1
|
Mangan MJ, McCallum HI, West M, Scheele BC, Gillespie GR, Grogan LF. Differential recruitment drives pathogen-mediated competition between species in an amphibian chytridiomycosis system. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e3085. [PMID: 39821939 PMCID: PMC11751701 DOI: 10.1002/eap.3085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/15/2024] [Indexed: 01/30/2025]
Abstract
Pathogens that infect multiple host species have an increased capacity to cause extinctions through parasite-mediated apparent competition. Given unprecedented and continuing losses of biodiversity due to Batrachochytrium dendrobatidis (Bd), the causative fungus of the amphibian skin disease chytridiomycosis, a robust understanding of the mechanisms driving cross-species infection dynamics is essential. Here, we used stage-structured, susceptible-infected compartmental models to explore drivers of Bd-mediated apparent competition between two sympatric amphibians, the critically endangered Litoria spenceri and the non-threatened Litoria lesueurii. We additionally simulated the impact of plausible L. spenceri conservation management interventions on competitive outcomes between these two species. Despite being more susceptible to disease than its competitor, a high relative rate of recruitment allowed the non-threatened L. lesueurii to reach substantially higher densities than L. spenceri in our baseline models, applying a strong absolute force of infection on L. spenceri as an amplifying host. However, simulated management interventions which bolstered L. spenceri recruitment (i.e., captive breeding and release, removal of predatory non-native trout) spurred strong recoveries of L. spenceri while simultaneously (1) increasing the force of Bd infection in the environment and (2) reducing L. lesueurii population density. At high and moderate elevations, combined captive breeding/release and non-native trout removal were sufficient to make L. spenceri the most abundant species. Overall, our results demonstrate the importance of recruitment in moderating pathogen dynamics of multi-host amphibian chytridiomycosis systems. While infection-based parameters are undoubtedly important in Bd management, modifying relative rates of recruitment can substantially alter pathogen-mediated competition between species of an amphibian community.
Collapse
Affiliation(s)
- Madelyn J. Mangan
- Centre for Planetary Health and Food Security, and School of Environment and ScienceGriffith UniversitySouthportQueenslandAustralia
| | - Hamish I. McCallum
- Centre for Planetary Health and Food Security, and School of Environment and ScienceGriffith UniversitySouthportQueenslandAustralia
| | - Matt West
- School of BioSciencesUniversity of MelbourneParkvilleVictoriaAustralia
- Wild Research Pty LtdWarrandyteVictoriaAustralia
| | - Ben C. Scheele
- Fenner School of Environment and SocietyThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | | | - Laura F. Grogan
- Centre for Planetary Health and Food Security, and School of Environment and ScienceGriffith UniversitySouthportQueenslandAustralia
- School of the EnvironmentThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
2
|
Kásler A, Holly D, Herczeg D, Ujszegi J, Hettyey A. Chytridiomycosis and climate change: exposure to
Batrachochytrium dendrobatidis
and mild winter conditions do not increase mortality in juvenile agile frogs during hibernation. Anim Conserv 2023. [DOI: 10.1111/acv.12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- A. Kásler
- Department of Evolutionary Ecology Centre for Agricultural Research, Plant Protection Institute, Eötvös Loránd Research Network Budapest Hungary
- Doctoral School of Biology Institute of Biology, ELTE Eötvös Loránd University Budapest Hungary
| | - D. Holly
- Department of Evolutionary Ecology Centre for Agricultural Research, Plant Protection Institute, Eötvös Loránd Research Network Budapest Hungary
- Doctoral School of Biology Institute of Biology, ELTE Eötvös Loránd University Budapest Hungary
| | - D. Herczeg
- Department of Evolutionary Ecology Centre for Agricultural Research, Plant Protection Institute, Eötvös Loránd Research Network Budapest Hungary
- ELKH‐ELTE‐MTM Integrative Ecology Research Group Budapest Hungary
| | - J. Ujszegi
- Department of Evolutionary Ecology Centre for Agricultural Research, Plant Protection Institute, Eötvös Loránd Research Network Budapest Hungary
- Department of Systematic Zoology and Ecology ELTE Eötvös Loránd University Budapest Hungary
| | - A. Hettyey
- Department of Evolutionary Ecology Centre for Agricultural Research, Plant Protection Institute, Eötvös Loránd Research Network Budapest Hungary
- Department of Systematic Zoology and Ecology ELTE Eötvös Loránd University Budapest Hungary
| |
Collapse
|
3
|
Basanta MD, Anaya‐Morales SL, Martínez‐Ugalde E, González Martínez TM, Ávila‐Akerberg VD, Trejo MV, Rebollar EA. Metamorphosis and seasonality are major determinants of chytrid infection in a paedomorphic salamander. Anim Conserv 2022. [DOI: 10.1111/acv.12824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. D. Basanta
- Centro de Ciencias Genómicas Universidad Nacional Autónoma de México Cuernavaca Morelos Mexico
- Department of Biology University of Nevada Reno Reno NV USA
| | - S. L. Anaya‐Morales
- Centro de Ciencias Genómicas Universidad Nacional Autónoma de México Cuernavaca Morelos Mexico
| | - E. Martínez‐Ugalde
- Centro de Ciencias Genómicas Universidad Nacional Autónoma de México Cuernavaca Morelos Mexico
| | - T. M. González Martínez
- Facultad de Ciencias Universidad Nacional Autónoma de México, Ciudad Universitaria Ciudad de México Mexico
