1
|
Rutenko AN, Zykov MM, Gritsenko VA, Yu Fershalov M, Jenkerson MR, Manulchev DS, Racca R, Nechayuk VE. Acoustic monitoring and analyses of air gun, pile driving, vessel, and ambient sounds during the 2015 seismic surveys on the Sakhalin shelf. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:744. [PMID: 36255507 PMCID: PMC9579097 DOI: 10.1007/s10661-022-10021-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/10/2021] [Indexed: 05/31/2023]
Abstract
During the summer of 2015, four 4D seismic surveys were conducted on the northeastern Sakhalin shelf near the feeding grounds of the Korean-Okhotsk (western) gray whale (Eschrichtius robustus) population. In addition to the seismic surveys, onshore pile driving activities and vessel operations occurred. Forty autonomous underwater acoustic recorders provided data in the 2 Hz to15 kHz frequency band. Recordings were analyzed to evaluate the characteristics of impulses propagating from the seismic sources. Acoustic metrics analyzed comprised peak sound pressure level (PK), mean square sound pressure level (SPL), sound exposure level (SEL), T100%, T90% (the time intervals that contain the full and 90% of the energy of the impulse), and kurtosis. The impulses analyzed differed significantly due to the variability and complexity of propagation in the shallow water of the northeast Sakhalin shelf. At larger ranges, a seismic precursor propagated in the seabed ahead of the acoustic impulse, and the impulses often interfered with each other, complicating analyses. Additional processing of recordings allowed evaluation and documentation of relevant metrics for pile driving, vessel sounds, and ambient background levels. The computed metrics were used to calibrate acoustic models, generating time resolved estimates of the acoustic levels from seismic surveys, pile driving, and vessel operations on a gray whale distribution grid and along observed gray whale tracks. This paper describes the development of the metrics and the calibrated acoustic models, both of which will be used in work quantifying gray whale behavioral and distribution responses to underwater sounds and to determine whether these observed responses have the potential to impact important parameters at the population level (e.g., reproductive success).
Collapse
Affiliation(s)
- Alexander N Rutenko
- Far East Branch, V.I. Il'ichev Pacific Oceanological Institute, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | | | - Vladimir A Gritsenko
- Far East Branch, V.I. Il'ichev Pacific Oceanological Institute, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Mikhail Yu Fershalov
- Far East Branch, V.I. Il'ichev Pacific Oceanological Institute, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Michael R Jenkerson
- ExxonMobil Exploration Company, Spring, TX, 77389, USA.
- , Lucas, TX, 75002, USA.
| | - Denis S Manulchev
- Far East Branch, V.I. Il'ichev Pacific Oceanological Institute, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Roberto Racca
- JASCO Applied Sciences Ltd, Victoria, BC, V8Z 7X8, Canada
| | | |
Collapse
|
2
|
Gailey G, Zykov M, Sychenko O, Rutenko A, Blanchard AL, Aerts L, Melton RH. Gray whale density during seismic surveys near their Sakhalin feeding ground. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:739. [PMID: 36255495 PMCID: PMC9579086 DOI: 10.1007/s10661-022-10025-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/04/2022] [Indexed: 05/31/2023]
Abstract
Oil and gas development off northeastern Sakhalin Island, Russia, has exposed the western gray whale population on their summer-fall foraging grounds to a range of anthropogenic activities, such as pile driving, dredging, pipeline installation, and seismic surveys. In 2015, the number of seismic surveys within a feeding season surpassed the level of the number and duration of previous seismic survey activities known to have occurred close to the gray whales' feeding ground, with the potential to cause disturbance to their feeding activity. To examine the extent that gray whales were potentially avoiding areas when exposed to seismic and vessel sounds, shore-based teams monitored the abundance and distribution of gray whales from 13 stations that encompassed the known nearshore feeding area. Gray whale density was examined in relation to natural (spatial, temporal, and prey energy) and anthropogenic (cumulative sound exposure from vessel and seismic sounds) explanatory variables using Generalized Additive Models (GAM). Distance from shore, water depth, date, and northing explained a significant amount of variation in gray whale densities. Prey energy from crustaceans, specifically amphipods, isopods, and cumaceans also significantly influenced gray whale densities in the nearshore feeding area. Increasing cumulative exposure to vessel and seismic sounds resulted in both a short- and longer-term decline in gray whale density in an area. This study provides further insights about western gray whale responses to anthropogenic activity in proximity to and within the nearshore feeding area. As the frequency of seismic surveys and other non-oil and gas anthropogenic activity are expected to increase off Sakhalin Island, it is critical to continue to monitor and assess potential impacts on this endangered population of gray whales.
