1
|
Zhang J, Wang S, Xu C, Wang S, Du J, Niu M, Yang J, Li Y. Pathogenic selection promotes adaptive immune variations against serious bottlenecks in early invasions of bullfrogs. iScience 2023; 26:107316. [PMID: 37539025 PMCID: PMC10393753 DOI: 10.1016/j.isci.2023.107316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/22/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
Adaptive genetic variations are key for understanding evolutionary processes influencing invasions. However, we have limited knowledge on how adaptive genetic diversity in invasive species responds to new pathogenic environments. Here, we compared variations in immune major histocompatibility complex (MHC) class-II β gene and neutral loci in relation to pathogenic chytrid fungus (Batrachochytrium dendrobatidis, Bd) infection across invasive and native populations of American bullfrog between China and United States (US). Chinese invasive populations show a 60% reduction in neutral cytb variations relative to US native populations, and there were similar MHC variation and functional diversity between them. One MHC allele private to China was under recent positive selection and associated with decreased Bd infection, partly explaining the lower Bd prevalence for Chinese populations than for native US populations. These results suggest that pathogen-mediated selection favors adaptive MHC variations and functional diversity maintenance against serious bottlenecks during the early invasions (within 15 generations) of bullfrogs.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
- University of Chinese Academy of Sciences Beijing 100049, China
| | - Supen Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
| | - Chunxia Xu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
- University of Chinese Academy of Sciences Beijing 100049, China
| | - Siqi Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
- University of Chinese Academy of Sciences Beijing 100049, China
| | - Jiacong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Meiling Niu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Jiaxue Yang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Yiming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
- University of Chinese Academy of Sciences Beijing 100049, China
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
2
|
Schilling AK, Mazzamuto MV, Romeo C. A Review of Non-Invasive Sampling in Wildlife Disease and Health Research: What's New? Animals (Basel) 2022; 12:1719. [PMID: 35804619 PMCID: PMC9265025 DOI: 10.3390/ani12131719] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/14/2022] Open
Abstract
In the last decades, wildlife diseases and the health status of animal populations have gained increasing attention from the scientific community as part of a One Health framework. Furthermore, the need for non-invasive sampling methods with a minimal impact on wildlife has become paramount in complying with modern ethical standards and regulations, and to collect high-quality and unbiased data. We analysed the publication trends on non-invasive sampling in wildlife health and disease research and offer a comprehensive review on the different samples that can be collected non-invasively. We retrieved 272 articles spanning from 1998 to 2021, with a rapid increase in number from 2010. Thirty-nine percent of the papers were focussed on diseases, 58% on other health-related topics, and 3% on both. Stress and other physiological parameters were the most addressed research topics, followed by viruses, helminths, and bacterial infections. Terrestrial mammals accounted for 75% of all publications, and faeces were the most widely used sample. Our review of the sampling materials and collection methods highlights that, although the use of some types of samples for specific applications is now consolidated, others are perhaps still underutilised and new technologies may offer future opportunities for an even wider use of non-invasively collected samples.
Collapse
Affiliation(s)
- Anna-Katarina Schilling
- Previously Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK;
| | - Maria Vittoria Mazzamuto
- Haub School of Environment and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, WY 82072, USA;
- Department of Theoretical and Applied Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Claudia Romeo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via Bianchi 9, 25124 Brescia, Italy
| |
Collapse
|
3
|
First Survey of the Pathogenic Fungus Batrachochytrium dendrobatidis in Wild Populations of the Yunnan Caecilian (Ichthyophis bannanicus) in Guangxi, China. J Wildl Dis 2022; 58:450-453. [PMID: 35113986 DOI: 10.7589/jwd-d-21-00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/04/2021] [Indexed: 11/20/2022]
Abstract
Batrachochytrium dendrobatidis (Bd), which causes chytridiomycosis, mainly infects Anura and Caudata but is poorly known in Gymnophiona. We conducted a survey of Bd in the Yunnan caecilian (Ichthyophis bannanicus) and found that 6 of 71 samples (8.4%) tested positive for Bd. To our knowledge, this is the first detection of Bd in wild I. bannanicus.
Collapse
|
4
|
Kärvemo S, Laurila A, Höglund J. Urban environment and reservoir host species are associated with Batrachochytrium dendrobatidis infection prevalence in the common toad. DISEASES OF AQUATIC ORGANISMS 2019; 134:33-42. [PMID: 32132271 DOI: 10.3354/dao03359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human-induced changes of the environment, including landscape alteration and habitat loss, may affect wildlife disease dynamics and have important ramifications for wildlife conservation. Amphibians are among the vertebrate taxa most threatened by anthropogenic habitat change. The emerging fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused extinctions and population declines in hundreds of anuran species globally. We studied how the urban landscape is associated with the prevalence of Bd infections by sampling 655 anurans of 3 species (mainly the common toad Bufo bufo) in 42 ponds surrounded by different amounts of urban habitat (defined as towns, cities or villages). We also examined the association between Bd infections and a potential reservoir host species (the moor frog Rana arvalis). We found that 38% of the sites were positive for Bd with an infection prevalence of 4.4%. The extent of urban landscape was negatively correlated with Bd infection prevalence. However, the positive association of Bd with the presence of the possible reservoir species was substantially stronger than the urban effects. The body condition index of B. bufo was negatively associated with Bd infection. This Bd effect was stronger than the negative effect of urban landscape on body condition. Our results suggest that urban environments in Sweden have a negative impact on Bd infections, while the presence of the reservoir species has a positive impact on Bd prevalence. Our study also highlights the potential importance of Bd infection on host fitness, especially in rural landscapes.