| | - V. D. Ávila‐Akerberg
- Instituto de Ciencias Agropecuarias y Rurales Universidad Autónoma del Estado de México Toluca Estado de México Mexico
| | - M. V. Trejo
- Facultad de Ciencias Universidad Nacional Autónoma de México, Ciudad Universitaria Ciudad de México Mexico
| | - E. A. Rebollar
- Centro de Ciencias Genómicas Universidad Nacional Autónoma de México Cuernavaca Morelos Mexico
| |
Collapse
|
4
|
Daversa D, Bosch J, Manica A, Garner TWJ, Fenton A. Host identity matters – up to a point: the community context of Batrachochytrium dendrobatidis transmission. Am Nat 2022; 200:584-597. [DOI: 10.1086/720638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Bielby J, Sausor C, Monsalve-Carcaño C, Bosch J. Temperature and duration of exposure drive infection intensity with the amphibian pathogen Batrachochytrium dendrobatidis. PeerJ 2022; 10:e12889. [PMID: 35186480 PMCID: PMC8830297 DOI: 10.7717/peerj.12889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/14/2022] [Indexed: 01/11/2023] Open
Abstract
The intensity of a pathogen infection plays a key role in determining how the host responds to infection. Hosts with high infections are more likely to transmit infection to others, and are may be more likely to experience progression from infection to disease symptoms, to being physiologically compromised by disease. Understanding how and why hosts exhibit variation in infection intensity therefore plays a major part in developing and implementing measures aimed at controlling infection spread, its effects, and its chance of persisting and circulating within a population of hosts. To track the relative importance of a number of variables in determining the level of infection intensity, we ran field-surveys at two breeding sites over a 12 month period using marked larvae of the common midwife toad (Alyes obstetricans) and their levels of infection with the amphibian pathogen Batrachochytrium dendrobatidis (Bd). At each sampling occasion we measured the density of larvae, the temperature of the water in the 48 h prior to sampling, the period of time the sampled individual had been in the water body, the developmental (Gosner) stage and the intensity of Bd infection of the individual. Overall our data suggest that the temperature and the duration of time spent in the water play a major role in determining the intensity of Bd infection within an individual host. However, although the duration of time spent in the water was clearly associated with infection intensity, the relationship was negative: larvae that had spent less than 3-6 months in the water had significantly higher infection intensities than those that had spent over 12 months, although this infection intensity peaked between 9 and 12 months. This could be due to animals with heavier infections developing more quickly, suffering increased mortality or, more likely, losing their mouthparts (the only part of anuran larvae that can be infected with Bd). Overall, our results identify drivers of infection intensity, and potentially transmissibility and spread, and we attribute these differences to both host and pathogen biology.
Collapse
Affiliation(s)
- Jon Bielby
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | | | | | - Jaime Bosch
- Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain,Biodiversity Research Institute (University of Oviedo-CSIC-Principality of Asturias), Mieres, Spain
| |
Collapse
|
6
|
Thumsová B, Donaire-Barroso D, El Mouden EH, Bosch J. Fatal chytridiomycosis in the Moroccan midwife toad Alytes maurus and potential distribution of Batrachochytrium dendrobatidis across Morocco. AFR J HERPETOL 2022. [DOI: 10.1080/21564574.2021.1998235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Barbora Thumsová
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
- Asociación Herpetológica Española (AHE), Madrid, Spain
| | | | - El Hassan El Mouden
- Laboratory of Water, Biodiversity and Climatic Change, Cadi Ayyad University, Marrakech, Morocco
| | - Jaime Bosch
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
- Biodiversity Research Institute, University of Oviedo-Principality of Asturias-CSIC, Mieres, Spain
| |
Collapse
|
7
|
Bosch J, Thumsová B, López-Rojo N, Pérez J, Alonso A, Fisher MC, Boyero L. Microplastics increase susceptibility of amphibian larvae to the chytrid fungus Batrachochytrium dendrobatidis. Sci Rep 2021; 11:22438. [PMID: 34789869 PMCID: PMC8599647 DOI: 10.1038/s41598-021-01973-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022] Open
Abstract
Microplastics (MPs), a new class of pollutants that pose a threat to aquatic biodiversity, are of increasing global concern. In tandem, the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) causing the disease chytridiomycosis is emerging worldwide as a major stressor to amphibians. We here assess whether synergies exist between this infectious disease and MP pollution by mimicking natural contact of a highly susceptible species (midwife toads, Alytes obstetricans) with a Bd-infected reservoir species (fire salamanders, Salamandra salamandra) in the presence and absence of MPs. We found that MP ingestion increases the burden of infection by Bd in a dose-dependent manner. However, MPs accumulated to a greater extent in amphibians that were not exposed to Bd, likely due to Bd-damaged tadpole mouthparts interfering with MP ingestion. Our experimental approach showed compelling interactions between two emergent processes, chytridiomycosis and MP pollution, necessitating further research into potential synergies between these biotic and abiotic threats to amphibians.
