1
|
Feyrer LJ, Stanistreet JE, Moors-Murphy HB. Navigating the unknown: assessing anthropogenic threats to beaked whales, family Ziphiidae. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240058. [PMID: 38633351 PMCID: PMC11021932 DOI: 10.1098/rsos.240058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
This review comprehensively evaluates the impacts of anthropogenic threats on beaked whales (Ziphiidae)-a taxonomic group characterized by cryptic biology, deep dives and remote offshore habitat, which have challenged direct scientific observation. By synthesizing information published in peer-reviewed studies and grey literature, we identified available evidence of impacts across 14 threats for each Ziphiidae species. Threats were assessed based on their pathways of effects on individuals, revealing many gaps in scientific understanding of the risks faced by beaked whales. By applying a comprehensive taxon-level analysis, we found evidence that all beaked whale species are affected by multiple stressors, with climate change, entanglement and plastic pollution being the most common threats documented across beaked whale species. Threats assessed as having a serious impact on individuals included whaling, military sonar, entanglement, depredation, vessel strikes, plastics and oil spills. This review emphasizes the urgent need for targeted research to address a range of uncertainties, including cumulative and population-level impacts. Understanding the evidence and pathways of the effects of stressors on individuals can support future assessments, guide practical mitigation strategies and advance current understanding of anthropogenic impacts on rare and elusive marine species.
Collapse
Affiliation(s)
- Laura J. Feyrer
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova ScotiaB2Y 4A2, Canada
- Department of Biology, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
| | - Joy E. Stanistreet
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova ScotiaB2Y 4A2, Canada
| | - Hilary B. Moors-Murphy
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova ScotiaB2Y 4A2, Canada
| |
Collapse
|
2
|
Transcriptome profiling of blood from common bottlenose dolphins (Tursiops truncatus) in the northern Gulf of Mexico to enhance health assessment capabilities. PLoS One 2022; 17:e0272345. [PMID: 36001538 PMCID: PMC9401185 DOI: 10.1371/journal.pone.0272345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022] Open
Abstract
Following the 2010 Deepwater Horizon disaster and subsequent unusual mortality event, adverse health impacts have been reported in bottlenose dolphins in Barataria Bay, LA including impaired stress response and reproductive, pulmonary, cardiac, and immune function. These conditions were primarily diagnosed through hands-on veterinary examinations and analysis of standard diagnostic panels. In human and veterinary medicine, gene expression profiling has been used to identify molecular mechanisms underlying toxic responses and disease states. Identification of molecular markers of exposure or disease may enable earlier detection of health effects or allow for health evaluation when the use of specialized methodologies is not feasible. To date this powerful tool has not been applied to augment the veterinary data collected concurrently during dolphin health assessments. This study examined transcriptomic profiles of blood from 76 dolphins sampled in health assessments during 2013–2018 in the waters near Barataria Bay, LA and Sarasota Bay, FL. Gene expression was analyzed in conjunction with the substantial suite of health data collected using principal component analysis, differential expression testing, over-representation analysis, and weighted gene co-expression network analysis. Broadly, transcript profiles of Barataria Bay dolphins indicated a shift in immune response, cytoskeletal alterations, and mitochondrial dysfunction, most pronounced in dolphins likely exposed to Deepwater Horizon oiling. While gene expression profiles in Barataria Bay dolphins were altered compared to Sarasota Bay for all years, profiles from 2013 exhibited the greatest alteration in gene expression. Differentially expressed transcripts included genes involved in immunity, inflammation, reproductive failure, and lung or cardiac dysfunction, all of which have been documented in dolphins from Barataria Bay following the Deepwater Horizon oil spill. The genes and pathways identified in this study may, with additional research and validation, prove useful as molecular markers of exposure or disease to assist wildlife veterinarians in evaluating the health of dolphins and other cetaceans.
