1
|
Palti Y, Vallejo RL, Purcell MK, Gao G, Shewbridge KL, Long RL, Setzke C, Fragomeni BO, Cheng H, Martin KE, Naish KA. Genome-wide association analysis of the resistance to infectious hematopoietic necrosis virus in two rainbow trout aquaculture lines confirms oligogenic architecture with several moderate effect quantitative trait loci. Front Genet 2024; 15:1394656. [PMID: 38854430 PMCID: PMC11162110 DOI: 10.3389/fgene.2024.1394656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/30/2024] [Indexed: 06/11/2024] Open
Abstract
Infectious hematopoietic necrosis (IHN) is a disease of salmonid fish that is caused by the IHN virus (IHNV), which can cause substantial mortality and economic losses in rainbow trout aquaculture and fisheries enhancement hatchery programs. In a previous study on a commercial rainbow trout breeding line that has undergone selection, we found that genetic resistance to IHNV is controlled by the oligogenic inheritance of several moderate and many small effect quantitative trait loci (QTL). Here we used genome wide association analyses in two different commercial aquaculture lines that were naïve to previous exposure to IHNV to determine whether QTL were shared across lines, and to investigate whether there were major effect loci that were still segregating in the naïve lines. A total of 1,859 and 1,768 offspring from two commercial aquaculture strains were phenotyped for resistance to IHNV and genotyped with the rainbow trout Axiom 57K SNP array. Moderate heritability values (0.15-0.25) were estimated. Two statistical methods were used for genome wide association analyses in the two populations. No major QTL were detected despite the naïve status of the two lines. Further, our analyses confirmed an oligogenic architecture for genetic resistance to IHNV in rainbow trout. Overall, 17 QTL with notable effect (≥1.9% of the additive genetic variance) were detected in at least one of the two rainbow trout lines with at least one of the two statistical methods. Five of those QTL were mapped to overlapping or adjacent chromosomal regions in both lines, suggesting that some loci may be shared across commercial lines. Although some of the loci detected in this GWAS merit further investigation to better understand the biological basis of IHNV disease resistance across populations, the overall genetic architecture of IHNV resistance in the two rainbow trout lines suggests that genomic selection may be a more effective strategy for genetic improvement in this trait.
Collapse
Affiliation(s)
- Yniv Palti
- National Center for Cool and Cold Water Aquaculture, USDA-ARS, Kearneysville, WV, United States
| | - Roger L. Vallejo
- National Center for Cool and Cold Water Aquaculture, USDA-ARS, Kearneysville, WV, United States
| | - Maureen K. Purcell
- US Geological Survey, Western Fisheries Research Center, Seattle, WA, United States
| | - Guangtu Gao
- National Center for Cool and Cold Water Aquaculture, USDA-ARS, Kearneysville, WV, United States
| | - Kristy L. Shewbridge
- National Center for Cool and Cold Water Aquaculture, USDA-ARS, Kearneysville, WV, United States
| | - Roseanna L. Long
- National Center for Cool and Cold Water Aquaculture, USDA-ARS, Kearneysville, WV, United States
| | - Christopher Setzke
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
| | - Breno O. Fragomeni
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - Hao Cheng
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | | | - Kerry A. Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
2
|
Zhao JZ, Xu LM, Li LF, Ren GM, Shao YZ, Liu Q, Lu TY. Traditional Chinese medicine bufalin inhibits infectious hematopoietic necrosis virus infection in vitro and in vivo. Microbiol Spectr 2024; 12:e0501622. [PMID: 38289115 PMCID: PMC10913368 DOI: 10.1128/spectrum.05016-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 11/23/2023] [Indexed: 03/06/2024] Open
Abstract
Infectious hematopoietic necrosis virus (IHNV) causes infectious hematopoietic necrosis and severe economic losses to salmon and trout aquaculture worldwide. Currently, the only commercial vaccine against IHNV is a DNA vaccine with some biosafety concerns. Hence, more effective vaccines and antiviral drugs are needed to prevent IHNV infection. In this study, 1,483 compounds were screened from a traditional Chinese medicine monomer library, and bufalin showed potential antiviral activity against IHNV. The 50% cytotoxic concentration of bufalin was >20 µM, and the 50% inhibitory concentration was 0.1223 µΜ against IHNV. Bufalin showed the inhibition of diverse IHNV strains in vitro, which confirmed that it had an inhibitory effect against all IHNV strains, rather than random activity against a single strain. The bufalin-mediated block of IHNV infection occurred at the viral attachment and RNA replication stages, but not internalization. Bufalin also inhibited IHNV infection in vivo and significantly increased the survival of rainbow trout compared with the mock drug-treated group, and this was confirmed by in vivo viral load monitoring. Our data showed that the anti-IHNV activity of bufalin was proportional to extracellular Na+ concentration and inversely proportional to extracellular K+ concentration, and bufalin may inhibit IHNV infection by targeting Na+/K+-ATPase. The in vitro and in vivo studies showed that bufalin significantly inhibited IHNV infection and may be a promising candidate drug against the disease in rainbow trout. IMPORTANCE Infectious hematopoietic necrosis virus (IHNV) is the pathogen of infectious hematopoietic necrosis (IHN) which outbreak often causes huge economic losses and hampers the healthy development of salmon and trout farming. Currently, there is only one approved DNA vaccine for IHN worldwide, but it faces some biosafety problems. Hence, more effective vaccines and antiviral drugs are needed to prevent IHNV infection. In this study, we report that bufalin, a traditional Chinese medicine, shows potential antiviral activity against IHNV both in vitro and in vivo. The bufalin-mediated block of IHNV infection occurred at the viral attachment and RNA replication stages, but not internalization, and bufalin inhibited IHNV infection by targeting Na+/K+-ATPase. The in vitro and in vivo studies showed that bufalin significantly inhibited IHNV infection and may be a promising candidate drug against the disease in rainbow trout.
Collapse
Affiliation(s)
- Jing-Zhuang Zhao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Harbin, China
| | - Li-Ming Xu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Lin-Fang Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Guang-Ming Ren
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Yi-Zhi Shao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Qi Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Tong-Yan Lu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
3
|
Wu D, Wang J, Zhang Y, Wang Q, Liu Q, Shao S. Characterization and pathogenicity analysis of a newly isolated strain of infectious hematopoietic necrosis virus. Microb Pathog 2023; 185:106443. [PMID: 37949305 DOI: 10.1016/j.micpath.2023.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/25/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Rainbow trout is one of the fastest-growing aquaculture species and infectious hematopoietic necrosis virus (IHNV) is endemic throughout almost all rainbow trout farms in China nowadays. In this study, IHNV GS21 was identified as the causative pathogen, which resulted in massive mortality of rainbow trout occurring in northwest China. GS21 isolate was propagated in Chinook salmon embryonic cell line (CHSE-214) and induced apparent cytopathic effects (CPE) at 3 days post-infection (dpi). Phylogenetic analysis revealed that GS21 isolate was clustered with other reported Chinese isolates within the J genogroup. Moreover, the complete cDNA sequence of GS21 isolate was obtained and it possesses more than 98 % of ANI values and 89 % of DDH values with other Chinese IHNV isolates. The detailed sequence analysis of G gene revealed the distinct amino acid substitutions of G230, G252, G270, and I277 in GS21 isolate. Furthermore, the artificially infected rainbow trout exhibited similar clinical disease symptoms as natural infection did. The cumulative mortality infected by GS21 isolate of 104 PFU/mL reached 93 % at approximately 13.5 °C. Additionally, viral loads in tissues increased first and declined then as well as the expression of immune-associated genes. Collectively, our results characterized a novel IHNV GS21 isolate that can lead to massive mortality in juvenile rainbow trout and provided a basis to define the pathogenic characteristics and evolutionary relationship of IHNV and host immune response against IHNV infection.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 200237, China
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 200237, China.
