal in this study for motor memory deficits, an alternation task in a two-choice maze was utilized. The sea lion performed poorly similar to another case of pneumocerebellum previously reported, and contrary to data acquired from a group of sea lions with specific hippocampal injury. The learning deficits were attributed to the cerebellar injury. These data provide important insight both to the clinical presentation and behavioral observations of cerebellar injury in sea lions, as well as providing an initial model for long-term outcome following cerebellar injury. The specific etiology of the gas could not be determined. The live status of the patient with recovery suggests that the most likely etiologies for the gas are either de novo formation or air emboli secondary to trauma. A small air gun pellet was present within and was removed from soft tissues adjacent to the tympanic bulla. While no evidence to support the pellet striking bone was found, altered dive pattern associated with this human interaction may have provided the opportunity for gas bubble formation to occur. The similarity in distribution of the gas bubble related lesions in this case compared with another previously published case of pneumocerebellum suggests that preferential perfusion of the brain, and more specifically the cerebellum, may occur during diving events.
Collapse
Affiliation(s)
- William Van Bonn
- Veterinary Science Department, The Marine Mammal Center Sausalito, CA, USA
| | | | | | | |
Collapse
|
9
|
Dennison S, Fahlman A, Moore M. The use of Diagnostic Imaging for Identifying Abnormal Gas Accumulations in Cetaceans and Pinnipeds. Front Physiol 2012; 3:181. [PMID: 22685439 PMCID: PMC3368393 DOI: 10.3389/fphys.2012.00181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/17/2012] [Indexed: 11/23/2022] Open
Abstract
Recent dogma suggested that marine mammals are not at risk of decompression sickness due to a number of evolutionary adaptations. Several proposed adaptations exist. Lung compression and alveolar collapse that terminate gas-exchange before a depth is reached where supersaturation is significant and bradycardia with peripheral vasoconstriction affecting the distribution, and dynamics of blood and tissue nitrogen levels. Published accounts of gas and fat emboli and dysbaric osteonecrosis in marine mammals and theoretical modeling have challenged this view-point, suggesting that decompression-like symptoms may occur under certain circumstances, contrary to common belief. Diagnostic imaging modalities are invaluable tools for the non-invasive examination of animals for evidence of gas and have been used to demonstrate the presence of incidental decompression-related renal gas accumulations in some stranded cetaceans. Diagnostic imaging has also contributed to the recognition of clinically significant gas accumulations in live and dead cetaceans and pinnipeds. Understanding the appropriate application and limitations of the available imaging modalities is important for accurate interpretation of results. The presence of gas may be asymptomatic and must be interpreted cautiously alongside all other available data including clinical examination, clinical laboratory testing, gas analysis, necropsy examination, and histology results.
Collapse
|
10
|
Hooker SK, Fahlman A, Moore MJ, de Soto NA, de Quirós YB, Brubakk AO, Costa DP, Costidis AM, Dennison S, Falke KJ, Fernandez A, Ferrigno M, Fitz-Clarke JR, Garner MM, Houser DS, Jepson PD, Ketten DR, Kvadsheim PH, Madsen PT, Pollock NW, Rotstein DS, Rowles TK, Simmons SE, Van Bonn W, Weathersby PK, Weise MJ, Williams TM, Tyack PL. Deadly diving? Physiological and behavioural management of decompression stress in diving mammals. Proc Biol Sci 2012; 279:1041-50. [PMID: 22189402 PMCID: PMC3267154 DOI: 10.1098/rspb.2011.2088] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 11/28/2011] [Indexed: 11/19/2022] Open
Abstract
Decompression sickness (DCS; 'the bends') is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N(2)) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N(2) tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N(2) loading to management of the N(2) load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years.
Collapse
Affiliation(s)
- S K Hooker
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, Fife, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|