Collapse
Affiliation(s)
- Glenn Gailey
- Cetacean EcoSystem Research, Olympia, WA, 98512, USA.
| | - Mikhail Zykov
- JASCO Applied Sciences Ltd, Dartmouth, NS, B3B 1Z1, Canada
| | - Olga Sychenko
- Cetacean EcoSystem Research, Olympia, WA, 98512, USA
| | - Alexander Rutenko
- Far East Branch of Russian Academy of Sciences, V.I. Il'ichev Pacific Oceanological Institute, Vladivostok, 690041, Russia
| | | | | | | |
Collapse
|
3
|
Gailey G, Sychenko O, Zykov M, Rutenko A, Blanchard A, Melton RH. Western gray whale behavioral response to seismic surveys during their foraging season. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:740. [PMID: 36255529 PMCID: PMC9579098 DOI: 10.1007/s10661-022-10023-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/08/2021] [Indexed: 05/31/2023]
Abstract
Gray whales utilizing their foraging grounds off northeastern Sakhalin Island, Russia, have been increasingly exposed to anthropogenic activities related to oil and gas development over the past two decades. In 2015, four seismic vessels, contracted by two operators, conducted surveys near and within the gray whale feeding grounds. Mitigation and monitoring plans were developed prior to the survey and implemented in the field, with real-time data transfers to assist the implementation of measures aimed at minimizing impacts of acoustic exposure. This study examined the behavioral response of gray whales relative to vessel proximities and sounds generated during seismic exploration. Five shore-based teams monitored gray whale behavior from 1 June to 30 September using theodolite tracking and focal follow methodologies. Behavioral data were combined with acoustic and benthic information from studies conducted during the same period. A total of 1270 tracks (mean duration = 0.9 h) and 401 focal follows (1.1 h) were collected with gray whales exposed to sounds ranging from 59 to 172 dB re 1 μPa2 SPL. Mixed models were used to examine 13 movement and 10 respiration response variables relative to "natural," acoustic, and non-acoustic explanatory variables. Water depth and behavioral state were the largest predictors of gray whale movement and respiration patterns. As vessels approached whales with increasing seismic/vessel sound exposure levels and decreasing distances, several gray whale movement and respiration response variables significantly changed (increasing speed, directionality, surface time, respiration intervals, etc.). Although the mitigation measures employed could have reduced larger/long-term responses and sensitization to the seismic activities, this study illustrates that mitigation measures did not eliminate behavioral responses, at least in the short-term, of feeding gray whales to the activities.