Collapse
|
3
|
Takeshita R, Bursian SJ, Colegrove KM, Collier TK, Deak K, Dean KM, De Guise S, DiPinto LM, Elferink CJ, Esbaugh AJ, Griffitt RJ, Grosell M, Harr KE, Incardona JP, Kwok RK, Lipton J, Mitchelmore CL, Morris JM, Peters ES, Roberts AP, Rowles TK, Rusiecki JA, Schwacke LH, Smith CR, Wetzel DL, Ziccardi MH, Hall AJ. A review of the toxicology of oil in vertebrates: what we have learned following the Deepwater Horizon oil spill. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:355-394. [PMID: 34542016 DOI: 10.1080/10937404.2021.1975182] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the wake of the Deepwater Horizon (DWH) oil spill, a number of government agencies, academic institutions, consultants, and nonprofit organizations conducted lab- and field-based research to understand the toxic effects of the oil. Lab testing was performed with a variety of fish, birds, turtles, and vertebrate cell lines (as well as invertebrates); field biologists conducted observations on fish, birds, turtles, and marine mammals; and epidemiologists carried out observational studies in humans. Eight years after the spill, scientists and resource managers held a workshop to summarize the similarities and differences in the effects of DWH oil on vertebrate taxa and to identify remaining gaps in our understanding of oil toxicity in wildlife and humans, building upon the cross-taxonomic synthesis initiated during the Natural Resource Damage Assessment. Across the studies, consistency was found in the types of toxic response observed in the different organisms. Impairment of stress responses and adrenal gland function, cardiotoxicity, immune system dysfunction, disruption of blood cells and their function, effects on locomotion, and oxidative damage were observed across taxa. This consistency suggests conservation in the mechanisms of action and disease pathogenesis. From a toxicological perspective, a logical progression of impacts was noted: from molecular and cellular effects that manifest as organ dysfunction, to systemic effects that compromise fitness, growth, reproductive potential, and survival. From a clinical perspective, adverse health effects from DWH oil spill exposure formed a suite of signs/symptomatic responses that at the highest doses/concentrations resulted in multi-organ system failure.
Collapse
Affiliation(s)
- Ryan Takeshita
- Conservation Medicine, National Marine Mammal Foundation, San Diego, California, United States
| | - Steven J Bursian
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States
| | - Kathleen M Colegrove
- College of Veterinary Medicine, Illinois at Urbana-Champaign, Brookfield, Illinois, United States
| | - Tracy K Collier
- Zoological Pathology Program, Huxley College of the Environment, Western Washington University, Bellingham, Washington, United States
| | - Kristina Deak
- College of Marine Sciences, University of South Florida, St. Petersburg, Florida, United States
| | | | - Sylvain De Guise
- Department of Pathobiology and Veterinary Sciences, University of Connecticut, Storrs, Connecticut, United States
| | - Lisa M DiPinto
- Office of Response and Restoration, NOAA, Silver Spring, Maryland, United States
| | - Cornelis J Elferink
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Andrew J Esbaugh
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas, United States
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Gulfport, Mississippi, United States
| | - Martin Grosell
- RSMAS, University of Miami, Miami, Florida, United States
| | | | - John P Incardona
- NOAA Environmental Conservation Division, Northwest Fisheries Science Center, Seattle, Washington, United States
| | - Richard K Kwok
- Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, North Carolina, United States
| | | | - Carys L Mitchelmore
- University of Maryland Center of Environmental Science, Chesapeake Biological Laboratory, Solomons, Maryland, United States
| | - Jeffrey M Morris
- Health and Environment Division, Abt Associates, Boulder, Colorado, United States
| | - Edward S Peters
- Department of Epidemiology, LSU School of Public Health, New Orleans, Louisiana, United States
| | - Aaron P Roberts
- Advanced Environmental Research Institute and Department of Biological Sciences, University of North Texas, Denton, Texas, United States
| | - Teresa K Rowles
- NOAA Office of Protected Resources, National Marine Fisheries Service, Silver Spring, Maryland, United States
| | - Jennifer A Rusiecki
- Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, Maryland, United States
| | - Lori H Schwacke
- Conservation Medicine, National Marine Mammal Foundation, San Diego, California, United States
| | - Cynthia R Smith
- Conservation Medicine, National Marine Mammal Foundation, San Diego, California, United States
| | - Dana L Wetzel
- Environmental Laboratory of Forensics, Mote Marine Laboratory, Sarasota, Florida, United States
| | - Michael H Ziccardi
- School of Veterinary Medicine, One Health Institute, University of California, Davis, California, United States