| |
Collapse
|
4
|
Comparative Genomic Analysis of Virulent Vibrio (Listonella) anguillarum Serotypes Revealed Genetic Diversity and Genomic Signatures in the O-Antigen Biosynthesis Gene Cluster. Microorganisms 2023; 11:microorganisms11030792. [PMID: 36985365 PMCID: PMC10059132 DOI: 10.3390/microorganisms11030792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Vibrio anguillarum is the most frequent pathogen affecting fish worldwide. The only known virulent strains of V. anguillarum are serotypes O1, O2, and O3. Genetic differences between the serotypes that could shed insight on the evolution and serotype differences of this marine pathogen are unknown. Here, we fully sequenced and characterized a strain of V. anguillarum O1 (J382) isolated from winter steelhead trout (Oncorhynchus mykiss irideus) in British Columbia, Canada. Koch’s postulates using the O1 strain were replicated in naïve lumpfish (Cyclopterus lumpus) and compared to O2. Phenotypic and genotypic comparisons were conducted for serotypes O1, O2, and O3, using biochemical tests and bioinformatic tools, respectively. The genome of V. anguillarum O1 (J382) contains two chromosomes (3.13 Mb and 1.03 Mb) and two typical pJM1-like plasmids (65,573 and 76,959 bp). Furthermore, V. anguillarum O1 (J382) displayed resistance to colistin sulphate, which differs from serotype O2 and could be attributed to the presence of the ugd gene. Comparative genomic analysis, among the serotypes, showed that intra-species evolution is driven by insertion sequences, bacteriophages, and a different repertoire of putative ncRNAs. Genetic heterogeneity in the O-antigen biosynthesis gene cluster is characterized by the absence or the presence of unique genes, which could result in differences in the immune evasion mechanisms employed by the respective serotypes. This study contributes to understanding the genetic differences among V. anguillarum serovars and their evolution.
Collapse
|
5
|
Genetics Reveal Long-Distance Virus Transmission Links in Pacific Salmon. Animals (Basel) 2022; 12:ani12162120. [PMID: 36009710 PMCID: PMC9405316 DOI: 10.3390/ani12162120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/25/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary The transmission of viruses between host populations is essential for viruses to persist on the landscape. Therefore, the identification of specific transmission links can provide insights into how a virus moves from source to recipient (sink) populations, allowing for the development of strategies to interrupt transmission routes and control viral disease. For the fish pathogen infectious hematopoietic necrosis virus (IHNV), this study identifies three transmission links associated with the emergence of IHNV in coastal Washington steelhead trout populations between 2007 and 2011. The links were identified by the genetic typing of virus isolates obtained from coastal fish and potential source fish from the Columbia River Basin. Three exact genotype matches were found, indicating at least three introductions of virus from Columbia fish to coastal fish during years of the emergence event. Likely sources were juvenile fish in the Columbia region experiencing disease, and the first detected recipient populations in all cases were adult fish returning to coastal hatcheries. Variation in timing and distance for these three transmission links will provide Pacific Northwest fish health managers with a better understanding of IHNV transmission routes from Columbia region fish to coastal steelhead trout. Abstract In the coastal region of Washington State, a major pathogen emergence event occurred between 2007 and 2011 in which steelhead trout (Oncorhynchus mykiss) experienced a high incidence of infection and disease outbreaks due to the rhabdovirus infectious hematopoietic necrosis virus (IHNV). Genetic typing showed that the introduced viruses were in the steelhead-specific MD subgroup of IHNV and indicated the most likely source was a virus from the nearby Columbia River Basin. In the current study, full-length viral glycoprotein (G) gene sequences were determined for 55 IHNV isolates from both coastal and Columbia fish populations to identify specific source populations and infer mechanisms of transmission to coastal steelhead. We identified three transmission links based on exact fullG genotype matches between Columbia and coastal fish. In all cases, the likely source population was infected juvenile fish, and sink populations were adult fish returning to coastal rivers to spawn. The time intervals between detection in source and sink populations varied from 6 months to nearly 4 years, suggesting different transmission pathways. Surprisingly, distances between source and sink populations varied between 140 and 1000 km. These results confirm repeated introductions of virus from Columbia River Basin fish as the cause of emergence of MD virus on the Washington coast from 2007 to 2011.
Collapse
|
6
|
Batts WN, Capps TR, Crosson LM, Powers RL, Breyta R, Purcell MK. Rapid Diagnostic Test to Detect and Discriminate Infectious Hematopoietic Necrosis Virus (IHNV) Genogroups U and M to Aid Management of Pacific Northwest Salmonid Populations. Animals (Basel) 2022; 12:ani12141761. [PMID: 35883308 PMCID: PMC9311590 DOI: 10.3390/ani12141761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Infectious hematopoietic necrosis virus (IHNV) is an acute pathogen of salmonids in North America, Europe, and Asia that is phylogenetically classified into five major virus genogroups (U, M, L, E, and J). The geographic range of the U and M genogroup isolates overlap in the North American Columbia River Basin and Washington Coast region, where these genogroups pose different risks depending on the species of Pacific salmon (Oncorhynchus spp.). For certain management decisions, there is a need to both test for IHNV presence and rapidly determine the genogroup. Herein, we report the development and validation of a U/M multiplex reverse transcription, real-time PCR (RT-rPCR) assay targeting the IHNV nucleocapsid (N) protein gene. The new U/M RT-rPCR is a rapid, sensitive, and repeatable assay capable of specifically discriminating between North American U and M genogroup IHNV isolates. However, one M genogroup isolate obtained from commercially cultured Idaho rainbow trout (O. mykiss) showed reduced sensitivity with the RT-rPCR test, suggesting caution may be warranted before applying RT-rPCR as the sole surveillance test in areas associated with the Idaho trout industry. The new U/M assay had high diagnostic sensitivity (DSe > 94%) and specificity (DSp > 97%) in free-ranging adult Pacific salmon, when assessed relative to cell culture, the widely accepted reference standard, as well as the previously validated universal N RT-rPCR test. The high diagnostic performance of the new U/M assay indicates the test is suitable for surveillance, diagnosis, and confirmation of IHNV in Pacific salmon from the Pacific Northwest regions where the U and M genogroups overlap.
Collapse
Affiliation(s)
- William N. Batts
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA; (W.N.B.); (R.L.P.)
| | - Tony R. Capps
- Washington Department of Fish and Wildlife, Olympia, WA 98501, USA; (T.R.C.); (L.M.C.)
| | - Lisa M. Crosson
- Washington Department of Fish and Wildlife, Olympia, WA 98501, USA; (T.R.C.); (L.M.C.)
| | - Rachel L. Powers
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA; (W.N.B.); (R.L.P.)
| | - Rachel Breyta
- School of Aquatic and Fisheries Sciences, University of Washington, Seattle, WA 98195, USA;
| | - Maureen K. Purcell
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA; (W.N.B.); (R.L.P.)