Collapse
Affiliation(s)
- Jaime Bosch
- Biodiversity Research Institute, University of Oviedo-Principality of Asturias-CSIC, Mieres, Spain. .,Centro de Investigación, Seguimiento y Evaluación, Parque Nacional Sierra de Guadarrama, Rascafría, Spain. .,Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain.
| | - Barbora Thumsová
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain.,Asociación Herpetológica Española, Madrid, Spain
| | - Naiara López-Rojo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Laboratoire d'Ecologie Alpine (LECA), Université Grenoble Alpes, UMR CNRS-UGA-USMB, Grenoble, France
| | - Javier Pérez
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Alberto Alonso
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Matthew C Fisher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial School of Public Health, London, UK
| | - Luz Boyero
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain.,IKERBASQUE, Bilbao, Spain
| |
Collapse
|
8
|
Palomar G, Jakóbik J, Bosch J, Kolenda K, Kaczmarski M, Jośko P, Roces-Díaz JV, Stachyra P, Thumsová B, Zieliński P, Pabijan M. Emerging infectious diseases of amphibians in Poland: distribution and environmental drivers. DISEASES OF AQUATIC ORGANISMS 2021; 147:1-12. [PMID: 34734569 DOI: 10.3354/dao03631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Emerging infectious diseases are a threat to biodiversity and have taken a large toll on amphibian populations worldwide. The chytrid fungi Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), and the iridovirus Ranavirus (Rv), are of concern as all have contributed to amphibian declines. In central and eastern Europe, their geographical and host distributions and main environmental drivers determining prevalence are poorly known. We screened over 1000 amphibians from natural and captive populations in Poland for the presence of Bd, Bsal and Rv. In wild amphibian populations, we found that Bd is widespread, present in 46 out of 115 sampled localities as well as 2 captive colonies, and relatively common with overall prevalence at 14.4% in 9 species. We found lower prevalence of Rv at 2.4%, present in 11 out of 92 sampling sites, with a taxonomic breadth of 8 different amphibian species. Bsal infection was not detected in any individuals. In natural populations, Pelophylax esculentus and Bombina variegata accounted for 75% of all Bd infections, suggesting a major role for these 2 species as pathogen reservoirs in Central European freshwater habitats. General linear models showed that climatic as well as landscape features are associated with Bd infection in Poland. We found that higher average annual temperature constrains Bd infection, while landscapes with numerous water bodies or artificial elements (a surrogate for urbanization) increase the chances of infection. Our results show that a combination of climatic and landscape variables may drive regional and local pathogen emergence.