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| |
Collapse
|
4
|
Takeshita R, Balmer BC, Messina F, Zolman ES, Thomas L, Wells RS, Smith CR, Rowles TK, Schwacke LH. High site-fidelity in common bottlenose dolphins despite low salinity exposure and associated indicators of compromised health. PLoS One 2021; 16:e0258031. [PMID: 34591903 PMCID: PMC8483354 DOI: 10.1371/journal.pone.0258031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
More than 2,000 common bottlenose dolphins (Tursiops truncatus) inhabit the Barataria Bay Estuarine System in Louisiana, USA, a highly productive estuary with variable salinity driven by natural and man-made processes. It was unclear whether dolphins that are long-term residents to specific areas within the basin move in response to fluctuations in salinity, which at times can decline to 0 parts per thousand in portions of the basin. In June 2017, we conducted health assessments and deployed satellite telemetry tags on dolphins in the northern portions of the Barataria Bay Estuarine System Stock area (9 females; 4 males). We analyzed their fine-scale movements relative to modeled salinity trends compared to dolphins tagged near the barrier islands (higher salinity environments) from 2011 to 2017 (37 females; 21 males). Even though we observed different movement patterns among individual dolphins, we found no evidence that tagged dolphins moved coincident with changes in salinity. One tagged dolphin spent at least 35 consecutive days, and 75 days in total, in salinity under 5 parts per thousand. Health assessments took place early in a seasonal period of decreased salinity. Nonetheless, we found an increased prevalence of skin lesions, as well as abnormalities in serum biochemical markers and urine:serum osmolality ratios for dolphins sampled in lower salinity areas. This study provides essential information on the likely behavioral responses of dolphins to changes in salinity (e.g., severe storms or from the proposed Mid-Barataria Sediment Diversion project) and on physiological markers to inform the timing and severity of impacts from low salinity exposure.
Collapse
Affiliation(s)
- Ryan Takeshita
- National Marine Mammal Foundation, San Diego, California, United States of America
- * E-mail:
| | - Brian C. Balmer
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Francesca Messina
- Water Institute of the Gulf, Baton Rouge, Louisiana, United States of America
| | - Eric S. Zolman
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Len Thomas
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, United Kingdom
| | - Randall S. Wells
- Chicago Zoological Society’s Sarasota Dolphin Research Program, Mote Marine Laboratory, Sarasota, Florida, United States of America
| | - Cynthia R. Smith
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Teresa K. Rowles
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Protected Resources, Silver Spring, Maryland, United States of America
| | - Lori H. Schwacke
- National Marine Mammal Foundation, San Diego, California, United States of America
| |
Collapse
|
5
|
Ruberg EJ, Elliott JE, Williams TD. Review of petroleum toxicity and identifying common endpoints for future research on diluted bitumen toxicity in marine mammals. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:537-551. [PMID: 33761025 PMCID: PMC8060214 DOI: 10.1007/s10646-021-02373-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 05/15/2023]
Abstract
Large volumes of conventional crude oil continue to be shipped by sea from production to consumption areas across the globe. In addition, unconventional petroleum products also transverse pelagic habitats; for example, diluted bitumen from Canada's oilsands which is shipped along the Pacific coast to the United States and Asia. Therefore, there is a continuing need to assess the toxicological consequences of chronic and catastrophic petroleum spillage on marine wildlife. Peer-reviewed literature on the toxicity of unconventional petroleum such as diluted bitumen exists for teleost fish, but not for fauna such as marine mammals. In order to inform research needs for unconventional petroleum toxicity we conducted a comprehensive literature review of conventional petroleum toxicity on marine mammals. The common endpoints observed in conventional crude oil exposures and oil spills include hematological injury, modulation of immune function and organ weight, genotoxicity, eye irritation, neurotoxicity, lung disease, adrenal dysfunction, metabolic and clinical abnormalities related to oiling of the pelage, behavioural impacts, decreased reproductive success, mortality, and population-level declines. Based on our findings and the body of literature we accessed, our recommendations for future research include: 1) improved baseline data on PAH and metals exposure in marine mammals, 2) improved pre- and post-spill data on marine mammal populations, 3) the use of surrogate mammalian models for petroleum toxicity testing, and 4) the need for empirical data on the toxicity of unconventional petroleum to marine mammals.