- Correspondence:
| |
Collapse
|
7
|
Emmenegger EJ, Bueren EK, Jia P, Hendrix N, Liu H. Comparative virulence of spring viremia of carp virus (SVCV) genotypes in two koi varieties. DISEASES OF AQUATIC ORGANISMS 2022; 148:95-112. [PMID: 35297379 DOI: 10.3354/dao03650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Spring viremia of carp virus (SVCV), is a lethal freshwater pathogen of cyprinid fish, and Cyprinus carpio koi is a primary host species. The virus was initially described in the 1960s after outbreaks occurred in Europe, but a global expansion of SVCV has been ongoing since the late 1990s. Genetic typing of SVCV isolates separates them into 4 genotypes that are correlated with geographic origin: Ia (Asia), Ib and Ic (Eastern Europe), and Id (Central Europe). We compared infectivity and virulence of 8 SVCV strains, including 4 uncharacterized Chinese Ia isolates and representatives of genotypes Ia-d in 2 morphologically distinct varieties of koi: long-fin semi-scaled Beni Kikokuryu koi and short-fin fully scaled Sanke koi. Mortality ranged from 4 to 82% in the Beni Kikokuryu koi and 0 to 94% in the Sanke koi following immersion challenge. Genotype Ia isolates of Asian origin had a wide range in virulence (0-94%). Single isolates representing the European genotypes Ib and Ic were moderately virulent (38-56%). Each virus strain produced similar levels of mortality in both koi breeds, with the exception of the SVCV Id strain that appeared to have both moderate and high virulence phenotypes (60% in Beni Kikokuryu koi vs. 87% in Sanke koi). Overall SVCV strain virulence appeared to be a dominant factor in determining disease outcomes, whereas intraspecies variation, based on koi variety, had less of an impact. This study is the first side-by-side comparison of Chinese SVCV isolates and genotype Ia-d strain virulence in a highly susceptible host.
Collapse
|
8
|
Páez DJ, Powers RL, Jia P, Ballesteros N, Kurath G, Naish KA, Purcell MK. Temperature Variation and Host Immunity Regulate Viral Persistence in a Salmonid Host. Pathogens 2021; 10:855. [PMID: 34358005 PMCID: PMC8308775 DOI: 10.3390/pathogens10070855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Environmental variation has important effects on host-pathogen interactions, affecting large-scale ecological processes such as the severity and frequency of epidemics. However, less is known about how the environment interacts with host immunity to modulate virus fitness within hosts. Here, we studied the interaction between host immune responses and water temperature on the long-term persistence of a model vertebrate virus, infectious hematopoietic necrosis virus (IHNV) in steelhead trout (Oncorhynchus mykiss). We first used cell culture methods to factor out strong host immune responses, allowing us to test the effect of temperature on viral replication. We found that 15 ∘C water temperature accelerated IHNV replication compared to the colder 10 and 8 ∘C temperatures. We then conducted in vivo experiments to quantify the effect of 6, 10, and 15 ∘C water temperatures on IHNV persistence over 8 months. Fish held at 15 and 10 ∘C were found to have higher prevalence of neutralizing antibodies compared to fish held at 6 ∘C. We found that IHNV persisted for a shorter time at warmer temperatures and resulted in an overall lower fish mortality compared to colder temperatures. These results support the hypothesis that temperature and host immune responses interact to modulate virus persistence within hosts. When immune responses were minimized (i.e., in vitro) virus replication was higher at warmer temperatures. However, with a full potential for host immune responses (i.e., in vivo experiments) longer virus persistence and higher long-term virulence was favored in colder temperatures. We also found that the viral RNA that persisted at later time points (179 and 270 days post-exposure) was mostly localized in the kidney and spleen tissues. These tissues are composed of hematopoietic cells that are favored targets of the virus. By partitioning the effect of temperature on host and pathogen responses, our results help to better understand environmental drivers of host-pathogen interactions within hosts, providing insights into potential host-pathogen responses to climate change.
Collapse
Affiliation(s)
- David J. Páez
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA;
| | - Rachel L. Powers
- US Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA; (R.L.P.); (P.J.); (N.B.); (G.K.)
| | - Peng Jia
- US Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA; (R.L.P.); (P.J.); (N.B.); (G.K.)
- Shenzhen Customs, Animal & Plant Inspection and Quarantine Technology Center, Shenzhen 518045, China
- Quality and Standards Academy, Shenzhen Technology University, Shenzhen 518118, China
| | - Natalia Ballesteros
- US Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA; (R.L.P.); (P.J.); (N.B.); (G.K.)
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gael Kurath
- US Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA; (R.L.P.); (P.J.); (N.B.); (G.K.)
| | - Kerry A. Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA;
| | - Maureen K. Purcell
- US Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA; (R.L.P.); (P.J.); (N.B.); (G.K.)
| |
Collapse
|
9
|
Wargo AR, Kurath G, Scott RJ, Kerr B. Virus shedding kinetics and unconventional virulence tradeoffs. PLoS Pathog 2021; 17:e1009528. [PMID: 33970967 PMCID: PMC8109835 DOI: 10.1371/journal.ppat.1009528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/03/2021] [Indexed: 11/19/2022] Open
Abstract
Tradeoff theory, which postulates that virulence provides both transmission costs and benefits for pathogens, has become widely adopted by the scientific community. Although theoretical literature exploring virulence-tradeoffs is vast, empirical studies validating various assumptions still remain sparse. In particular, truncation of transmission duration as a cost of virulence has been difficult to quantify with robust controlled in vivo studies. We sought to fill this knowledge gap by investigating how transmission rate and duration were associated with virulence for infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss). Using host mortality to quantify virulence and viral shedding to quantify transmission, we found that IHNV did not conform to classical tradeoff theory. More virulent genotypes of the virus were found to have longer transmission durations due to lower recovery rates of infected hosts, but the relationship was not saturating as assumed by tradeoff theory. Furthermore, the impact of host mortality on limiting transmission duration was minimal and greatly outweighed by recovery. Transmission rate differences between high and low virulence genotypes were also small and inconsistent. Ultimately, more virulent genotypes were found to have the overall fitness advantage, and there was no apparent constraint on the evolution of increased virulence for IHNV. However, using a mathematical model parameterized with experimental data, it was found that host culling resurrected the virulence tradeoff and provided low virulence genotypes with the advantage. Human-induced or natural culling, as well as host population fragmentation, may be some of the mechanisms by which virulence diversity is maintained in nature. This work highlights the importance of considering non-classical virulence tradeoffs.