Collapse
Affiliation(s)
- Gemma Palomar
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fisher MC, Pasmans F, Martel A. Virulence and Pathogenicity of Chytrid Fungi Causing Amphibian Extinctions. Annu Rev Microbiol 2021; 75:673-693. [PMID: 34351790 DOI: 10.1146/annurev-micro-052621-124212] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ancient enzootic associations between wildlife and their infections allow evolution to innovate mechanisms of pathogenicity that are counterbalanced by host responses. However, erosion of barriers to pathogen dispersal by globalization leads to the infection of hosts that have not evolved effective resistance and the emergence of highly virulent infections. Global amphibian declines driven by the rise of chytrid fungi and chytridiomycosis are emblematic of emerging infections. Here, we review how modern biological methods have been used to understand the adaptations and counteradaptations that these fungi and their amphibian hosts have evolved. We explore the interplay of biotic and abiotic factors that modify the virulence of these infections and dissect the complexity of this disease system. We highlight progress that has led to insights into how we might in the future lessen the impact of these emerging infections. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Matthew C Fisher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial School of Public Health, Imperial College London, London W2 1PG, United Kingdom;
| | - Frank Pasmans
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - An Martel
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| |
Collapse
|
10
|
Bosch J, Mora-Cabello de Alba A, Marquínez S, Price SJ, Thumsová B, Bielby J. Long-Term Monitoring of Amphibian Populations of a National Park in Northern Spain Reveals Negative Persisting Effects of Ranavirus, but Not Batrachochytrium dendrobatidis. Front Vet Sci 2021; 8:645491. [PMID: 34235196 PMCID: PMC8255480 DOI: 10.3389/fvets.2021.645491] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/21/2021] [Indexed: 11/25/2022] Open
Abstract
Amphibians are the most highly threatened vertebrates, and emerging pathogens are a serious threat to their conservation. Amphibian chytrid fungi and the viruses of the Ranavirus genus are causing disease outbreaks worldwide, including in protected areas such as National Parks. However, we lack information about their effect over amphibian populations in the long-term, and sometimes these mortality episodes are considered as transient events without serious consequences over longer time-spans. Here, we relate the occurrence of both pathogens with the population trends of 24 amphibian populations at 15 sites across a national Park in northern Spain over a 14-year period. Just one out 24 populations presents a positive population trend being free of both pathogens, while seven populations exposed to one or two pathogens experienced strong declines during the study period. The rest of the study populations (16) remain stable, and these tend to be of species that are not susceptible to the pathogen present or are free of pathogens. Our study is consistent with infectious diseases playing an important role in dictating amphibian population trends and emphasizes the need to adopt measures to control these pathogens in nature. We highlight that sites housing species carrying Ranavirus seems to have experienced more severe population-level effects compared to those with the amphibian chytrid fungus, and that ranaviruses could be just as, or more important, other more high-profile amphibian emerging pathogens.
Collapse
Affiliation(s)
- Jaime Bosch
- Research Unit of Biodiversity (Consejo Superior de Investigaciones Científicas, Universidad de Oviedo, Principado de Asturias), Oviedo University, Mieres, Spain.,Museo Nacional de Ciencias Naturales-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | - Stephen J Price
- Genetic Institute, University College London, London, United Kingdom
| | - Barbora Thumsová
- Research Unit of Biodiversity (Consejo Superior de Investigaciones Científicas, Universidad de Oviedo, Principado de Asturias), Oviedo University, Mieres, Spain.,Museo Nacional de Ciencias Naturales-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jon Bielby
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
11
|
Bosch J, Carrascal LM, Manica A, Garner TWJ. Significant reductions of host abundance weakly impact infection intensity of Batrachochytrium dendrobatidis. PLoS One 2020; 15:e0242913. [PMID: 33253322 PMCID: PMC7703926 DOI: 10.1371/journal.pone.0242913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022] Open
Abstract
Infectious diseases are considered major threats to biodiversity, however strategies to mitigate their impacts in the natural world are scarce and largely unsuccessful. Chytridiomycosis is responsible for the decline of hundreds of amphibian species worldwide, but an effective disease management strategy that could be applied across natural habitats is still lacking. In general amphibian larvae can be easily captured, offering opportunities to ascertain the impact of altering the abundance of hosts, considered to be a key parameter affecting the severity of the disease. Here, we report the results of two experiments to investigate how altering host abundance affects infection intensity in amphibian populations of a montane area of Central Spain suffering from lethal amphibian chytridiomycosis. Our laboratory-based experiment supported the conclusion that varying density had a significant effect on infection intensity when salamander larvae were housed at low densities. Our field experiment showed that reducing the abundance of salamander larvae in the field also had a significant, but weak, impact on infection the following year, but only when removals were extreme. While this suggests adjusting host abundance as a mitigation strategy to reduce infection intensity could be useful, our evidence suggests only heavy culling efforts will succeed, which may run contrary to objectives for conservation.
Collapse
Affiliation(s)
- Jaime Bosch
- Research Unit of Biodiversity (CSIC, UO, PA), Gonzalo Gutiérrez Quirós s/n, Oviedo University - Campus Mieres, Edificio de Investigación, Mieres, Spain
- Centro de Investigación, Seguimiento y Evaluación, Rascafría, Spain
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| | | | - Andrea Manica
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
12
|
Iritani R, Visher E, Boots M. The evolution of stage-specific virulence: Differential selection of parasites in juveniles. Evol Lett 2019; 3:162-172. [PMID: 31289690 PMCID: PMC6591554 DOI: 10.1002/evl3.105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/12/2019] [Indexed: 11/05/2022] Open
Abstract
The impact of infectious disease is often very different in juveniles and adults, but theory has focused on the drivers of stage-dependent defense in hosts rather than the potential for stage-dependent virulence evolution in parasites. Stage structure has the potential to be important to the evolution of pathogens because it exposes parasites to heterogeneous environments in terms of both host characteristics and transmission pathways. We develop a stage-structured (juvenile-adult) epidemiological model and examine the evolutionary outcomes of stage-specific virulence under the classic assumption of a transmission-virulence trade-off. We show that selection on virulence against adults remains consistent with the classic theory. However, the evolution of juvenile virulence is sensitive to both demography and transmission pathway with higher virulence against juveniles being favored either when the transmission pathway is assortative (juveniles preferentially interact together) and the juvenile stage is long, or in contrast when the transmission pathway is disassortative and the juvenile stage is short. These results highlight the potentially profound effects of host stage structure on determining parasite virulence in nature. This new perspective may have broad implications for both understanding and managing disease severity.
