1
|
Reemeyer JE, Rumball D, Mandrak NE, Chapman LJ. Seasonal variation in thermal tolerance and hypoxia tolerance of a threatened minnow and a non-imperilled congener: a cautionary tale for surrogate species in conservation. CONSERVATION PHYSIOLOGY 2024; 12:coae071. [PMID: 39417164 PMCID: PMC11482009 DOI: 10.1093/conphys/coae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Freshwater organisms face multiple threats to their ecosystems, including warming associated with climate change and low dissolved oxygen (environmental hypoxia), which are both increasing in frequency and extent in freshwater systems. Understanding tolerance thresholds for these environmental stressors as well as the plasticity of responses is the key for informing the conservation of imperilled species. Direct measurement of imperilled species can be difficult, and the use of surrogate (non-imperilled but closely related) species has been proposed as a remedy, but the degree to which surrogate data are representative of the imperilled species has not been widely validated. In this study, we measured physiological performance of two species: one federally listed as Threatened in Canada (Pugnose Shiner, Miniellus anogenus) and a non-imperilled congener (Blackchin Shiner, Miniellus heterodon). Hypoxia tolerance (critical oxygen tension and loss of equilibrium) and upper thermal tolerance (CTmax) were measured streamside over a period of 5 months. We found that the Threatened Pugnose Shiner had lower tolerance to both elevated temperature and hypoxia than the non-imperilled Blackchin Shiner. The species also differed in their responses to environmental dissolved oxygen (DO). CTmax of Pugnose Shiner had a positive relationship with DO such that CTmax was lowered when environmental DO was low, whereas there was no effect of DO on CTmax of Blackchin Shiner. Blackchin Shiner also showed plasticity of hypoxia tolerance in response to changes in environmental DO, while Pugnose Shiner showed little plasticity. We conclude that Pugnose Shiner may be more sensitive to heat waves and hypoxia associated with climate change. We also assert that researchers should be cautious when using surrogate species to inform tolerance limits of imperilled species and highlight the value of measuring imperilled species directly when possible.
Collapse
Affiliation(s)
- Jessica E Reemeyer
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec, Canada
| | - Dominique Rumball
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada
| | - Nicholas E Mandrak
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada
| | - Lauren J Chapman
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Fortin-Hamel L, Chapman LJ. Interactive effects of sedimentary turbidity and elevated water temperature on the Pugnose Shiner ( Miniellus anogenus), a threatened freshwater fish. CONSERVATION PHYSIOLOGY 2024; 12:coae053. [PMID: 39139732 PMCID: PMC11320368 DOI: 10.1093/conphys/coae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024]
Abstract
High turbidity and elevated water temperature are environmental stressors that can co-occur in freshwater ecosystems such as when deforestation increases solar radiation and sedimentary runoff. However, we have limited knowledge about their combined impacts on fish behaviour and physiology. We explored independent and interactive effects of sedimentary turbidity and temperature on the swimming activity and both thermal and hypoxia tolerance of the Pugnose Shiner (Miniellus anogenus, formerly Notropis anogenus), a small leuciscid fish listed as Threatened under Canada's Species at Risk Act (SARA). Fish underwent a 15-week acclimation to two temperatures (16°C or 25°C) crossed with two turbidities (~0 NTU or 8.5 NTU). Swimming activity was measured during the first 8 weeks of acclimation. Fish in warm water were more active compared to those in cold water, but turbidity had no effect on activity. Behavioural response to hypoxia was measured after 12 weeks of acclimation, as the oxygen level at which fish used aquatic surface respiration (ASR). Fish in warm water engaged in ASR behaviour at higher oxygen thresholds, indicating less tolerance to hypoxia. Turbidity had no effect on ASR thresholds. Finally, thermal tolerance was measured as the critical thermal maximum (CTmax) after 13-15 weeks of acclimation. Acclimation to warm water increased fish CTmax and Tag (agitation temperature) but reduced the agitation window (°C difference between Tag and CTmax) and thermal safety margin (°C difference between the acclimation temperature and CTmax). Furthermore, fish in warm, turbid water had a lower CTmax and smaller thermal safety margin than fish in warm, clear water, indicating an interaction between turbidity and temperature. This reduced thermal tolerance observed in Pugnose Shiner in warm, turbid water highlights the importance of quantifying independent and interactive effects of multiple stressors when evaluating habitat suitability and conservation strategies for imperilled species.