Collapse
Affiliation(s)
| | | | - Mikhail Zykov
- JASCO Applied Sciences (Canada) Ltd, Victoria, BC, Canada
| | - Alexander Rutenko
- V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
| | | | | |
Collapse
|
4
|
Blanchard AL, Ainsworth L, Gailey G, Demchenko NL, Shcherbakov IA. Benthic studies adjacent to Sakhalin Island, Russia 2015 III: benthic energy density spatial models in the nearshore gray whale feeding area. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:741. [PMID: 36255557 PMCID: PMC9579071 DOI: 10.1007/s10661-022-10018-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 05/25/2021] [Indexed: 05/25/2023]
Abstract
Energy densities of six dominant benthic groups (Actinopterygii, Amphipoda, Bivalvia, Cumacea, Isopoda, and Polychaeta) and total prey energy were modeled for the nearshore western gray whale feeding area, Sakhalin Island, Russia, as part of a multi-disciplinary research program in the summer of 2015. Energy was modeled using generalized additive mixed models (GAMM) with accommodations for zero-inflation (logistic regression and hurdle models) and regression predictions combined with kriging to interpolate energy densities across the nearshore feeding area. Amphipoda energy density was the highest nearshore and in the south whereas Bivalvia energy density was the highest offshore and in the northern portion of the study area. Total energy was the highest in mid-range distances from shore and in the north. Amphipoda energy density was higher than minimum energy estimates defining gray whale feeding habitats (312-442 kJ/m2) in 13% of the nearshore feeding area whereas total prey energy density was higher than the minimum energy requirement in 49% of the habitat. Inverse distance-weighted interpolations of Amphipoda energy provided a broader scale representation of the data whereas kriging estimates were spatially limited but more representative of higher density in the southern portion of the study area. Both methods represented the general trend of higher Amphipoda energy density nearshore but with significant differences that highlight the value of using multiple methods to model patterns in highly complex environments.
Collapse
Affiliation(s)
| | | | - Glenn Gailey
- Cetacean EcoSystem Research, Lacey, WA, 98512, USA
| | - Natalia L Demchenko
- A.V. Zhirmunsky National Science Center of Marine Biology, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Ilya A Shcherbakov
- A.V. Zhirmunsky National Science Center of Marine Biology, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
5
|
Schwarz L, McHuron E, Mangel M, Gailey G, Sychenko O. Gray whale habitat use and reproductive success during seismic surveys near their feeding grounds: comparing state-dependent life history models and field data. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:733. [PMID: 36255497 PMCID: PMC9579109 DOI: 10.1007/s10661-022-10024-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/05/2022] [Indexed: 05/31/2023]
Abstract
We used a stochastic dynamic programming (SDP) model to quantify the consequences of disturbance on pregnant western gray whales during one foraging season. The SDP model has a firm basis in bioenergetics, but detailed knowledge of minimum reproductive length of females (Lmin) and the relationship between length and reproductive success (Rfit) was lacking. We varied model assumptions to determine their effects on predictions of habitat use, proportion of animals disturbed, reproductive success, and the effects of disturbance. Smaller Lmin values led to higher predicted nearshore habitat use. Changes in Lmin and Rfit had little effect on predictions of the effect of disturbance. Reproductive success increased with increased Lmin and with higher probability of reproductive success by length. Multiple seismic surveys were conducted in 2015 off the northeast coast of Sakhalin Island, with concomitant benthic prey surveys, photo-identification studies, and whale distribution sampling, thus providing a unique opportunity to compare output from SDP models with empirical observations. SDP model predictions of reproductive success and habitat use were similar with and without acoustic disturbance, and SDP predictions of reproductive success and large-scale habitat use were generally similar to values and trends in the data. However, empirical estimates of the proportion of pregnant females nearshore were much higher than SDP model predictions (a large effect, measured by Cohen's d) during the first week, and the SDP model overestimated whale density in the south and underestimated density around the mouth of Piltun Bay. Such differences in nearshore habitat use would not affect SDP predictions of reproductive success or survival under the current seismic air gun disturbance scenario.