Collapse
Affiliation(s)
- Ryosuke Iritani
- Biosciences, College of Life and Environmental ScienceUniversity of ExeterExeterUnited Kingdom
- Department of Integrative BiologyUniversity of California3040 Valley Life Sciences Building #3140BerkeleyCA94720
| | - Elisa Visher
- Department of Integrative BiologyUniversity of California3040 Valley Life Sciences Building #3140BerkeleyCA94720
| | - Mike Boots
- Biosciences, College of Life and Environmental ScienceUniversity of ExeterExeterUnited Kingdom
- Department of Integrative BiologyUniversity of California3040 Valley Life Sciences Building #3140BerkeleyCA94720
| |
Collapse
|
13
|
Bosch J, Fernández-Beaskoetxea S, Garner TWJ, Carrascal LM. Long-term monitoring of an amphibian community after a climate change- and infectious disease-driven species extirpation. GLOBAL CHANGE BIOLOGY 2018; 24:2622-2632. [PMID: 29446515 DOI: 10.1111/gcb.14092] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/11/2018] [Accepted: 01/26/2018] [Indexed: 05/28/2023]
Abstract
Infectious disease and climate change are considered major threats to biodiversity and act as drivers behind the global amphibian decline. This is, to a large extent, based on short-term studies that are designed to detect the immediate and strongest biodiversity responses to a threatening process. What few long-term studies are available, although typically focused on single species, report outcomes that often diverge significantly from the short-term species responses. Here, we report the results of an 18-year survey of an amphibian community exposed to both climate warming and the emergence of lethal chytridiomycosis. Our study shows that the impacts of infectious disease are ongoing but restricted to two out of nine species that form the community, despite the fact all species can become infected with the fungus. Climate warming appears to be affecting four out of the nine species, but the response of three of these is an increase in abundance. Our study supports a decreasing role of infectious disease on the community, and an increasing and currently positive effect of climate warming. We caution that if the warming trends continue, the net positive effect will turn negative as amphibian breeding habitat becomes unavailable as water bodies dry, a pattern that already may be underway.
Collapse
Affiliation(s)
- Jaime Bosch
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
- Centro de Investigación, Seguimiento y Evaluación, Parque Nacional de la Sierra de Guadarrama, Rascafría, Spain
| | | | | | | |
Collapse
|
14
|
Spitzen-van der Sluijs A, Canessa S, Martel A, Pasmans F. Fragile coexistence of a global chytrid pathogen with amphibian populations is mediated by environment and demography. Proc Biol Sci 2018; 284:rspb.2017.1444. [PMID: 28978729 DOI: 10.1098/rspb.2017.1444] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/30/2017] [Indexed: 01/05/2023] Open
Abstract
Unravelling the multiple interacting drivers of host-pathogen coexistence is crucial in understanding how an apparently stable state of endemism may shift towards an epidemic and lead to biodiversity loss. Here, we investigate the apparent coexistence of the global amphibian pathogen Batrachochytrium dendrobatidis (Bd) with Bombina variegata populations in The Netherlands over a 7-year period. We used a multi-season mark-recapture dataset and assessed potential drivers of coexistence (individual condition, environmental mediation and demographic compensation) at the individual and population levels. We show that even in a situation with a clear cost incurred by endemic Bd, population sizes remain largely stable. Current environmental conditions and an over-dispersed pathogen load probably stabilize disease dynamics, but as higher temperatures increase infection probability, changing environmental conditions, for example a climate-change-driven rise in temperature, could unbalance the current fragile host-pathogen equilibrium. Understanding the proximate mechanisms of such environmental mediation and of site-specific differences in infection dynamics can provide vital information for mitigation actions.