Collapse
Affiliation(s)
- Andrew R. Wargo
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, United States of America
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, United States of America
| | - Robert J. Scott
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Benjamin Kerr
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
10
|
A preliminary investigation on the mechanism of action of 4-(8-(2-ethylimidazole)octyloxy)-arctigenin against IHNV. Virus Res 2021; 294:198287. [PMID: 33418024 DOI: 10.1016/j.virusres.2020.198287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 11/20/2022]
Abstract
Arctigenin derivatives form an elite class of naturally occurring compounds that possess promising antiviral therapeutic perspectives. In a previous study, we design and synthesize a arctigenin derivative, 4-(8-(2-ethylimidazole)octyloxy)-arctigenin (EOA), to evaluate its antiviral activity on infectious hematopoietic necrosis virus (IHNV). In this study, we find that the half maximal inhibitory concentrations (IC50) of EOA on IHNV nucleoprotein (N), phosphoprotein (P), matrix protein (M), nonvirion protein (NV) and polymerase (L) mRNA expression is 0.92, 0.80, 0.98, 0.89 and 0.87 μM, respectively. Mechanistically, our results show that EOA do not damage the viral particles directly, indicating EOA does not possess antiviral activity by destroying virions. Viral binding assays reveal that EOA do not interfere with IHNV adsorption. Because rapamycin has been shown to exhibit anti-IHNV activity by inducing autophagy of epithelioma papulosum cyprini (EPC) cells, we further investigate the relationship between EOA and autophagy in EPC cells. Autophagy fluorescence detection shows that EPC cells have a strong autophagy body after being treated with derivative EOA. The electron microscopy results show that EOA could induce typical autophagosomes which are representative structures of autophagy activation. Moreover, the punctate accumulation of green fluorescence-tagged microtubule-associate protein 1 light chain 3 (LC3) and the protein conversion from LC3-I to LC3-II are respectively confirmed by confocal fluorescence microscopy and western blotting. Overall, these findings demonstrate that EOA plays an anti-IHNV role via inducing autophagy in EPC cells.
Collapse
|
11
|
Gorgoglione B, Ringiesn JL, Pham LH, Shepherd BS, Leaman DW. Comparative effects of Novirhabdovirus genes on modulating constitutive transcription and innate antiviral responses, in different teleost host cell types. Virol J 2020; 17:110. [PMID: 32690033 PMCID: PMC7369537 DOI: 10.1186/s12985-020-01372-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) are highly contagious, pathogenic Novirhabdoviruses affecting fish and are thusly notifiable diseases with the World Organization for Animal Health. This study assessed the relative capacities of IHNV and VHSV genes to modulate host general transcription and explores the abilities of specific IHNV genes to interfere with the interferon pathway in heterogenous teleost cell-lines. METHODS Optimized protocols allowed for efficient transient transfections in EPC, BF-2, RTG-2 and RTgill-W1 cell lines of plasmids encoding IHNV (M genogroup) and VHSV (-IVb genotype) genes, including N, P, M, G and NV. Their impact on general cellular transcription was measured 48 hours post transfection (hpt) with luciferase constructs driven by a modified β-Actin promoter (pCAG). Their modulation of the innate antiviral immune response was characterized 72 hpt, using luciferase constructs measuring rainbow trout Type I IFN or MX-1 promoter augmentation, upon MAVS co-transfection. RESULTS M was generally confirmed as the strongest constitutive transcriptional suppressor while IHNV P, but not VHSV P, augmented constitutive transcription in fibroblastic cell types. Cell-specific effects were observed for viral G gene, with VHSV G exhibiting suppression of basal transcription in EPC and BF-2 but not in trout cells; while IHNV G was stimulatory in RTG-2, but inhibitory in RTgill-W1. NV consistently stimulated constitutive transcription, with higher augmentation patterns seen in fibroblastic compared to epithelial cells, and for IHNV NV compared to VHSV NV. The innate antiviral immune response, focusing on the IFN pathway, was silenced by IHNV M in all cell lines tested. IHNV N showed a dose-dependent suppression of type I IFN, but with minor effects on MX-1. IHNV P and G played minor IFN-inhibitory roles, consistent and dose-dependent only for G in rainbow trout cells. IHNV NV mediated a consistent stimulatory effect on either Type I IFN or MX-1, but much less pronounced in RTgill-W1. CONCLUSIONS This study extends our understanding of Novirhabdoviruses-host interaction, showing differential innate immune responses in heterogenous cell types. Viral regulators of innate immune signaling are identified, either as dose-dependent suppressors (such as M and N) or stimulators (mainly NV), indicating novel targets for the design of more efficient vaccination strategies.
Collapse
Affiliation(s)
- Bartolomeo Gorgoglione
- Aquatic Animal Health Laboratory, Department of Pathobiology and Diagnostic Investigation, CVM & Department of Fisheries and Wildlife, CANR - Michigan State University, East Lansing, MI, 48824, USA.
- Department of Biological Sciences, Wright State University, 235 Diggs Laboratory / 134 Oelman Hall, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft St, Toledo, OH, 43606, USA.
| | - Jeffery L Ringiesn
- Department of Biological Sciences, Wright State University, 235 Diggs Laboratory / 134 Oelman Hall, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
| | - Loc H Pham
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft St, Toledo, OH, 43606, USA
| | - Brian S Shepherd
- USDA/ARS/School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI, 53204, USA
| | - Douglas W Leaman
- Department of Biological Sciences, Wright State University, 235 Diggs Laboratory / 134 Oelman Hall, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft St, Toledo, OH, 43606, USA.
| |
Collapse
|
12
|
Identification of the optimal insertion site for expression of a foreign gene in an infectious hematopoietic necrosis virus vector. Arch Virol 2019; 164:2505-2513. [PMID: 31377888 DOI: 10.1007/s00705-019-04366-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/07/2019] [Indexed: 02/06/2023]
Abstract
Infectious hematopoietic necrosis virus (IHNV) was developed as a vector to aid the construction of vaccines against viral diseases such as viral hemorrhagic septicemia virus, spring viremia of carp virus, and influenza virus H1N1. However, the optimal site for foreign gene expression in the IHNV vector has not been determined. In the present study, five recombinant viruses with the green fluorescence protein (GFP) gene inserted into different genomic junction regions of the IHNV genomic sequence were generated using reverse genetics technology. Viral growth was severely delayed when the GFP gene was inserted into the intergenic region between the N and P genes. Real-time fluorescence quantitative PCR assays showed that the closer the GFP gene was inserted towards the 3' end, the higher the GFP mRNA levels. Measurement of the GFP fluorescence intensity, which is the most direct method to determine the GFP protein expression level, showed that the highest GFP protein level was obtained when the gene was inserted into the intergenic region between the P and M genes. The results of this study suggest that the P and M gene junction region is the optimal site within the IHNV vector to express foreign genes, providing valuable information for the future development of live vector vaccines.
Collapse
|
13
|
Synthesis and antiviral activity of coumarin derivatives against infectious hematopoietic necrosis virus. Bioorg Med Chem Lett 2019; 29:1749-1755. [DOI: 10.1016/j.bmcl.2019.05.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022]
|
14
|
Hu Y, Shen Y, Li B, Wang GX, Zhu B. Evaluation on the antiviral activity of ribavirin against infectious hematopoietic necrosis virus in epithelioma papulosum cyprini cells. Virus Res 2019; 263:73-79. [DOI: 10.1016/j.virusres.2019.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/12/2019] [Accepted: 01/12/2019] [Indexed: 02/08/2023]
|
15
|
Zhao JZ, Xu LM, Zhang ZY, Liu M, Cao YS, Yin JS, Liu HB, Lu TY. Recovery of recombinant infectious hematopoietic necrosis virus strain Sn1203 using the mammalian cell line BHK-21. J Virol Methods 2019; 265:84-90. [PMID: 30615899 DOI: 10.1016/j.jviromet.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 11/26/2022]
Abstract
Reverse genetics systems are powerful tools for understanding the virulence mechanisms and gene functions of negative-sense RNA viruses. The reverse genetics systems commonly used for recombinant infectious hematopoietic necrosis virus (IHNV) are based on vaccinia virus infection. To avoid the potential biological safety risks associated with vaccinia virus, a recombinant IHNV virus strain Sn1203 (rIHNV-Sn1203) was rescued in this study using a mammalian cell line, BHK-21. The genome sequence authenticity of rIHNV-Sn1203 was confirmed using two silent genetic tags introduced by site-directed mutagenesis. Indirect immunofluorescence assays and transmission electron microscopy revealed that rIHNV-Sn1203 and wild-type IHNV-Sn1203 (wtIHNV-Sn1203) had identical immunogenicity and virion morphology. The virulence and pathogenicity of rIHNV-Sn1203 were assessed in vitro and in vivo. Although rIHNV-Sn1203 displayed trends toward delayed intracellular viral replication and lower virion yields compared with wtIHNV-Sn1203, statistical analyses revealed no significant differences between these two viruses. Moreover, rainbow trout challenged with rIHNV-Sn1203 and wtIHNV-Sn1203 showed indistinguishable mortality. Together, these results show that IHNV was successfully rescued using BHK-21 cells. This method is very convenient and may also be suitable for use in the recovery of other Novirhabdoviruses.