Collapse
Affiliation(s)
- Lisa Schwarz
- Institute of Marine Sciences, University of California, Santa Cruz, CA, 95064, USA.
| | - Elizabeth McHuron
- Institute of Marine Sciences, University of California, Santa Cruz, CA, 95064, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA
- Ocean, and Ecosystem Studies, Cooperative Institute for Climate, University of Washington, Seattle, WA, 98195, USA
| | - Marc Mangel
- Institute of Marine Sciences, University of California, Santa Cruz, CA, 95064, USA
- Theoretical Ecology Group, Department of Biology, University of Bergen, 9020, Bergen, Norway
- Puget Sound Institute, University of Washington, Tacoma, WA, 98402, USA
| | - Glenn Gailey
- Cetacean EcoSystem Research, Lacey, WA, 98516, USA
| | | |
Collapse
|
6
|
Aerts L, Jenkerson MR, Nechayuk VE, Gailey G, Racca R, Blanchard AL, Schwarz LK, Melton HR. Seismic surveys near gray whale feeding areas off Sakhalin Island, Russia: assessing impact and mitigation effectiveness. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:746. [PMID: 36255494 PMCID: PMC9579104 DOI: 10.1007/s10661-022-10016-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 04/21/2021] [Indexed: 05/25/2023]
Abstract
In 2015, two oil and gas companies conducted seismic surveys along the northeast coast of Sakhalin Island, Russia, near western gray whale (Eschrichtius robustus) feeding areas. This population of whales was listed as Critically Endangered at the time of the operations described here but has been reclassified as Endangered since 2018. The number and duration of the 2015 seismic surveys surpassed the level of previous seismic survey activity in this area, elevating concerns regarding disturbance of feeding gray whales and the potential for auditory injury. Exxon Neftegas Limited (ENL) developed a mitigation approach to address these concerns and, more importantly, implemented a comprehensive data collection strategy to assess the effectiveness of this approach. The mitigation approach prioritized completion of the seismic surveys closest to the nearshore feeding area as early in the season as possible, when fewer gray whales would be present. This was accomplished by increasing operational efficiency through the use of multiple seismic vessels and by establishing zones with specific seasonal criteria determining when air gun shutdowns would be implemented. These zones and seasonal criteria were based on pre-season modeled acoustic footprints of the air gun array and on gray whale distribution data collected over the previous 10 years. Real-time acoustic and whale sighting data were instrumental in the implementation of air gun shutdowns. The mitigation effectiveness of these shutdowns was assessed through analyzing short-term behavioral responses and shifts in gray whale distribution due to sound exposure. The overall mitigation strategy of an early survey completion was assessed through bioenergetics models that predict how reduced foraging activity might affect gray whale reproduction and maternal survival. This assessment relied on a total of 17 shore-based and 5 vessel-based teams collecting behavior, distribution, photo-identification, prey, and acoustic data. This paper describes the mitigation approach, the implementation of mitigation measures using real-time acoustic and gray whale location data, and the strategy to assess impacts and mitigation effectiveness.
Collapse
Affiliation(s)
| | | | | | - Glenn Gailey
- Cetacean EcoSystem Research, Lacey, WA, 98512, USA
| | - Roberto Racca
- JASCO Applied Sciences, Victoria, BC, V8Z 7X8, Canada
| | | | - Lisa K Schwarz
- Ocean Sciences and Institute of Marine Sciences, University of California, Santa Cruz, CA, 95060, USA
| | | |
Collapse
|
7
|
Rutenko AN, Zykov MM, Gritsenko VA, Fershalov MY, Jenkerson MR, Racca R, Nechayuk VE. Real-time acoustic monitoring with telemetry to mitigate potential effects of seismic survey sounds on marine mammals: a case study offshore Sakhalin Island. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:745. [PMID: 36255548 PMCID: PMC9579081 DOI: 10.1007/s10661-022-10019-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 05/25/2021] [Indexed: 05/31/2023]
Abstract
Exxon Neftegas Ltd. (ENL) carried out three 4D seismic surveys during the summer of 2015. Seismic operations in two of these fields (Odoptu and Chayvo) ensonified the nearshore feeding area of Korean-Okhotsk (western) gray whales (Eschrichtius robustus), potentially disturbing feeding activities. Following model-based optimization of the source design to minimize its lateral acoustic footprint, pre-season modeling was used to compute the acoustic exposure along each survey line. Real-time acoustic data facilitated implementation of mitigation measures aimed to minimize disturbance of whales. Acoustic data originated from underwater recorders deployed on the seafloor. Two complementary approaches were used to transmit recorded sound data to a computer housed at the Central Post (CP), where decisions regarding mitigation shut downs were made. In the first approach, a limited bandwidth (2-2000 Hz) sampling of the data was transmitted via cable to a surface