1
|
MacLeod MJ, Vo NTK, Mikhaeil MS, Monaghan SR, Alexander JAN, Saran MK, Lee LEJ. Development of a continuous cell line from larval Atlantic cod (Gadus morhua) and its use in the study of the microsporidian, Loma morhua. JOURNAL OF FISH DISEASES 2018; 41:1359-1372. [PMID: 29882595 DOI: 10.1111/jfd.12830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
In vitro cell culture methods are crucial for the isolation, purification and mass propagation of intracellular pathogens of aquatic organisms. Cell culture infection models can yield insights into infection mechanisms, aid in developing methods for disease mitigation and prevention, and inform commercial-scale cultivation approaches. This study details the establishment of a larval cell line (GML-5) from the Atlantic cod (Gadus morhua) and its use in the study of microsporidia. GML-5 has survived over 100 passages in 8 years of culture. The line remains active and viable between 8 and 21°C in Leibovitz-15 (L-15) media with 10% foetal bovine serum and exhibits a myofibroblast phenotype as indicated by immuno-positive results for vimentin, α-smooth muscle actin, collagen I and S-100 proteins, while being desmin-negative. GML-5 supports the infection and development of two microsporidian parasites, an opportunistic generalist (Anncaliia algerae) and cod-specific Loma morhua. Using GML-5, spore germination and proliferation of L. morhua was found to require exposure to basic pH and cool incubation temperatures (8°C), in contrast to A. algerae, which required no cultural modifications. Loma morhua-associated xenoma-like structures were observed 2 weeks postexposure. This in vitro infection model may serve as a valuable tool for cod parasitology and aquaculture research.
Collapse
Affiliation(s)
- Michael J MacLeod
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Nguyen T K Vo
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | | | | | - Mandeep K Saran
- Faculty of Science, University of the Fraser Valley, Abbotsford, BC, Canada
| | - Lucy E J Lee
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- Faculty of Science, University of the Fraser Valley, Abbotsford, BC, Canada
| |
Collapse
|
2
|
Saleh M, Kumar G, Abdel-Baki AA, Dkhil MA, El-Matbouli M, Al-Quraishy S. In Vitro Gene Silencing of the Fish Microsporidian Heterosporis saurida by RNA Interference. Nucleic Acid Ther 2016; 26:250-6. [PMID: 27228357 PMCID: PMC4982949 DOI: 10.1089/nat.2016.0613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Heterosporis saurida, a microsporidian parasite of lizardfish, Saurida undosquamis, causes severe economic losses in marine aquaculture. Among the novel approaches being explored for treatment of parasitic infections in aquaculture is small interfering RNA molecules. The aim of the present study was to investigate the efficiency of using siRNA to knock down expression of specific genes of H. saurida in vitro. For this purpose, siRNAs specific for ATP/ADP antiporter 1 and methionine aminopeptidase II genes were designed and tested using a previously developed in vitro cultivation model. Silencing of H. saurida target genes was assessed and the efficacy of using siRNA for inhibition of gene expression was measured by quantitative real-time polymerase chain reaction (PCR). Silencing of ATP/ADP antiporter 1 or methionine aminopeptidase II by siRNA reduced H. saurida infection levels in EK-1 cells 40% and 60%, respectively, as measured by qRT-PCR and spore counts. Combined siRNA treatment of both ATP/ADP antiporter 1 and methionine aminopeptidase II siRNAs was more effective against H. saurida infection as seen by the 16S rRNA level and spore counts. Our study concluded that siRNA could be used to advance development of novel approaches to inhibit H. saurida and provide an alternative approach to combat microsporidia.
Collapse
Affiliation(s)
- Mona Saleh
- 1 Clinical Division of Fish Medicine, University of Veterinary Medicine , Vienna, Austria
| | - Gokhlesh Kumar
- 1 Clinical Division of Fish Medicine, University of Veterinary Medicine , Vienna, Austria
| | - Abdel-Azeem Abdel-Baki
- 2 Zoology Department, College of Science, King Saud University , Riyadh, Saudi Arabia .,3 Zoology Department, Faculty of Science, Beni-Suef University , Beni-Suef, Egypt
| | - Mohamed A Dkhil
- 2 Zoology Department, College of Science, King Saud University , Riyadh, Saudi Arabia .,4 Department of Zoology and Entomology, Faculty of Science, Helwan University , Cairo, Egypt
| | - Mansour El-Matbouli
- 1 Clinical Division of Fish Medicine, University of Veterinary Medicine , Vienna, Austria
| | - Saleh Al-Quraishy
- 2 Zoology Department, College of Science, King Saud University , Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Saleh M, Kumar G, Abdel-Baki AA, Al-Quraishy S, El-Matbouli M. In vitro antimicrosporidial activity of gold nanoparticles against Heterosporis saurida. BMC Vet Res 2016. [PMID: 26939524 DOI: 10.1186/s12917-016-0668-x/tables/1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Worldwide, there is a need to expand the number of drugs available to treat parasitic infections in aquaculture. One of the new materials being tested is metal nanoparticles, which have unique chemical and physical characteristics owing to their extremely small size and high surface area to volume ratio. We examined the effectiveness of gold nanoparticles against the microsporidian parasite Heterosporis saurida, which causes severe economic losses in lizard fish, Saurida undosquamis aquaculture. RESULTS We synthesized gold nanoparticles by chemical reduction of tetrachloroauric acid as a metal precursor. We assessed the antimicrosporidial efficacy of the nanoparticles against H. saurida using an in vitro screening approach, which we had developed previously using the eel kidney cell line EK-1. The number of H. saurida spores produced in EK-1 cells was reduced in a proportional manner to the dosage of gold nanoparticles administered. A cell metabolic activity test (MTT) indicated that the gold nanoparticles did not appear to be toxic to the host cells. CONCLUSIONS Gold nanoparticles can act as an effective antimicrosporidial agent and hold promise to reduce disease in lizardfish aquaculture. Metal nanoparticles should be considered as an alternate choice for development of new antimicrosporidial drugs to combat disease problems in aquaculture.