Collapse
Affiliation(s)
- Liana Fortin-Hamel
- Department of Biology, McGill University, 1205 avenue du Docteur-Penfield, Montreal, Quebec, Canada, H3A 1B1
| | - Lauren J Chapman
- Department of Biology, McGill University, 1205 avenue du Docteur-Penfield, Montreal, Quebec, Canada, H3A 1B1
| |
Collapse
|
3
|
Firth BL, Craig PM, Drake DAR, Power M. Impact of turbidity on the gill morphology and hypoxia tolerance of eastern sand darter (Ammocrypta pellucida). JOURNAL OF FISH BIOLOGY 2024; 104:1888-1898. [PMID: 38506425 DOI: 10.1111/jfb.15679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/21/2024]
Abstract
Anthropogenic stressors such as agriculture and urbanization can increase river turbidity, which can negatively impact fish gill morphology and growth due to reduced oxygen in the benthic environment. We assessed the gill morphology, field metabolic rate (FMR), and two hypoxia tolerance metrics (oxygen partial pressure at loss of equilibrium, PO2 at LOE, and critical oxygen tension, Pcrit) of eastern sand darter (Ammocrypta pellucida), a small benthic fish listed as threatened under the Species at Risk Act in Canada, from rivers in southern Ontario. Field trials were conducted streamside in the Grand River (August 2019; mean NTU 8) and in the comparatively more turbid Thames River (August 2020; mean NTU 94) to test the effect of turbidity on each physiological endpoint. Gills were collected from incidental mortalities and museum specimens, and were assessed using hematoxylin and eosin and immunofluorescent staining. The between-river comparison indicated that turbidity significantly increased interlamellar space and filament width but had no significant influence on other gill morphometrics or FMR. Turbidity significantly increased PO2 at LOE (i.e., fish had a lower hypoxia tolerance) but did not significantly impact Pcrit. Therefore, although turbidity influences hypoxia tolerance through LOE, turbidity levels were not sufficiently high in the study rivers to contribute to measurable changes in gill morphology or metabolism in the wild. Determining whether changes in gill morphology or metabolism occur under higherturbidity levels would help resolve the ecological importance of turbidity on species physiology in urban and agricultural ecosystems.
Collapse
Affiliation(s)
- Britney L Firth
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - D Andrew R Drake
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Ontario, Canada
| | - Michael Power
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
Tiarks JH, Gray SM, Chapman LJ. Turbidity drives plasticity in the eyes and brains of an African cichlid. J Exp Biol 2024; 227:jeb246708. [PMID: 38323461 PMCID: PMC11058630 DOI: 10.1242/jeb.246708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
Natural variation in environmental turbidity correlates with variation in the visual sensory system of many fishes, suggesting that turbidity may act as a strong selective agent on visual systems. Since many aquatic systems experience increased turbidity due to anthropogenic perturbations, it is important to understand the degree to which fish can respond to rapid shifts in their visual environment, and whether such responses can occur within the lifetime of an individual. We examined whether developmental exposure to turbidity (clear, <5 NTU; turbid, ∼9 NTU) influenced the size of morphological structures associated with vision in the African blue-lip cichlid Pseudocrenilabrus multicolor. Parental fish were collected from two sites (clear swamp, turbid river) in western Uganda. F1 broods from each population were split and reared under clear and turbid rearing treatments until maturity. We measured morphological traits associated with the visual sensory system (eye diameter, pupil diameter, axial length, brain mass, optic tectum volume) over the course of development. Age was significant in explaining variation in visual traits even when standardized for body size, suggesting an ontogenetic shift in the relative size of eyes and brains. When age groups were analyzed separately, young fish reared in turbid water grew larger eyes than fish reared in clear conditions. Population was important in the older age category, with swamp-origin fish having relatively larger eyes and optic lobes relative to river-origin fish. Plastic responses during development may be important for coping with a more variable visual environment associated with anthropogenically induced turbidity.