buoy, which relayed these data to a shore station up to 15 km away via digital VHF telemetry. At the shore station, acoustic impulses from the seismic surveys were processed to compute impulse characteristics in the form of estimates of sound exposure level and peak sound pressure level, as well as one-minute-average 1/3-octave power spectral density coefficients, which were then transmitted to the CP via the internet. In the second, the pulse characteristics were computed through algorithms running on an onboard processor in each recorder's surface buoy and sent directly to the CP computer via an Iridium satellite uplink. Both methods of data transfer proved viable, but Iridium transmission achieved the goal without the need for any shore based relay stations and is therefore more operationally efficient than VHF transmission. At the CP, analysts used the real-time acoustic data to calibrate and adjust the output of pre-season acoustical model runs. The acoustic footprint for the active seismic source, advancing synchronously with the motion of the seismic vessel and changing as the sound propagation environment changed, was computed from the calibrated and adjusted model output and integrated through the software Pythagoras with locations of gray whales provided by shore-based observers. This enabled analysts to require air gun array shutdowns before whales were exposed to mean square sound pressure levels greater than the behavioral response threshold of 163 dB re 1 μPa2. The method described here provides a realistic means of mitigating the possible effects of air guns at a behavioral response level, whereas most seismic surveys rely on pre-established mitigation radii to manage the risk of injury to a whale.
Collapse
Affiliation(s)
- Alexander N Rutenko
- V.I. Il'ichev Pacific Oceanological Institute, Far East Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | | | - Vladimir A Gritsenko
- V.I. Il'ichev Pacific Oceanological Institute, Far East Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Mikhail Yu Fershalov
- V.I. Il'ichev Pacific Oceanological Institute, Far East Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Michael R Jenkerson
- ExxonMobil Exploration Company, Spring, TX, 77389, USA.
- , Lucas, TX, 75002, USA.
| | - Roberto Racca
- JASCO Applied Sciences Ltd, Victoria, BC, V8Z 7X8, Canada
| | | |
Collapse
|
8
|
McHuron EA, Aerts L, Gailey G, Sychenko O, Costa DP, Mangel M, Schwarz LK. Predicting the population consequences of acoustic disturbance, with application to an endangered gray whale population. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02440. [PMID: 34374143 DOI: 10.1002/eap.2440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 02/05/2021] [Accepted: 03/22/2021] [Indexed: 06/13/2023]
Abstract
Acoustic disturbance is a growing conservation concern for wildlife populations because it can elicit physiological and behavioral responses that can have cascading impacts on population dynamics. State-dependent behavioral and life history models implemented via Stochastic Dynamic Programming (SDP) provide a natural framework for quantifying biologically meaningful population changes resulting from disturbance by linking environment, physiology, and metrics of fitness. We developed an SDP model using the endangered western gray whale (Eschrichtius robustus) as a case study because they experience acoustic disturbance on their summer foraging grounds. We modeled the behavior and physiological dynamics of pregnant females as they arrived on the feeding grounds and predicted the probability of female and offspring survival, with and without acoustic disturbance and in the presence/absence of high prey availability. Upon arrival in mid-May, pregnant females initially exhibited relatively random behavior before they transitioned to intensive feeding that resulted in continual fat mass gain until departure. This shift in behavior co-occurred with a change in spatial distribution; early in the season, whales were more equally distributed among foraging areas with moderate to high energy availability, whereas by mid-July whales transitioned to predominate use of the location that had the highest energy availability. Exclusion from energy-rich offshore areas led to reproductive failure and in extreme cases, mortality of adult females that had lasting impacts on population dynamics. Simulated disturbances in nearshore foraging areas had little to no impact on female survival or reproductive success at the population level. At the individual level, the impact of disturbance was unequally distributed across females of different lengths, both with respect to the number of times an individual was disturbed and the impact of disturbance on vital rates. Our results highlight the susceptibility of large capital breeders to reductions in prey availability, and indicate that who, where, and when individuals are disturbed are likely to be important considerations when assessing the impacts of acoustic activities. This model provides a framework to inform planned acoustic disturbances and assess the effectiveness of mitigation strategies for large capital breeders.