Collapse
Affiliation(s)
- E J Ruberg
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - J E Elliott
- Pacific Wildlife Research Centre, Environment and Climate Change Canada, Delta, BC, Canada.
| | - T D Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
6
|
Bowen-Stevens SR, Gannon DP, Hazelkorn RA, Lovewell G, Volker KM, Smith S, Tumlin MC, Litz J. Diet of Common Bottlenose Dolphins, Tursiops truncatus, that Stranded in and Near Barataria Bay, Louisiana, 2010–2012. SOUTHEAST NAT 2021. [DOI: 10.1656/058.020.0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Damon P. Gannon
- University of Georgia Marine Institute, PO Box 32, Sapelo Island, GA 31327
| | | | - Gretchen Lovewell
- Stranding Investigations Program, Mote Marine Laboratory, Sarasota, FL 34236
| | - Kristen M. Volker
- Virginia Aquarium and Marine Science Center, Virginia Beach, VA 23451
| | - Suzanne Smith
- Audubon Aquarium of the Americas, New Orleans, LA 70130
| | - Mandy C. Tumlin
- Louisiana Department of Wildlife and Fisheries, Baton Rouge, LA 70898
| | - Jenny Litz
- National Marine Fisheries Service, Southeast Fisheries Science Center, Miami, FL 33149
| |
Collapse
|
7
|
Gurung S, Dubansky B, Virgen CA, Verbeck GF, Murphy DW. Effects of crude oil vapors on the cardiovascular flow of embryonic Gulf killifish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141627. [PMID: 33181982 DOI: 10.1016/j.scitotenv.2020.141627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Direct contact with toxicants in crude oil during embryogenesis causes cardiovascular defects, but the effects of exposure to airborne volatile organic compounds released from spilled oil are not well understood. The effects of crude oil-derived airborne toxicants on peripheral blood flow were examined in Gulf killifish (Fundulus grandis) since this model completes embryogenesis in the air. Particle image velocimetry was used to measure in vivo blood flow in intersegmental arteries of control and oil-exposed embryos. Significant effects in oil-exposed embryos included increased pulse rate, reduced mean blood flow speed and volumetric flow rate, and decreased pulsatility, demonstrating that normal-appearing oil-exposed embryos retain underlying cardiovascular defects. Further, hematocrit moderately increased in oil-exposed embryos. This study highlights the potential for fine-scale physiological measurement techniques to better understand the sub-lethal effects of oil exposure and demonstrates the efficacy of Gulf killifish as a unique teleost model for aerial toxicant exposure studies.
Collapse
Affiliation(s)
- Sanjib Gurung
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, United States
| | - Benjamin Dubansky
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, United States
| | - Camila A Virgen
- Department of Chemistry, University of North Texas, Denton, TX 76203, United States
| | - Guido F Verbeck
- Department of Chemistry, University of North Texas, Denton, TX 76203, United States
| | - David W Murphy
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, United States.
| |
Collapse
|
8
|
Linnehan BK, Hsu A, Gomez FM, Huston SM, Takeshita R, Colegrove KM, Rowles TK, Barratclough A, Musser WB, Harms CA, Cendejas V, Zolman ES, Balmer BC, Townsend FI, Wells RS, Jensen ED, Schwacke LH, Smith CR. Standardization of Dolphin Cardiac Auscultation and Characterization of Heart Murmurs in Managed and Free-Ranging Bottlenose Dolphins ( Tursiops truncatus). Front Vet Sci 2020; 7:570055. [PMID: 33240948 PMCID: PMC7678442 DOI: 10.3389/fvets.2020.570055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/24/2020] [Indexed: 12/21/2022] Open
Abstract
Cardiac auscultation is an important, albeit underutilized tool in aquatic animal medicine due to the many challenges associated with in-water examinations. The aims of this prospective study were to (1) establish an efficient and repeatable in-water cardiac auscultation technique in bottlenose dolphins (Tursiops truncatus), (2) describe the presence and characterization of heart murmurs detected in free-ranging and managed dolphins, and (3) characterize heart murmur etiology through echocardiography in free-ranging dolphins. For technique development, 65 dolphins cared for by the Navy Marine Mammal Program (Navy) were auscultated. The techniques were then applied to two free-ranging dolphin populations during capture-release health assessments: Sarasota Bay, Florida (SB), a reference population, and Barataria Bay, LA (BB), a well-studied population of dolphins impacted by the Deepwater Horizon oil spill. Systolic heart murmurs were detected at a frequent and similar prevalence in all dolphin populations examined (Navy 92%, SB 89%, and BB 88%), and characterized as fixed or dynamic. In all three populations, sternal cranial and left cranial were the most common locations for murmur point of maximal intensity (PMI). An in-water transthoracic echocardiogram technique was refined on a subset of Navy dolphins, and full echocardiographic exams were performed on 17 SB dolphins and 29 BB dolphins, of which, 40 had murmurs. Spectral Doppler was used to measure flow velocities across the outflow tracts, and almost all dolphins with audible murmurs had peak outflow velocities ≥1.6 m/s (95%, 38/40); three dolphins also had medium mitral regurgitation which could be the source of their murmurs. The presence of audible murmurs in most of the free-ranging dolphins (88%) was attributed to high velocity blood flow as seen on echocardiography, similar to a phenomenon described in other athletic species. These innocent murmurs were generally characterized as Grade I-III systolic murmurs with PMI in the left or sternal cranial region. This study is the first to describe an efficient technique for in-water dolphin cardiac auscultation, and to present evidence that heart murmurs are common in bottlenose dolphins.