Collapse
Affiliation(s)
- Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210, Vienna, Austria.
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210, Vienna, Austria.
| | - Abdel-Azeem Abdel-Baki
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
4
|
Saleh M, Kumar G, Abdel-Baki AA, Al-Quraishy S, El-Matbouli M. In vitro antimicrosporidial activity of gold nanoparticles against Heterosporis saurida. BMC Vet Res 2016; 12:44. [PMID: 26939524 PMCID: PMC4778277 DOI: 10.1186/s12917-016-0668-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 02/29/2016] [Indexed: 12/26/2022] Open
Abstract
Background Worldwide, there is a need to expand the number of drugs available to treat parasitic infections in aquaculture. One of the new materials being tested is metal nanoparticles, which have unique chemical and physical characteristics owing to their extremely small size and high surface area to volume ratio. We examined the effectiveness of gold nanoparticles against the microsporidian parasite Heterosporis saurida, which causes severe economic losses in lizard fish, Saurida undosquamis aquaculture. Results We synthesized gold nanoparticles by chemical reduction of tetrachloroauric acid as a metal precursor. We assessed the antimicrosporidial efficacy of the nanoparticles against H. saurida using an in vitro screening approach, which we had developed previously using the eel kidney cell line EK-1. The number of H. saurida spores produced in EK-1 cells was reduced in a proportional manner to the dosage of gold nanoparticles administered. A cell metabolic activity test (MTT) indicated that the gold nanoparticles did not appear to be toxic to the host cells. Conclusions Gold nanoparticles can act as an effective antimicrosporidial agent and hold promise to reduce disease in lizardfish aquaculture. Metal nanoparticles should be considered as an alternate choice for development of new antimicrosporidial drugs to combat disease problems in aquaculture.
Collapse
Affiliation(s)
- Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210, Vienna, Austria.
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210, Vienna, Austria.
| | - Abdel-Azeem Abdel-Baki
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia. .,Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
5
|
Microsporidia-host interactions. Curr Opin Microbiol 2015; 26:10-6. [PMID: 25847674 DOI: 10.1016/j.mib.2015.03.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 11/23/2022]
Abstract
Microsporidia comprise one of the largest groups of obligate intracellular pathogens and can infect virtually all animals, but host response to these fungal-related microbes has been poorly understood. Several new studies of the host transcriptional response to microsporidia infection have found infection-induced regulation of genes involved in innate immunity, ubiquitylation, metabolism, and hormonal signaling. In addition, microsporidia have recently been shown to exploit host recycling endocytosis for exit from intestinal cells, and to interact with host degradation pathways. Microsporidia infection has also been shown to profoundly affect behavior in insect hosts. Altogether, these and other recent findings are providing much-needed insight into the underlying mechanisms of microsporidia interaction with host animals.
Collapse
|
6
|
Saleh M, Kumar G, Abdel-Baki AA, Dkhil M, El-Matbouli M, Al-Quraishy S. Development of a novel in vitro method for drug development for fish; application to test efficacy of antimicrosporidian compounds. Vet Rec 2014; 175:561. [PMID: 25200429 DOI: 10.1136/vr.102604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Few drugs are approved for treating diseases caused by parasites in minor species such as fish. This is due, in part, to the expense of drug development and to the comparatively small market. In vivo effectiveness trials for antiparasitic drugs are costly, time consuming and require ethics approval, therefore an in vitro screening approach is a cost-effective alternative to finding promising drug candidates. We developed an in vitro testing system to test antimicrosporidial compounds against a microsporidian pathogen Heterosporis saurida. Five antiparasitic compounds, albendazole, fumagillin, TNP-70, nitazoxanide and lufenuron, were assayed for antimicrosporidial activity. All compounds reduced the number of H saurida spores in infected cells when applied at a concentration that did not appear to be toxic to the host cells. Albendazole inhibited replication of H saurida by >60 per cent, fumagillin and its analogue TNP-470 inhibited H saurida >80 per cent, nitazoxanide and lufenuron inhibited growth >70 per cent. The data suggest that both fumagillin and its analogous TNP-70 hold the best promise as therapeutic agents against H saurida. The ability to use fish cell cultures to assess drugs against H saurida demonstrates an approach that may be helpful to evaluate other drugs on different microsporidia and host cells.
Collapse
Affiliation(s)
- M Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - G Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - A-A Abdel-Baki
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia Faculty of Science, Zoology Department, Beni-Suef University, Beni-Suef, Egypt
| | - M Dkhil
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia Faculty of Science, Department of Zoology and Entomology, Helwan University, Cairo, Egypt
| | - M El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - S Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|