Collapse
Affiliation(s)
- Elizabeth A McHuron
- Institute of Marine Sciences, University of California, Santa Cruz, California, 95064, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, 95064, USA
| | | | - Glenn Gailey
- Cetacean EcoSystem Research, Lacey, Washington, 98516, USA
| | - Olga Sychenko
- Cetacean EcoSystem Research, Lacey, Washington, 98516, USA
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, 95064, USA
| | - Marc Mangel
- Institute of Marine Sciences, University of California, Santa Cruz, California, 95064, USA
- Theoretical Ecology Group, Department of Biology, University of Bergen, Bergen, 9020, Norway
- Puget Sound Institute, University of Washington, Tacoma, Washington, 98402, USA
| | - Lisa K Schwarz
- Institute of Marine Sciences, University of California, Santa Cruz, California, 95064, USA
| |
Collapse
|
9
|
Bröker KCA, Gailey G, Tyurneva OY, Yakovlev YM, Sychenko O, Dupont JM, Vertyankin VV, Shevtsov E, Drozdov KA. Site-fidelity and spatial movements of western North Pacific gray whales on their summer range off Sakhalin, Russia. PLoS One 2020; 15:e0236649. [PMID: 32797058 PMCID: PMC7428188 DOI: 10.1371/journal.pone.0236649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/09/2020] [Indexed: 11/18/2022] Open
Abstract
The Western North-Pacific (WNP) gray whale feeding grounds are off the northeastern coast of Sakhalin Island, Russia and is comprised of a nearshore and offshore component that can be distinguished by both depth and location. Spatial movements of gray whales within their foraging grounds were examined based on 13 years of opportunistic vessel and shore-based photo-identification surveys. Site fidelity was assessed by examining annual return and resighting rates. Lagged Identification Rates (LIR) analyses were conducted to estimate the residency and transitional movement patterns within the two components of their feeding grounds. In total 243 individuals were identified from 2002-2014, among these were 94 calves. The annual return rate over the period 2002-2014 was 72%, excluding 35 calves only seen one year. Approximately 20% of the individuals identified from 2002-2010 were seen every year after their initial sighting (including eight individuals that returned for 13 consecutive years). The majority (239) of the WNP whales were observed in the nearshore area while only half (122) were found in the deeper offshore area. Within a foraging season, there was a significantly higher probability of gray whales moving from the nearshore to the offshore area. No mother-calf pairs, calves or yearlings were observed in the offshore area, which was increasingly used by mature animals. The annual return rates, and population growth rates that are primarily a result of calf production with little evidence of immigration, suggest that this population is demographically self-contained and that both the nearshore and offshore Sakhalin feeding grounds are critically important areas for their summer annual foraging activities. The nearshore habitat is also important for mother-calf pairs, younger individuals, and recently weaned calves. Nearshore feeding could also be energetically less costly compared to foraging in the deeper offshore habitat and provide more protection from predators, such as killer whales.