Collapse
Affiliation(s)
- Jing-Zhuang Zhao
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Li-Ming Xu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Zhen-Yu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Miao Liu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Yong-Sheng Cao
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Jia-Sheng Yin
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Hong-Bai Liu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Tong-Yan Lu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, China.
| |
Collapse
|
16
|
Xu L, Zhao J, Liu M, Kurath G, Breyta RB, Ren G, Yin J, Liu H, Lu T. Phylogeography and evolution of infectious hematopoietic necrosis virus in China. Mol Phylogenet Evol 2018; 131:19-28. [PMID: 30449717 DOI: 10.1016/j.ympev.2018.10.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/07/2018] [Indexed: 10/28/2022]
Abstract
Infectious hematopoietic necrosis virus (IHNV) is a well-known rhabdoviral pathogen of salmonid fish. In this study, a comprehensive analysis of 40 IHNV viruses isolated from thirteen fish farms in nine geographically dispersed Chinese provinces during 2012 to 2017 is presented. Identity of nucleotide and amino acid sequences among all the complete glycoprotein (G) genes from Chinese isolates was 98.0-100% and 96.7-100%, respectively. Coalescent phylogenetic analyses revealed that all the Chinese IHN virus characterized in this study were in a monophyletic clade that had a most recent common ancestor with the J Nagano (JN) subgroup within the J genogroup of IHNV. Within the Chinese IHNV clade isolates obtained over successive years from the same salmon fish farm clustered in strongly supported subclades, suggesting maintenance and diversification of virus over time within individual farms. There was also evidence for regional virus transmission within provinces, and some cases of longer distance transmission between distant provinces, such as Gansu and Yunnan. The data demonstrated that IHNV has evolved into a new subgroup in salmon farm environments in China, and IHNV isolates are undergoing molecular evolution within fish farms. We suggest that Chinese IHNV comprises a separate JC subgroup within the J genogroup of IHNV.
Collapse
Affiliation(s)
- Liming Xu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Jingzhuang Zhao
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Miao Liu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Gael Kurath
- Western Fisheries Research Center, U.S. Geological Survey, 6505 NE 65th Street, Seattle, WA 98115, USA.
| | - Rachel B Breyta
- Western Fisheries Research Center, U.S. Geological Survey, 6505 NE 65th Street, Seattle, WA 98115, USA; University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA 98195, USA.
| | - Guangming Ren
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Jiasheng Yin
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Hongbai Liu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Tongyan Lu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| |
Collapse
|
17
|
Zhao JZ, Xu LM, Liu M, Zhang ZY, Yin JS, Liu HB, Lu TY. Autophagy induced by infectious hematopoietic necrosis virus inhibits intracellular viral replication and extracellular viral yields in epithelioma papulosum cyprini cell line. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:88-94. [PMID: 28760360 DOI: 10.1016/j.dci.2017.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Infectious hematopoietic necrosis virus (IHNV) is a common pathogen that causes severe disease in the salmonid aquaculture industry. Recent work demonstrated that autophagy plays an important role in pathogen invasion by activating innate and adaptive immunity. This study investigated the relationship between IHNV and autophagy in epithelioma papulosum cyprini cells. The electron microscopy results show that IHNV infection can induce typical autophagosomes which are representative structures of autophagy activation. The punctate accumulation of green fluorescence-tagged microtubule-associate protein 1 light chain 3 (LC3) and the protein conversion from LC3-I to LC3-II were respectively confirmed by confocal fluorescence microscopy and western blotting. Furthermore, the effects of autophagy on IHNV replication were also clarified by altering the autophagy pathway. The results showed that rapamycin induced autophagy can inhibit both intracellular viral replication and extracellular viral yields, while autophagy inhibitor produced the opposite results. These findings demonstrated that autophagy plays an antiviral role during IHNV infection.
Collapse
Affiliation(s)
- Jing-Zhuang Zhao
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Li-Ming Xu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Miao Liu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Zhen-Yu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Jia-Sheng Yin
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Hong-Bai Liu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Tong-Yan Lu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| |
Collapse
|
18
|
Breyta R, Brito I, Ferguson P, Kurath G, Naish KA, Purcell MK, Wargo AR, LaDeau S. Transmission routes maintaining a viral pathogen of steelhead trout within a complex multi-host assemblage. Ecol Evol 2017; 7:8187-8200. [PMID: 29075442 PMCID: PMC5648648 DOI: 10.1002/ece3.3276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/22/2017] [Accepted: 06/28/2017] [Indexed: 01/06/2023] Open
Abstract
This is the first comprehensive region wide, spatially explicit epidemiologic analysis of surveillance data of the aquatic viral pathogen infectious hematopoietic necrosis virus (IHNV) infecting native salmonid fish. The pathogen has been documented in the freshwater ecosystem of the Pacific Northwest of North America since the 1950s, and the current report describes the disease ecology of IHNV during 2000-2012. Prevalence of IHNV infection in monitored salmonid host cohorts ranged from 8% to 30%, with the highest levels observed in juvenile steelhead trout. The spatial distribution of all IHNV-infected cohorts was concentrated in two sub-regions of the study area, where historic burden of the viral disease has been high. During the study period, prevalence levels fluctuated with a temporal peak in 2002. Virologic and genetic surveillance data were analyzed for evidence of three separate but not mutually exclusive transmission routes hypothesized to be maintaining IHNV in the freshwater ecosystem. Transmission between year classes of juvenile fish at individual sites (route 1) was supported at varying levels of certainty in 10%-55% of candidate cases, transmission between neighboring juvenile cohorts (route 2) was supported in 31%-78% of candidate cases, and transmission from adult fish returning to the same site as an infected juvenile cohort was supported in 26%-74% of candidate cases. The results of this study indicate that multiple specific transmission routes are acting to maintain IHNV in juvenile fish, providing concrete evidence that can be used to improve resource management. Furthermore, these results demonstrate that more sophisticated analysis of available spatio-temporal and genetic data is likely to yield greater insight in future studies.