Collapse
Affiliation(s)
| | - Adonia Hsu
- San Diego Veterinary Cardiology, San Diego, CA, United States
| | - Forrest M Gomez
- National Marine Mammal Foundation, San Diego, CA, United States
| | - Sharon M Huston
- San Diego Veterinary Cardiology, San Diego, CA, United States
| | - Ryan Takeshita
- National Marine Mammal Foundation, San Diego, CA, United States
| | - Kathleen M Colegrove
- Zoological Pathology Program, University of Illinois at Urbana-Champaign, Brookfield, IL, United States
| | - Teri K Rowles
- Office of Protected Resources, National Oceanic and Atmospheric Administration, Silver Spring, MD, United States
| | | | | | - Craig A Harms
- Center for Marine Sciences and Technology, North Carolina State University, Morehead City, NC, United States
| | | | - Eric S Zolman
- National Marine Mammal Foundation, San Diego, CA, United States
| | - Brian C Balmer
- National Marine Mammal Foundation, San Diego, CA, United States
| | | | - Randall S Wells
- Chicago Zoological Society's Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, FL, United States
| | - Eric D Jensen
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific, San Diego, CA, United States
| | - Lori H Schwacke
- National Marine Mammal Foundation, San Diego, CA, United States
| | - Cynthia R Smith
- National Marine Mammal Foundation, San Diego, CA, United States
| |
Collapse
|
9
|
Afshar-Mohajer N, Lam A, Dora L, Katz J, Rule AM, Koehler K. Impact of dispersant on crude oil content of airborne fine particulate matter emitted from seawater after an oil spill. CHEMOSPHERE 2020; 256:127063. [PMID: 32438130 DOI: 10.1016/j.chemosphere.2020.127063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Inhalation of PM2.5, particles with an aerodynamic diameter <2.5 μm, from sea spray after crude oil spills could present serious health concerns. The addition of dispersants to effectively spread the crude oil throughout the water column has been practiced in recent years. Here, we investigated the possibility of an increase in the toxic content of fine PM after adding dispersant. A laboratory setup consisted of a vertical tank filled with seawater, 31.5 L airspace for aerosol sampling, and a bubble generating nozzle that aerosolized the oily droplets. Four different cases were studied: no slick, 0.5-mm-thick slick of pure crude oil (MC252 surrogate), dispersant (Corexit 9500A) mixed with crude oil at dispersant to oil ratio (DOR) 1:25, and DOR 1:100. The resulting airborne droplets were sampled for gravimetric and chemical analyses through development of a gas chromatography and mass spectrometry technique. Also, PM2.5 particles were size-fractioned into 13 size bins covering <60 nm to 12.1 μm using a low-pressure cascade impactor. The highest PM2.5 concentration (20.83 ± 5.21 μg/m3) was released from a slick of DOR 1:25, 8.83× greater than the case with pure crude oil. The average ratio of crude oil content from the slick of DOR 1:25 to the case with pure crude oil was 2.37 (1.83 vs 0.77 μg/m3) that decreased to 1.17 (0.90 vs 0.77 μg/m3) at DOR 1:100. For particles <220 nm, the resultant crude oil concentrations were 0.64 and 0.29 μg/m3 at DOR 1:25 and 1:100, both higher than 0.11 μg/m3 from the slick of pure crude oil.