Collapse
Affiliation(s)
- Koen C. A. Bröker
- Marine Evolution and Conservation, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
- Shell Global Solutions International B.V., the Hague, The Netherlands
| | - Glenn Gailey
- Cetacean EcoSystem Research, Washington, Olympia, United States of America
| | - Olga Yu. Tyurneva
- A.V. Zhirmunsky National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences (NSCMB FEB RAS), Vladivostok, Russian Federation
| | - Yuri M. Yakovlev
- A.V. Zhirmunsky National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences (NSCMB FEB RAS), Vladivostok, Russian Federation
| | - Olga Sychenko
- Cetacean EcoSystem Research, Washington, Olympia, United States of America
| | - Jennifer M. Dupont
- ExxonMobil Upstream Research Company, Houston, Texas, United States of America
| | | | - Evgeny Shevtsov
- A.V. Zhirmunsky National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences (NSCMB FEB RAS), Vladivostok, Russian Federation
| | - Konstantin A. Drozdov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far Eastern Branch of the Russian Academy of Sciences (PIBOC FEB RAS), Vladivostok, Russian Federation
| |
Collapse
|
10
|
Gailey G, Sychenko O, Tyurneva O, Yakovlev Y, Vertyankin V, van der Wolf P, Drozdov K, Zhmaev I. Effects of sea ice on growth rates of an endangered population of gray whales. Sci Rep 2020; 10:1553. [PMID: 32005947 PMCID: PMC6994479 DOI: 10.1038/s41598-020-58435-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 01/10/2020] [Indexed: 11/15/2022] Open
Abstract
The western gray whale population is endangered with approximately 175 individuals and 33 known reproductive females. Photo-identification studies were conducted from 2002–2017 during the gray whale foraging season off northeastern Sakhalin Island, Russia. Despite abundant prey resources, significant variation in whales’ body condition, inter-birth intervals and calf survival have been documented with limited understanding of factors that account for the observed variability. We examine sea ice concentrations at their known foraging grounds to define the maximum duration of a “foraging season”. We explore the relationship between foraging season length during a female’s pregnancy and post-weaning calf survival and reproduction. Approximately 77% of the variation in calf survival, which ranged annually from 10–80%, was associated with the duration of the feeding season while the mother was pregnant. Poor body conditions and prolonged inter-birth intervals of western gray whales have also been documented to coincide with shorter duration in feeding seasons found in this study. These results imply that shorter foraging seasons are associated with reduced energy intake by physically limiting the number of days gray whales can forage, and thus sea ice conditions may be one limiting factor affecting growth rates of this endangered population of baleen whales.
Collapse
Affiliation(s)
- G Gailey
- Cetacean EcoSystem Research, Olympia, WA, USA.
| | - O Sychenko
- Cetacean EcoSystem Research, Olympia, WA, USA
| | - O Tyurneva
- National Science Center of Marine Biology, Far East Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Y Yakovlev
- National Science Center of Marine Biology, Far East Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - V Vertyankin
- Kronotsky State Biosphere Reserve, Elizovo, Russia
| | - P van der Wolf
- Consultant to Sakhalin Energy Investment Company, Yuzhno-Sakhalinsk, Russia
| | | | | |
Collapse
|
11
|
Elliott BW, Read AJ, Godley BJ, Nelms SE, Nowacek DP. Critical information gaps remain in understanding impacts of industrial seismic surveys on marine vertebrates. ENDANGER SPECIES RES 2019. [DOI: 10.3354/esr00968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Dunlop RA, Noad MJ, McCauley RD, Kniest E, Slade R, Paton D, Cato DH. A behavioural dose-response model for migrating humpback whales and seismic air gun noise. MARINE POLLUTION BULLETIN 2018; 133:506-516. [PMID: 30041344 DOI: 10.1016/j.marpolbul.2018.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/29/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
The behavioural responses of migrating humpback whales to an air gun, a small clustered seismic array and a commercial array were used to develop a dose-response model, accounting for the presence of the vessel, array towpath relative to the migration and social and environmental parameters. Whale groups were more likely to show an avoidance response (increasing their distance from the source) when the received sound exposure level was over 130 dB re 1 μPa2·s and they were within 4 km of the source. The 50% probability of response occurred where received levels were 150-155 dB re 1 μPa2·s and they were within 2.5 km of the source. A small number of whales moving rapidly close to the source vessel did not exhibit an avoidance response at the highest received levels (160-170 dB re 1 μPa2·s) meaning it was not possible to estimate the maximum response threshold.