Collapse
Affiliation(s)
- Rachel Breyta
- Microbiology Oregon State University Corvallis OR USA.,Cary Institute for Ecosystems Studies Millbrook NY USA
| | - Ilana Brito
- Biomedical Engineering Cornell University Ithaca NY USA
| | - Paige Ferguson
- Biological Sciences University of Alabama Tuscaloosa AL USA
| | - Gael Kurath
- US Geological Survey, Western Fisheries Research Center Seattle WA USA
| | - Kerry A Naish
- School of Aquatic and Fisheries Sciences University of Washington Seattle WA USA
| | - Maureen K Purcell
- US Geological Survey, Western Fisheries Research Center Seattle WA USA
| | - Andrew R Wargo
- Department of Aquatic Health Sciences Virginia Institute of Marine Science Gloucester Point VA USA
| | | |
Collapse
|
19
|
Xu L, Zhao J, Liu M, Kurath G, Ren G, Lapatra SE, Yin J, Liu H, Feng J, Lu T. A effective DNA vaccine against diverse genotype J infectious hematopoietic necrosis virus strains prevalent in China. Vaccine 2017; 35:2420-2426. [PMID: 28343776 DOI: 10.1016/j.vaccine.2017.03.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/06/2017] [Accepted: 03/11/2017] [Indexed: 01/06/2023]
Abstract
Infectious hematopoietic necrosis virus (IHNV) is the most important pathogen threatening the aquaculture of salmonid fish in China. In this study, a DNA vaccine, designated pIHNch-G, was constructed with the glycoprotein (G) gene of a Chinese IHNV isolate SD-12 (also called Sn1203) of genotype J. The minimal dose of vaccine required, the expression of the Mx-1 gene in the muscle (vaccine delivery site) and anterior kidney, and the titers of the neutralizing antibodies produced were used to evaluate the vaccine efficacy. To assess the potential utility of the vaccine in controlling IHNV throughout China, the cross protective efficacy of the vaccine was determined by challenging fish with a broad range of IHNV strains from different geographic locations in China. A single 100ng dose of the vaccine conferred almost full protection to rainbow trout fry (3g) against waterborne or intraperitoneal injection challenge with IHNV strain SD-12 as early as 4days post-vaccination (d.p.v.), and significant protection was still observed at 180d.p.v. Intragenogroup challenges showed that the DNA vaccine provided similar protection to the fish against all the Chinese IHNV isolates tested, suggesting that the vaccine can be widely used in China. Mx-1 gene expression was significantly upregulated in the muscle tissue (vaccine delivery site) and anterior kidney in the vaccinated rainbow trout at both 4 and 7d.p.v. Similar levels of neutralizing antibodies were determined with each of the Chinese IHNV strains at 60 and 180d.p.v. This DNA vaccine should play an important role in the control of IHN in China.
Collapse
Affiliation(s)
- Liming Xu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Jingzhuang Zhao
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Miao Liu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Gael Kurath
- Western Fisheries Research Center, USGS, Seattle, WA 98115, USA.
| | - Guangming Ren
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | | | - Jiasheng Yin
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Hongbai Liu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Jian Feng
- Benxi Agrimarine Company Limited, Benxi 117000, PR China.
| | - Tongyan Lu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| |
Collapse
|
20
|
Preliminary study of an oral vaccine against infectious hematopoietic necrosis virus using improved yeast surface display technology. Mol Immunol 2017; 85:196-204. [PMID: 28285182 DOI: 10.1016/j.molimm.2017.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 01/25/2023]
Abstract
Infectious hematopoietic necrosis virus (IHNV) is a common pathogen that causes severe disease in the salmonid aquaculture industry. Because oral vaccines induce more efficient mucosal immunity than parenteral immunization, an oral vaccine was developed with an improved yeast cell surface display technology to induce an immune response to IHNV. The oral yeast vaccine, designated EBY100/pYD1-bi-G, was delivered orally to rainbow trout (Oncorhynchus mykiss) on days 1 and 32, and the nonspecific and specific immune responses were measured 50days after the first vaccination. In the hindgut, spleen, and head kidney, the expression of IFN-1 and Mx-1 was significantly upregulated after oral vaccination with EBY100/pYD1-bi-G, and the highest expression of IFN-1 and Mx-1 was observed in the spleen (7.5-fold higher than the control group) and head kidney (3.9-fold higher than the control group), respectively. Several markers of the adaptive immune response (IgM, IgT, CD4, and CD8) were also significantly upregulated, and the highest expression of these markers was observed in the hindgut, suggesting that the mucosal immune response was successfully induced by oral vaccination with EBY100/pYD1-bi-G. Sera from the orally vaccinated rainbow trout showed higher anti-IHNV neutralizing antibody titers (antibody titer 81±4) than the control sera (antibody titer 7±3), and the relative percentage survival after IHNV challenge was 45.8% compared with 2% in the control group. Although the protection afforded by this orally delivered vaccine was lower than that of a DNA vaccine (83%-98%), it is a promising candidate vaccine with which to protect larval fish against IHNV, which are most susceptible to the virus and difficult to inject with a DNA vaccine.
Collapse
|
21
|
Black A, Breyta R, Bedford T, Kurath G. Geography and host species shape the evolutionary dynamics of U genogroup infectious hematopoietic necrosis virus. Virus Evol 2016; 2:vew034. [PMID: 29492278 DOI: 10.1093/ve/vew034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Infectious hematopoietic necrosis virus (IHNV) is a negative-sense RNA virus that infects wild and cultured salmonids throughout the Pacific Coastal United States and Canada, from California to Alaska. Although infection of adult fish is usually asymptomatic, juvenile infections can result in high mortality events that impact salmon hatchery programs and commercial aquaculture. We used epidemiological case data and genetic sequence data from a 303 nt portion of the viral glycoprotein gene to study the evolutionary dynamics of U genogroup IHNV in the Pacific Northwestern United States from 1971 to 2013. We identified 114 unique genotypes among 1,219 U genogroup IHNV isolates representing 619 virus detection events. We found evidence for two previously unidentified, broad subgroups within the U genogroup, which we designated 'UC' and 'UP'. Epidemiologic records indicated that UP viruses were detected more frequently in sockeye salmon (Oncorhynchus nerka) and in coastal waters of Washington and Oregon, whereas UC viruses were detected primarily in Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, which is a large, complex watershed extending throughout much of interior Washington, Oregon, and Idaho. These findings were supported by phylogenetic analysis and by FST. Ancestral state reconstruction indicated that early UC viruses in the Columbia River Basin initially infected sockeye salmon but then emerged via host shifts into Chinook salmon and steelhead trout sometime during the 1980s. We postulate that the development of these subgroups within U genogroup was driven by selection pressure for viral adaptation to Chinook salmon and steelhead trout within the Columbia River Basin.