Collapse
Affiliation(s)
- J. H. Tiarks
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Rd., Columbus, OH 43210, USA
| | - Suzanne M. Gray
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Rd., Columbus, OH 43210, USA
| | - Lauren J. Chapman
- Department of Biology, McGill University, 1205 Dr Penfield Ave, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
5
|
Firth BL, Craig PM, Drake DAR, Power M. Seasonal, environmental and individual effects on hypoxia tolerance of eastern sand darter ( Ammocrypta pellucida). CONSERVATION PHYSIOLOGY 2023; 11:coad008. [PMID: 36926473 PMCID: PMC10012177 DOI: 10.1093/conphys/coad008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/04/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Metabolic rate and hypoxia tolerance are highly variable among individual fish in a stable environment. Understanding the variability of these measures in wild fish populations is critical for assessing adaptive potential and determining local extinction risks as a result of climate-induced fluctuations in temperature and hypoxic conditions. We assessed the field metabolic rate (FMR) and two hypoxia tolerance metrics, oxygen pressure at loss of equilibrium (PO2 at LOE) and critical oxygen tolerance (Pcrit) of wild-captured eastern sand darter (Ammocrypta pellucida), a threatened species in Canada, using field trials (June to October) that encompassed ambient water temperatures and oxygen conditions typically experienced by the species. Temperature was significantly and positively related to hypoxia tolerance but not FMR. Temperature alone explained 1%, 31% and 7% of the variability observed in FMR, LOE, and Pcrit, respectively. Environmental and fish-specific factors such as reproductive season and condition explained much of the residual variation. Reproductive season significantly affected FMR by increasing it by 159-176% over the tested temperature range. Further understanding the impact of reproductive season on metabolic rate over a temperature range is crucial for understanding how climate change could impact species fitness. Among-individual variation in FMR significantly increased with temperature while among-individual variation in both hypoxia tolerance metrics did not. A large degree of variation in FMR in the summer might allow for evolutionary rescue with increasing mean and variance of global temperatures. Findings suggest that temperature may be a weak predictor in a field setting where biotic and abiotic factors can act concurrently on variables that affect physiological tolerance.
Collapse
Affiliation(s)
- Britney L Firth
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - D Andrew R Drake
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, ON, L7S 1A1, Canada
| | - Michael Power
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
6
|
Affandi FA, Ishak MY. Impacts of suspended sediment and metal pollution from mining activities on riverine fish population-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16939-16951. [PMID: 31028621 DOI: 10.1007/s11356-019-05137-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Mining activities are responsible for the elevated input levels of suspended sediment and hazardous metals into the riverine ecosystem. These have been shown to threaten the riverine fish populations and can even lead to localized population extinction. To date, research on the effects of mining activities on fish has been focused within metal contamination and bioaccumulation and its threat to human consumption, neglecting the effects of suspended sediment. This paper reviews the effects of suspended sediment and metal pollution on riverine ecosystem and fish population by examining the possibilities of genetic changes and population extinction. In addition, possible assessments and studies of the riverine fish population are discussed to cope with the risks from mining activities and fish population declines.
Collapse
Affiliation(s)
- Farhana Ahmad Affandi
- Department of Environmental Management, Faculty of Environmental Studies, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Mohd Yusoff Ishak
- Department of Environmental Management, Faculty of Environmental Studies, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|