Collapse
Affiliation(s)
- Simon Kärvemo
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, 75236 Uppsala, Sweden
| | | | | |
Collapse
|
5
|
Mutnale MC, Anand S, Eluvathingal LM, Roy JK, Reddy GS, Vasudevan K. Enzootic frog pathogen Batrachochytrium dendrobatidis in Asian tropics reveals high ITS haplotype diversity and low prevalence. Sci Rep 2018; 8:10125. [PMID: 29973607 PMCID: PMC6031667 DOI: 10.1038/s41598-018-28304-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/20/2018] [Indexed: 11/09/2022] Open
Abstract
Emerging Infectious Diseases (EIDs) are a major threat to wildlife and a key player in the declining amphibian populations worldwide. One such EID is chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd), a fungal pathogen. Aetiology of Bd infection is poorly known from tropical frogs in Asian biodiversity hotspots. Surveys were carried out in four biodiversity hotspots to ascertain the status of Bd fungus. We collected a total of 1870 swab samples from frogs representing 32 genera and 111 species. Nested PCRs revealed low prevalence (8.4%) and high Bd haplotype richness was revealed after sequencing. We document 57 Bd Internal Transcribed Spacer region (ITS) haplotypes, of which 46 were unique to the global database. Bd ITS region showed indels at the Taqman binding site and qPCR reverse primer binding site, suggesting qPCR is unsuitable for diagnosis in Asian Bd coldspots. Our median-joining network and Bayesian tree analyses reveal that the Asian haplotypes, with the exception of Korea, formed a separate clade along with pandemic BdGPL (Bd Global Panzootic Lineage) haplotype. We hypothesise that the frog populations in Asian tropics might harbour several endemic strains of Bd, and the high levels of diversity and uniqueness of Bd haplotypes in the region, probably resulted from historical host-pathogen co-evolution.
Collapse
Affiliation(s)
- Milind C Mutnale
- CSIR-Centre for Cellular and Molecular Biology, Laboratory for the Conservation of Endangered Species, Hyderabad, Telangana, India
| | - Sachin Anand
- CSIR-Centre for Cellular and Molecular Biology, Laboratory for the Conservation of Endangered Species, Hyderabad, Telangana, India
| | | | - Jayanta K Roy
- Department of Life Science and Bioinformatics, Assam University, Diphu Campus, Karbi Anglong, Assam, 782460, India
| | - Gundlapally S Reddy
- CSIR-Centre for Cellular and Molecular Biology, Laboratory for the Conservation of Endangered Species, Hyderabad, Telangana, India
| | - Karthikeyan Vasudevan
- CSIR-Centre for Cellular and Molecular Biology, Laboratory for the Conservation of Endangered Species, Hyderabad, Telangana, India.
| |
Collapse
|
6
|
Wang S, Fan L, Liu C, Li J, Gao X, Zhu W, Li Y. The origin of invasion of an alien frog species in Tibet, China. Curr Zool 2018; 63:615-621. [PMID: 29492022 PMCID: PMC5804215 DOI: 10.1093/cz/zow117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/10/2016] [Indexed: 11/15/2022] Open
Abstract
Identifying the origins of alien species has important implications for effectively controlling the spread of alien species. The black-spotted frog Pelophylax nigromaculatus, originally from East Asia, has become an alien species on the Tibetan Plateau (TP). In this study, we collected 300 individuals of P. nigromaculatus from 13 native regions and 2 invasive regions (including Nyingchi and Lhasa) on the TP. To identify the source region of the TP introductions, we sequenced portions of the mitochondrial cyt b gene. We sequenced a ∼600-bp portion of the mitochondrial cyt b gene to identify 69 haplotypes (124 polymorphic sites) in all sampled populations. According to the network results, we suggest that the P. nigromaculatus found on the TP was most likely originated from Chongqing by human introduction. Furthermore, we found that the genetic diversity was significantly lower for invasive than for native sites due to founder effects. Our study provides genetic evidence that this alien species invaded the cold environment of high elevations and expanded the distribution of P. nigromaculatus in China.
Collapse
Affiliation(s)
- Supen Wang
- Institute of Zoology, Chinese Academy of Sciences, Key Laboratory of Animal Ecology and Conservation Biology, Beijing 100101, China
| | - Liqing Fan
- Institute of Plateau Ecology, Tibet Agriculture and Animal Husbandry College, Bayi Town, Linzhi County, Xizang Province 860000, China
- National Forest Ecosystem Observation & Research Station of Tibet Linzhi, Linzhi 860000, China
| | - Conghui Liu
- Institute of Zoology, Chinese Academy of Sciences, Key Laboratory of Animal Ecology and Conservation Biology, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Li
- Nanjing Institute of Environmental Sciences under Ministry of Environmental Protection of China, Nanjing 210042, China
| | - Xu Gao
- Institute of Zoology, Chinese Academy of Sciences, Key Laboratory of Animal Ecology and Conservation Biology, Beijing 100101, China
- Institute of Plateau Ecology, Tibet Agriculture and Animal Husbandry College, Bayi Town, Linzhi County, Xizang Province 860000, China
| | - Wei Zhu
- Institute of Zoology, Chinese Academy of Sciences, Key Laboratory of Animal Ecology and Conservation Biology, Beijing 100101, China
- Institute of Plateau Ecology, Tibet Agriculture and Animal Husbandry College, Bayi Town, Linzhi County, Xizang Province 860000, China
| | - Yiming Li
- Institute of Zoology, Chinese Academy of Sciences, Key Laboratory of Animal Ecology and Conservation Biology, Beijing 100101, China
- Institute of Plateau Ecology, Tibet Agriculture and Animal Husbandry College, Bayi Town, Linzhi County, Xizang Province 860000, China
- Address correspondence to Yiming Li. E-mail:
| |
Collapse
|