Collapse
Affiliation(s)
- Allison Black
- Department of Epidemiology, University of Washington, Box 357236, Health Sciences Building F-262, Seattle, WA 98195, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rachel Breyta
- U.S. Geological Survey, Western Fisheries Research Center, 6505 NE 65th St, Seattle, WA 98115.,Cary Institute for Ecosystems Studies, 2801 Sharon Turnpike, Millbrook, NY 12545, USA
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research Center, 6505 NE 65th St, Seattle, WA 98115.,Cary Institute for Ecosystems Studies, 2801 Sharon Turnpike, Millbrook, NY 12545, USA
| |
Collapse
|
22
|
Spatial and temporal heterogeneity of infectious hematopoietic necrosis virus in Pacific Northwest salmonids. INFECTION GENETICS AND EVOLUTION 2016; 45:347-358. [PMID: 27693400 DOI: 10.1016/j.meegid.2016.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/15/2016] [Accepted: 09/25/2016] [Indexed: 11/24/2022]
Abstract
The aquatic rhaboviral pathogen infectious hematopoietic necrosis virus (IHNV) causes acute disease in juvenile fish of a number of populations of Pacific salmonid species. Heavily managed in both marine and freshwater environments, these fish species are cultured during the juvenile stage in freshwater conservation hatcheries, where IHNV is one of the top three infectious diseases that cause serious morbidity and mortality. Therefore, a comprehensive study of viral genetic surveillance data representing 2590 field isolates collected between 1958 and 2014 was conducted to determine the spatial and temporal patterns of IHNV in the Pacific Northwest of the contiguous United States. Prevalence of infection varied over time, fluctuating over a rough 5-7yearcycle. The genetic analysis revealed numerous subgroups of IHNV, each of which exhibited spatial heterogeneity. Within all subgroups, dominant genetic types were apparent, though the temporal patterns of emergence of these types varied among subgroups. Finally, the affinity or fidelity of subgroups to specific host species also varied, where UC subgroup viruses exhibited a more generalist profile and all other subgroups exhibited a specialist profile. These complex patterns are likely synergistically driven by numerous ecological, pathobiological, and anthropogenic factors. Since only a few anthropogenic factors are candidates for managed intervention aimed at improving the health of threatened or endangered salmonid fish populations, determining the relative impact of these factors is a high priority for future studies.
Collapse
|
23
|
Hernandez DG, Purcell MK, Friedman CS, Kurath G. Susceptibility of ocean- and stream-type Chinook salmon to isolates of the L, U, and M genogroups of infectious hematopoietic necrosis virus (IHNV). DISEASES OF AQUATIC ORGANISMS 2016; 121:15-28. [PMID: 27596856 DOI: 10.3354/dao03030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study examined the susceptibility of Chinook salmon Oncorhynchus tshawytscha to viral strains from the L, U, and M genogroups of infectious hematopoietic necrosis virus (IHNV) present in western North America. The goal of this investigation was to establish a baseline understanding of the susceptibility of ocean- and stream-type Chinook salmon to infection and mortality caused by exposure to commonly detected strains of L, U, and M IHNV. The L IHNV strain tested here was highly infectious and virulent in both Chinook salmon populations, following patterns previously reported for Chinook salmon. Furthermore, ocean- and stream-type Chinook salmon fry at 1 g can also become subclinically infected with U and M strains of IHNV without experiencing significant mortality. The stream-type life history phenotype was generally more susceptible to infection and suffered greater mortality than the ocean-type phenotype. Between the U and M genogroup strains tested, the U group strains were generally more infectious than the M group strains in both Chinook salmon types. Substantial viral clearance occurred by 30 d post exposure, but persistent viral infection was observed with L, U, and M strains in both host populations. While mortality decreased with increased host size in stream-type Chinook salmon, infection prevalence was not lower for all strains at a greater size. These results suggest that Chinook salmon may serve as reservoirs and/or vectors of U and M genogroup IHNV.
Collapse
Affiliation(s)
- Daniel G Hernandez
- University of Washington, School of Aquatic and Fishery Sciences, Box 355020, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
24
|
Breyta R, McKenney D, Tesfaye T, Ono K, Kurath G. Increasing virulence, but not infectivity, associated with serially emergent virus strains of a fish rhabdovirus. Virus Evol 2016; 2:vev018. [PMID: 27774291 PMCID: PMC4989874 DOI: 10.1093/ve/vev018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Surveillance and genetic typing of field isolates of a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), has identified four dominant viral genotypes that were involved in serial viral emergence and displacement events in steelhead trout (Oncorhynchus mykiss) in western North America. To investigate drivers of these landscape-scale events, IHNV isolates designated 007, 111, 110, and 139, representing the four relevant genotypes, were compared for virulence and infectivity in controlled laboratory challenge studies in five relevant steelhead trout populations. Viral virulence was assessed as mortality using lethal dose estimates (LD50), survival kinetics, and proportional hazards analysis. A pattern of increasing virulence for isolates 007, 111, and 110 was consistent in all five host populations tested, and correlated with serial emergence and displacements in the virus-endemic lower Columbia River source region during 1980-2013. The fourth isolate, 139, did not have higher virulence than the previous isolate 110. However, the mG139M genotype displayed a conditional displacement phenotype in that it displaced type mG110M in coastal Washington, but not in the lower Columbia River region, indicating that factors other than evolution of higher viral virulence were involved in some displacement events. Viral infectivity, measured as infectious dose (ID50), did not correlate consistently with virulence or with viral emergence, and showed a narrow range of variation relative to the variation observed in virulence. Comparison among the five steelhead trout populations confirmed variation in resistance to IHNV, but correlations with previous history of virus exposure or with sites of viral emergence varied between IHNV source and sink regions. Overall, this study indicated increasing viral virulence over time as a potential driver for emergence and displacement events in the endemic Lower Columbia River source region where these IHNV genotypes originated, but not in adjacent sink regions.
Collapse
Affiliation(s)
- Rachel Breyta
- US Geological Survey, Western Fisheries Research Center, 6505 NE 65th St., Seattle, WA 98115 and; School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St., Seattle, WA 98105, USA
| | - Doug McKenney
- US Geological Survey, Western Fisheries Research Center, 6505 NE 65th St., Seattle, WA 98115 and
| | - Tarin Tesfaye
- US Geological Survey, Western Fisheries Research Center, 6505 NE 65th St., Seattle, WA 98115 and
| | - Kotaro Ono
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St., Seattle, WA 98105, USA
| | - Gael Kurath
- US Geological Survey, Western Fisheries Research Center, 6505 NE 65th St., Seattle, WA 98115 and
| |
Collapse
|
25
|
Kurath G, Winton JR, Dale OB, Purcell MK, Falk K, Busch RA. Atlantic salmon, Salmo salar L. are broadly susceptible to isolates representing the North American genogroups of infectious hematopoietic necrosis virus. JOURNAL OF FISH DISEASES 2016; 39:55-67. [PMID: 25381936 DOI: 10.1111/jfd.12323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 06/04/2023]
Abstract
Beginning in 1992, three epidemic waves of infectious hematopoietic necrosis, often with high mortality, occurred in farmed Atlantic salmon Salmo salar L. on the west coast of North America. We compared the virulence of eleven strains of infectious hematopoietic necrosis virus (IHNV), representing the U, M and L genogroups, in experimental challenges of juvenile Atlantic salmon in freshwater. All strains caused mortality and there was wide variation within genogroups: cumulative mortality for five U-group strains ranged from 20 to 100%, four M-group strains ranged 30-63% and two L-group strains varied from 41 to 81%. Thus, unlike Pacific salmonids, there was no apparent correlation of virulence in a particular host species with virus genogroup. The mortality patterns indicated two different phenotypes in terms of kinetics of disease progression and final per cent mortality, with nine strains having moderate virulence and two strains (from the U and L genogroups) having high virulence. These phenotypes were investigated by histopathology and immunohistochemistry to describe the variation in the course of IHNV disease in Atlantic salmon. The results from this study demonstrate that IHNV may become a major threat to farmed Atlantic salmon in other regions of the world where the virus has been, or may be, introduced.