Collapse
Affiliation(s)
- Annemarieke Spitzen-van der Sluijs
- Reptile, Amphibian and Fish Conservation Netherlands, PO Box 1413, 6501 BK Nijmegen, The Netherlands .,Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Stefano Canessa
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
15
|
Daversa DR, Monsalve-Carcaño C, Carrascal LM, Bosch J. Seasonal migrations, body temperature fluctuations, and infection dynamics in adult amphibians. PeerJ 2018; 6:e4698. [PMID: 29761041 PMCID: PMC5947160 DOI: 10.7717/peerj.4698] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/12/2018] [Indexed: 12/22/2022] Open
Abstract
Risks of parasitism vary over time, with infection prevalence often fluctuating with seasonal changes in the annual cycle. Identifying the biological mechanisms underlying seasonality in infection can enable better prediction and prevention of future infection peaks. Obtaining longitudinal data on individual infections and traits across seasons throughout the annual cycle is perhaps the most effective means of achieving this aim, yet few studies have obtained such information for wildlife. Here, we tracked spiny common toads (Bufo spinosus) within and across annual cycles to assess seasonal variation in movement, body temperatures and infection from the fungal parasite, Batrachochytrium dendrobatidis (Bd). Across annual cycles, toads did not consistently sustain infections but instead gained and lost infections from year to year. Radio-tracking showed that infected toads lose infections during post-breeding migrations, and no toads contracted infection following migration, which may be one explanation for the inter-annual variability in Bd infections. We also found pronounced seasonal variation in toad body temperatures. Body temperatures approached 0 °C during winter hibernation but remained largely within the thermal tolerance range of Bd. These findings provide direct documentation of migratory recovery (i.e., loss of infection during migration) and escape in a wild population. The body temperature reductions that we observed during hibernation warrant further consideration into the role that this period plays in seasonal Bd dynamics.
Collapse
Affiliation(s)
- David R Daversa
- Institute for Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Camino Monsalve-Carcaño
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Luis M Carrascal
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Jaime Bosch
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain.,Centro de Investigación, Seguimiento y Evaluación, Parque Nacional de la Sierra de Guadarrama, Rascafría, Madrid, Spain
| |
Collapse
|
16
|
Hite JL, Bosch J, Fernández-Beaskoetxea S, Medina D, Hall SR. Joint effects of habitat, zooplankton, host stage structure and diversity on amphibian chytrid. Proc Biol Sci 2017; 283:rspb.2016.0832. [PMID: 27466456 DOI: 10.1098/rspb.2016.0832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/05/2016] [Indexed: 11/12/2022] Open
Abstract
Why does the severity of parasite infection differ dramatically across habitats? This question remains challenging to answer because multiple correlated pathways drive disease. Here, we examined habitat-disease links through direct effects on parasites and indirect effects on parasite predators (zooplankton), host diversity and key life stages of hosts. We used a case study of amphibian hosts and the chytrid fungus, Batrachochytrium dendrobatidis, in a set of permanent and ephemeral alpine ponds. A field experiment showed that ultraviolet radiation (UVR) killed the free-living infectious stage of the parasite. Yet, permanent ponds with more UVR exposure had higher infection prevalence. Two habitat-related indirect effects worked together to counteract parasite losses from UVR: (i) UVR reduced the density of parasite predators and (ii) permanent sites fostered multi-season host larvae that fuelled parasite production. Host diversity was unlinked to hydroperiod or UVR but counteracted parasite gains; sites with higher diversity of host species had lower prevalence of infection. Thus, while habitat structure explained considerable variation in infection prevalence through two indirect pathways, it could not account for everything. This study demonstrates the importance of creating mechanistic, food web-based links between multiple habitat dimensions and disease.
Collapse
Affiliation(s)
- Jessica L Hite
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jaime Bosch
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain Centro de Investigación, Seguimiento y Evaluación, Parque Nacional de la Sierra de Guadarrama, Cta. M-604, Km. 27.6, 28740 Rascafría, Spain
| | | | - Daniel Medina
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Spencer R Hall
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
17
|
Antifungal treatment of wild amphibian populations caused a transient reduction in the prevalence of the fungal pathogen, Batrachochytrium dendrobatidis. Sci Rep 2017; 7:5956. [PMID: 28729557 PMCID: PMC5519715 DOI: 10.1038/s41598-017-05798-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/06/2017] [Indexed: 01/09/2023] Open
Abstract
Emerging infectious diseases can drive host populations to extinction and are a major driver of biodiversity loss. Controlling diseases and mitigating their impacts is therefore a priority for conservation science and practice. Chytridiomycosis is a devastating disease of amphibians that is caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), and for which there is an urgent need to develop mitigation methods. We treated tadpoles of the common midwife toad (Alytes obstetricans) with antifungal agents using a capture-treat-release approach in the field. Antifungal treatment during the spring reduced the prevalence of Bd in the cohort of tadpoles that had overwintered and reduced transmission of Bd from this cohort to the uninfected young-of-the-year cohort. Unfortunately, the mitigation was only transient, and the antifungal treatment was unable to prevent the rapid spread of Bd through the young-of-the year cohort. During the winter, Bd prevalence reached 100% in both the control and treated ponds. In the following spring, no effects of treatment were detectable anymore. We conclude that the sporadic application of antifungal agents in the present study was not sufficient for the long-term and large-scale control of Bd in this amphibian system.