Collapse
Affiliation(s)
- Rebecca A Dunlop
- Cetacean Ecology and Acoustics Laboratory, School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia.
| | - Michael J Noad
- Cetacean Ecology and Acoustics Laboratory, School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| | | | - Eric Kniest
- School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Robert Slade
- Blue Planet Marine, P.O. Box 919, Canberra ACT 2614, Australia
| | - David Paton
- Blue Planet Marine, P.O. Box 919, Canberra ACT 2614, Australia
| | - Douglas H Cato
- School of Geosciences, University of Sydney and Defence Science and Technology Group, Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Dunlop RA, Noad MJ, McCauley RD, Kniest E, Slade R, Paton D, Cato DH. The behavioural response of migrating humpback whales to a full seismic airgun array. Proc Biol Sci 2018; 284:rspb.2017.1901. [PMID: 29237853 DOI: 10.1098/rspb.2017.1901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/14/2017] [Indexed: 11/12/2022] Open
Abstract
Despite concerns on the effects of noise from seismic survey airguns on marine organisms, there remains uncertainty as to the biological significance of any response. This study quantifies and interprets the response of migrating humpback whales (Megaptera novaeangliae) to a 3130 in3 (51.3l) commercial airgun array. We compare the behavioural responses to active trials (array operational; n = 34 whale groups), with responses to control trials (source vessel towing the array while silent; n = 33) and baseline studies of normal behaviour in the absence of the vessel (n = 85). No abnormal behaviours were recorded during the trials. However, in response to the active seismic array and the controls, the whales displayed changes in behaviour. Changes in respiration rate were of a similar magnitude to changes in baseline groups being joined by other animals suggesting any change group energetics was within their behavioural repertoire. However, the reduced progression southwards in response to the active treatments, for some cohorts, was below typical migratory speeds. This response was more likely to occur within 4 km from the array at received levels over 135 dB re 1 µPa2s.
Collapse
Affiliation(s)
- Rebecca A Dunlop
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| | - Michael J Noad
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| | - Robert D McCauley
- Curtin University, GPO Box U 1987, Perth, Western Australia 6845, Australia
| | - Eric Kniest
- School of Engineering, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Robert Slade
- Blue Planet Marine, PO Box 919, Canberra, Australian Capital Territory 2614, Australia
| | - David Paton
- Blue Planet Marine, PO Box 919, Canberra, Australian Capital Territory 2614, Australia
| | - Douglas H Cato
- School of Geosciences, University of Sydney and Defence Science and Technology Group, Sydney, New South Wales 2006, Australia
| |
Collapse
|
14
|
Villegas-Amtmann S, Schwarz LK, Gailey G, Sychenko O, Costa DP. East or west: the energetic cost of being a gray whale and the consequence of losing energy to disturbance. ENDANGER SPECIES RES 2017. [DOI: 10.3354/esr00843] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Muir JE, Ainsworth L, Joy R, Racca R, Bychkov Y, Gailey G, Vladimirov V, Starodymov S, Bröker K. Distance from shore as an indicator of disturbance of gray whales during a seismic survey off Sakhalin Island, Russia. ENDANGER SPECIES RES 2015. [DOI: 10.3354/esr00701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Racca R, Austin M, Rutenko A, Bröker K. Monitoring the gray whale sound exposure mitigation zone and estimating acoustic transmission during a 4-D seismic survey, Sakhalin Island, Russia. ENDANGER SPECIES RES 2015. [DOI: 10.3354/esr00703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|