Collapse
Affiliation(s)
- Nima Afshar-Mohajer
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Gradient Corporation, Boston, MA, USA.
| | - Andres Lam
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lakshmana Dora
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Joseph Katz
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ana M Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kirsten Koehler
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
10
|
Shen S, Wu W, Grimes DJ, Saillant EA, Griffitt RJ. Community composition and antibiotic resistance of bacteria in bottlenose dolphins Tursiops truncatus - Potential impact of 2010 BP Oil Spill. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139125. [PMID: 32438143 DOI: 10.1016/j.scitotenv.2020.139125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Aquatic contamination, oil spills in particular, could lead to the accumulation of antibiotic resistance by promoting selection for and/or transfer of resistance genes. However, there have been few studies on antibiotic resistance in marine mammals in relation to environmental disturbances, specifically oil contaminations. Here we initiated a study on antibiotic resistance bacteria in bottlenose dolphins Tursiops truncatus in relation to oil contamination following the 2010 BP Oil Spill in the northern Gulf of Mexico. Bacterial communities and antibiotic resistance prevalence one year after the 2010 BP Oil Spill were compared between Barataria Bay (BB) and Sarasota Bay (SB) by applying the rarefaction curve method, and (generalized) linear mixed models. The results showed that the most common bacteria included Vibrio, Shewanella, Bacillus and Pseudomonas. The prevalence of antibiotic resistance was high in the bacterial isolates at both bays. Though bacterial diversity did not differ significantly among water or dolphin samples, and antibiotic resistance did not differ significantly among water samples between the two bays, antibiotic resistance and multi-drug resistance in dolphin samples was significantly higher in the BB than in the SB, mainly attributed to the resistance to E, CF, FEP and SXT. We also found sulfamethoxazole-trimethoprim-resistant Stenotrophomonas maltophilia the first time in the natural aquatic environment. The higher antibiotic resistance in the dolphins in BB is likely attributed to 2010 BP Oil Spill as we expected SB, a more urbanized bay area, would have had higher antibiotic resistance based on the previous studies. The antibiotic resistance data gathered in this research will fill in the important data gaps and contributes to the broader spatial-scale emerging studies on antibiotic resistance in aquatic environments.
Collapse
Affiliation(s)
- Shuo Shen
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, United States of America.
| | - Wei Wu
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, United States of America.
| | - D Jay Grimes
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, United States of America.
| | - Eric A Saillant
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, United States of America.
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, United States of America.
| |
Collapse
|
11
|
Meaza I, Toyoda JH, Wise JP. Microplastics in Sea Turtles, Marine Mammals and Humans: A One Environmental Health Perspective. FRONTIERS IN ENVIRONMENTAL SCIENCE 2020; 8:575614. [PMID: 34765609 PMCID: PMC8579821 DOI: 10.3389/fenvs.2020.575614] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Microplastics are ubiquitous pollutants in the marine environment and a health concern. They are generated directly for commercial purposes or indirectly from the breakdown of larger plastics. Examining a toxicological profile for microplastics is a challenge due to their large variety of physico-chemical properties and toxicological behavior. In addition to their concentration, other parameters such as polymer type, size, shape and color are important to consider in their potential toxicity. Microplastics can adsorb pollutants such as polycyclic aromatic hydrocarbons (PAHs) or metals on their surface and are likely to contain plastic additives that add to their toxicity. The observations of microplastics in seafood increased concern for potential human exposure. Since literature considering microplastics in humans is scarce, using a One Environmental Health approach can help better inform about potential human exposures. Marine mammals and sea turtles are long-lived sentinel species regularly used for biomonitoring the health status of the ocean and share trophic chain and habitat with humans. This review considers the available research regarding microplastic and plastic fiber exposures in humans, marine mammals and turtles. Overall, across the literature, the concentration of microplastics, size, color, shape and polymer types found in GI tract and feces from sea turtles, marine mammals and humans are similar, showing that they might be exposed to the same microplastics profile. Additionally, even if ingestion is a major route of exposure due to contaminated food and water, dermal and inhalation studies in humans have provided data showing that these exposures are also health concerns and more effort on these routes of exposures is needed. In vitro studies looked at a variety of endpoints showing that microplastics can induce immune response, oxidative stress, cytotoxicity, alter membrane integrity and cause differential expression of genes. However, these studies only considered three polymer types and short-term exposures, whereas, due to physiological relevance, prolonged exposures might be more informative.