Collapse
|
18
|
Rosa GM, Sabino-Pinto J, Laurentino TG, Martel A, Pasmans F, Rebelo R, Griffiths RA, Stöhr AC, Marschang RE, Price SJ, Garner TWJ, Bosch J. Impact of asynchronous emergence of two lethal pathogens on amphibian assemblages. Sci Rep 2017; 7:43260. [PMID: 28240267 PMCID: PMC5327436 DOI: 10.1038/srep43260] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/17/2017] [Indexed: 12/15/2022] Open
Abstract
Emerging diseases have been increasingly associated with population declines, with co-infections exhibiting many types of interactions. The chytrid fungus (Batrachochytrium dendrobatidis) and ranaviruses have extraordinarily broad host ranges, however co-infection dynamics have been largely overlooked. We investigated the pattern of co-occurrence of these two pathogens in an amphibian assemblage in Serra da Estrela (Portugal). The detection of chytridiomycosis in Portugal was linked to population declines of midwife-toads (Alytes obstetricans). The asynchronous and subsequent emergence of a second pathogen - ranavirus - caused episodes of lethal ranavirosis. Chytrid effects were limited to high altitudes and a single host, while ranavirus was highly pathogenic across multiple hosts, life-stages and altitudinal range. This new strain (Portuguese newt and toad ranavirus – member of the CMTV clade) caused annual mass die-offs, similar in host range and rapidity of declines to other locations in Iberia affected by CMTV-like ranaviruses. However, ranavirus was not always associated with disease, mortality and declines, contrasting with previous reports on Iberian CMTV-like ranavirosis. We found little evidence that pre-existing chytrid emergence was associated with ranavirus and the emergence of ranavirosis. Despite the lack of cumulative or amplified effects, ranavirus drove declines of host assemblages and changed host community composition and structure, posing a grave threat to all amphibian populations.
Collapse
Affiliation(s)
- Gonçalo M Rosa
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, UK.,Institute of Zoology, Zoological Society of London, Regent's Park, NW1 4RY, London, UK.,Centre for Ecology, Evolution and Environmental Changes (CE3C), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.,Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Joana Sabino-Pinto
- Technische Universität Braunschweig, Division of Evolutionary Biology, Zoological Institute, Mendelssohnstr. 4, 38106 Braunschweig, Germany
| | - Telma G Laurentino
- Computational Biology and Population Genomics Group, Centre for Ecology, Evolution and Environmental Changes (CE3C), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.,Zoological Institute, University of Basel, Vesalgasse 1, Basel, Switzerland
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Rui Rebelo
- Centre for Ecology, Evolution and Environmental Changes (CE3C), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Richard A Griffiths
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, UK
| | - Anke C Stöhr
- Fachgebiet für Umwelt- und Tierhygiene, Universität Hohenheim, Stuttgart, Germany
| | - Rachel E Marschang
- Fachgebiet für Umwelt- und Tierhygiene, Universität Hohenheim, Stuttgart, Germany.,Laboklin GmbH &Co. KG, Laboratory for Clinical Diagnostics, Bad Kissingen, Germany
| | - Stephen J Price
- Institute of Zoology, Zoological Society of London, Regent's Park, NW1 4RY, London, UK.,UCL Genetics Institute, Gower Street, London, WC1E 6BT, UK
| | - Trenton W J Garner
- Institute of Zoology, Zoological Society of London, Regent's Park, NW1 4RY, London, UK
| | - Jaime Bosch
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
19
|
Tracking the introduction history of Ichthyosaura alpestris in a protected area of Central Spain. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-0934-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Gabor C, Forsburg Z, Vörös J, Serrano-Laguna C, Bosch J. Differences in chytridiomycosis infection costs between two amphibian species from Central Europe. AMPHIBIA-REPTILIA 2017. [DOI: 10.1163/15685381-00003099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Batrachochytrium dendrobatidis (Bd) causes the disease chytridiomycosis associated with amphibian declines. Response and costs of infection varies greatly between species. Bd can induce a stress response in amphibians resulting in elevated corticosterone (CORT). We exposed Bombina variegata and Hyla arborea tadpoles to Bd+ or Bd- Salamandra salamandra larvae and measured CORT release rates, Bd infection loads, and survival through metamorphosis. Tadpoles of both species exposed to Bd+ larvae had elevated CORT release rates compared to tadpoles exposed to Bd- larvae. Bombina variegata appear less resistant to infection than H. arborea, showing higher Bd loads and more infected individuals. Within species, we did not find differences in cost of infection on survival, however more B. variegata tadpoles reached metamorphosis than H. arborea. The differences in resistance may be species specific, owing to higher immunity defenses with H. arborea having higher overall CORT release rates, and differences in antimicrobial peptides, or to differences in Bd strain or other unexplored mechanisms.