Collapse
Affiliation(s)
- G Kurath
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| | - J R Winton
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| | - O B Dale
- Norwegian Veterinary Institute, Oslo, Norway
| | - M K Purcell
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| | - K Falk
- Norwegian Veterinary Institute, Oslo, Norway
| | | |
Collapse
|
26
|
Brieuc MSO, Purcell MK, Palmer AD, Naish KA. Genetic variation underlying resistance to infectious hematopoietic necrosis virus in a steelhead trout (Oncorhynchus mykiss) population. DISEASES OF AQUATIC ORGANISMS 2015; 117:77-83. [PMID: 26575157 DOI: 10.3354/dao02933] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Understanding the mechanisms of host resistance to pathogens will allow insights into the response of wild populations to the emergence of new pathogens. Infectious hematopoietic necrosis virus (IHNV) is endemic to the Pacific Northwest and infectious to Pacific salmon and trout (Oncorhynchus spp.). Emergence of the M genogroup of IHNV in steelhead trout O. mykiss in the coastal streams of Washington State, between 2007 and 2011, was geographically heterogeneous. Differences in host resistance due to genetic change were hypothesized to be a factor influencing the IHNV emergence patterns. For example, juvenile steelhead trout losses at the Quinault National Fish Hatchery (QNFH) were much lower than those at a nearby facility that cultures a stock originally derived from the same source population. Using a classical quantitative genetic approach, we determined the potential for the QNFH steelhead trout population to respond to selection caused by the pathogen, by estimating the heritability for 2 traits indicative of IHNV resistance, mortality (h² = 0.377 (0.226 - 0.550)) and days to death (h² = 0.093 (0.018 - 0.203)). These results confirm that there is a genetic basis for resistance and that this population has the potential to adapt to IHNV. Additionally, genetic correlation between days to death and fish length suggests a correlated response in these traits to selection. Reduction of genetic variation, as well as the presence or absence of resistant alleles, could affect the ability of populations to adapt to the pathogen. Identification of the genetic basis for IHNV resistance could allow the assessment of the susceptibility of other steelhead populations.
Collapse
Affiliation(s)
- Marine S O Brieuc
- School of Aquatic and Fishery Sciences, University of Washington, Seattle 98195, WA, USA
| | | | | | | |
Collapse
|
27
|
Breyta R, Jones A, Kurath G. Differential susceptibility in steelhead trout populations to an emergent MD strain of infectious hematopoietic necrosis virus. DISEASES OF AQUATIC ORGANISMS 2014; 112:17-28. [PMID: 25392039 DOI: 10.3354/dao02781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A significant emergence of trout-adapted MD subgroup infectious hematopoietic necrosis virus (IHNV) began in the coastal region of Washington State, USA, in 2007. This emergence event lasted until 2011 and caused both asymptomatic adult fish infection and symptomatic epidemic disease and mortality in juvenile fish. Incidence of virus during this emergence demonstrated a heterogeneous distribution among rivers of the coastal region, leaving fish populations of some rivers apparently untouched while others suffered significant and recurrent infection and mortality (Breyta et. al. 2013; Dis Aquat Org 104:179-195). In this study, we examined the possible contribution of variations in susceptibility of fish populations, age-related resistance, and virus virulence to the observed landscape heterogeneity. We found that the most significant variable was host susceptibility: by controlled experimental challenge studies steelhead trout populations with no history of IHNV infection were 1 to 3 orders of magnitude more sensitive than a fish population with a long history of IHNV infection. In addition, 2 fish populations from the same river, which descended relatively recently from a common ancestral population, demonstrated 1 to 2 orders of magnitude difference in susceptibility. Fish age-related development of resistance was most evident in the more susceptible of 2 related fish populations. Finally, the strain of virus involved in the 2007 coastal Washington emergence had high virulence but was within the range of other known M group viruses tested. These results suggest that one major driver of landscape heterogeneity in the 2007 coastal Washington IHNV emergence was variation in fish population susceptibility and that this trait may have a heritable component.
Collapse
Affiliation(s)
- Rachel Breyta
- US Geological Survey, Western Fisheries Research Center, 6505 NE 65th St., Seattle, WA 98115
| | | | | |
Collapse
|
28
|
Kell AM, Wargo AR, Kurath G. Viral fitness does not correlate with three genotype displacement events involving infectious hematopoietic necrosis virus. Virology 2014; 464-465:146-155. [PMID: 25068402 DOI: 10.1016/j.virol.2014.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 01/11/2023]
Abstract
Viral genotype displacement events are characterized by the replacement of a previously dominant virus genotype by a novel genotype of the same virus species in a given geographic region. We examine here the fitness of three pairs of infectious hematopoietic necrosis virus (IHNV) genotypes involved in three major genotype displacement events in Washington state over the last 30 years to determine whether increased virus fitness correlates with displacement. Fitness was assessed using in vivo assays to measure viral replication in single infection, simultaneous co-infection, and sequential superinfection in the natural host, steelhead trout. In addition, virion stability of each genotype was measured in freshwater and seawater environments at various temperatures. By these methods, we found no correlation between increased viral fitness and displacement in the field. These results suggest that other pressures likely exist in the field with important consequences for IHNV evolution.
Collapse
Affiliation(s)
- Alison M Kell
- University of Washington, Seattle, WA, USA; U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA.
| | - Andrew R Wargo
- University of Washington, Seattle, WA, USA; U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| | - Gael Kurath
- University of Washington, Seattle, WA, USA; U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| |
Collapse
|
29
|
Epitope mapping of the infectious hematopoietic necrosis virus glycoprotein by flow cytometry. Biotechnol Lett 2014; 36:2109-16. [DOI: 10.1007/s10529-014-1586-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/04/2014] [Indexed: 11/24/2022]
|
30
|
Kurath G, Jolley JC, Thompson TM, Thompson D, Whitesel TA, Gutenberger S, Winton JR. Ammocoetes of Pacific Lamprey are not susceptible to common fish rhabdoviruses of the U.S. Pacific northwest. JOURNAL OF AQUATIC ANIMAL HEALTH 2013; 25:274-280. [PMID: 24341769 DOI: 10.1080/08997659.2013.839967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Pacific Lampreys Entosphenus tridentatus have experienced severe population declines in recent years and efforts to develop captive rearing programs are under consideration. However, there is limited knowledge of their life history, ecology, and potential to harbor or transmit pathogens that may cause infectious disease. As a measure of the possible risks associated with introducing wild lampreys into existing fish culture facilities, larval lampreys (ammocoetes) were tested for susceptibility to infection and mortality caused by experimental exposures to the fish rhabdovirus pathogens: infectious hematopoietic necrosis virus (IHNV) and viral haemorrhagic septicaemia virus (VHSV). Two IHNV isolates, representing the U and M genogroups, and one VHSV isolate from the IVa genotype were each delivered to groups of ammocoetes by immersion at moderate and high viral doses, and by intraperitoneal injection. Ammocoetes were then held in triplicate tanks with no substrate or sediment. During 41 d of observation postchallenge there was low or no mortality in all groups, and no virus was detected in the small number of fish that died. Ammocoetes sampled for incidence of infection at 6 and 12 d after immersion challenges also had no detectable virus, and no virus was detected in surviving fish from any group. A small number of ammocoetes sampled 6 d after the injection challenge had detectable virus, but at levels below the original quantity of virus injected. Overall there was no evidence of infection, replication, or persistence of any of the viruses in any of the treatment groups. Our results suggest that Pacific Lampreys are highly unlikely to serve as hosts that maintain or transmit these viruses.
Collapse
Affiliation(s)
- G Kurath
- a U.S. Geological Survey , Western Fisheries Research Center , 6505 Northeast 65th Street , Seattle , Washington , 98115 , USA
| | | | | | | | | | | | | |
Collapse
|