Collapse
Affiliation(s)
- Caitlin Gabor
- Texas State University, 601 University Drive, San Marcos, Texas, 78666, USA
| | - Zachery Forsburg
- Texas State University, 601 University Drive, San Marcos, Texas, 78666, USA
| | - Judit Vörös
- Department of Zoology, Hungarian Natural History Museum, 1088 Budapest, Baross u. 13., Hungary
| | - Celia Serrano-Laguna
- Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Jaime Bosch
- Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Centro de Investigación, Seguimiento y Evaluación, Parque Nacional de la Sierra de Guadarrama, Cta. M-604, km 27.6, 28740 Rascafría, Spain
| |
Collapse
|
21
|
Palomar G, Bosch J, Cano JM. Heritability of Batrachochytrium dendrobatidis burden and its genetic correlation with development time in a population of Common toad (Bufo spinosus). Evolution 2016; 70:2346-2356. [PMID: 27480345 DOI: 10.1111/evo.13029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 11/26/2022]
Abstract
Despite the important threat that emerging pathogens pose for the conservation of biodiversity as well as human health, very little is known about the adaptive potential of host species to withstand infections. We studied the quantitative genetic architecture responsible for the burden of the fungal pathogen Batrachochytrium dendrobatidis in a population of common toads in conjunction with other life-history traits (i.e., body size and development rate) that may be affected by common selective pressures. We found a significant heritable component that is associated with fungal burden, which may allow for local adaptation to this pathogen to proceed. In addition, the high genetic correlation found between fungal burden and development time suggests that both traits have to be taken into account in order to assess the adaptive response of host populations to this emerging pathogen.
Collapse
Affiliation(s)
- Gemma Palomar
- Research Unit of Biodiversity (UO-CSIC-PA), Edificio de Investigación, Gonzalo Gutiérrez Quirós s/n, 33600, Mieres, Spain. .,Department of Biology of Organisms and Systems, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006, Oviedo, Spain.
| | - Jaime Bosch
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal, 2, 28006, Madrid, Spain.,Centro de Investigación, Seguimiento y Evaluación, Parque Nacional de la Sierra de Guadarrama, Cta. M-604, Km. 27.6, 28740, Rascafría, Spain
| | - José Manuel Cano
- Research Unit of Biodiversity (UO-CSIC-PA), Edificio de Investigación, Gonzalo Gutiérrez Quirós s/n, 33600, Mieres, Spain.,Department of Biology of Organisms and Systems, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006, Oviedo, Spain
| |
Collapse
|
22
|
Fernández-Beaskoetxea S, Bosch J, Bielby J. Infection and transmission heterogeneity of a multi-host pathogen (Batrachochytrium dendrobatidis) within an amphibian community. DISEASES OF AQUATIC ORGANISMS 2016; 118:11-20. [PMID: 26865231 DOI: 10.3354/dao02963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The majority of parasites infect multiple hosts. As the outcome of the infection is different in each of them, most studies of wildlife disease focus on the few species that suffer the most severe consequences. However, the role that each host plays in the persistence and transmission of infection can be crucial to understanding the spread of a parasite and the risk it poses to the community. Current theory predicts that certain host species can modulate the infection in other species by amplifying or diluting both infection prevalence and infection intensity, both of which have implications for disease risk within those communities. The fungus Batrachochytrium dendrobatidis (Bd), the causal agent of the disease chytridiomycosis, has caused global amphibian population declines and extinctions. However, not all infected species are affected equally, and thus Bd is a good example of a multi-host pathogen that must ultimately be studied with a community approach. To test whether the common midwife toad Alytes obstetricans is a reservoir and possible amplifier of infection of other species, we used experimental approaches in captive and wild populations to determine the effect of common midwife toad larvae on infection of other amphibian species found in the Peñalara Massif, Spain. We observed that the most widely and heavily infected species, the common midwife toad, may be amplifying the infection loads in other species, all of which have different degrees of susceptibility to Bd infection. Our results have important implications for performing mitigation actions focused on potential 'amplifier' hosts and for better understanding the mechanisms of Bd transmission.
Collapse
|