Collapse
|
12
|
Barratclough A, Wells RS, Schwacke LH, Rowles TK, Gomez FM, Fauquier DA, Sweeney JC, Townsend FI, Hansen LJ, Zolman ES, Balmer BC, Smith CR. Health Assessments of Common Bottlenose Dolphins ( Tursiops truncatus): Past, Present, and Potential Conservation Applications. Front Vet Sci 2019; 6:444. [PMID: 31921905 PMCID: PMC6923228 DOI: 10.3389/fvets.2019.00444] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023] Open
Abstract
The common bottlenose dolphin (Tursiops truncatus) is a global marine mammal species for which some populations, due to their coastal accessibility, have been monitored diligently by scientists for decades. Health assessment examinations have developed a comprehensive knowledge base of dolphin biology, population structure, and environmental or anthropogenic stressors affecting their dynamics. Bottlenose dolphin health assessments initially started as stock assessments prior to acquisition. Over the last four decades, health assessments have evolved into essential conservation management tools of free-ranging dolphin populations. Baseline data enable comparison of stressors between geographic locations and associated changes in individual and population health status. In addition, long-term monitoring provides opportunities for insights into population shifts over time, with retrospective application of novel diagnostic tests on archived samples. Expanding scientific knowledge enables effective long-term conservation management strategies by facilitating informed decision making and improving social understanding of the anthropogenic effects. The ability to use bottlenose dolphins as a model for studying marine mammal health has been pivotal in our understanding of anthropogenic effects on multiple marine mammal species. Future studies aim to build on current knowledge to influence management decisions and species conservation. This paper reviews the historical approaches to dolphin health assessments, present day achievements, and development of future conservation goals.
Collapse
Affiliation(s)
| | - Randall S Wells
- Chicago Zoological Society's Sarasota Dolphin Research Program, Mote Marine Laboratory, Sarasota, FL, United States
| | - Lori H Schwacke
- National Marine Mammal Foundation, San Diego, CA, United States
| | - Teresa K Rowles
- NOAA, National Marine Fisheries Service, Office of Protected Resources, Silver Spring, MD, United States
| | - Forrest M Gomez
- National Marine Mammal Foundation, San Diego, CA, United States
| | - Deborah A Fauquier
- NOAA, National Marine Fisheries Service, Office of Protected Resources, Silver Spring, MD, United States
| | | | | | - Larry J Hansen
- National Marine Mammal Foundation, San Diego, CA, United States
| | - Eric S Zolman
- National Marine Mammal Foundation, San Diego, CA, United States
| | - Brian C Balmer
- National Marine Mammal Foundation, San Diego, CA, United States
| | - Cynthia R Smith
- National Marine Mammal Foundation, San Diego, CA, United States
| |
Collapse
|
13
|
Mullin KD, McDonald T, Wells RS, Balmer BC, Speakman T, Sinclair C, Zolman ES, Hornsby F, McBride SM, Wilkinson KA, Schwacke LH. Density, abundance, survival, and ranging patterns of common bottlenose dolphins (Tursiops truncatus) in Mississippi Sound following the Deepwater Horizon oil spill. PLoS One 2017; 12:e0186265. [PMID: 29053728 PMCID: PMC5650146 DOI: 10.1371/journal.pone.0186265] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/28/2017] [Indexed: 11/19/2022] Open
Abstract
After the Deepwater Horizon (DWH) oil spill began in April 2010, studies were initiated on northern Gulf of Mexico common bottlenose dolphins (Tursiops truncatus) in Mississippi Sound (MSS) to determine density, abundance, and survival, during and after the oil spill, and to compare these results to previous research in this region. Seasonal boat-based photo-identification surveys (2010–2012) were conducted in a section of MSS to estimate dolphin density and survival, and satellite-linked telemetry (2013) was used to determine ranging patterns. Telemetry suggested two different ranging patterns in MSS: (1) inshore waters with seasonal movements into mid-MSS, and (2) around the barrier islands exclusively. Based upon these data, dolphin density was estimated in two strata (Inshore and Island) using a spatially-explicit robust-design capture-recapture model. Inshore and Island density varied between 0.77–1.61 dolphins km−2 ( x¯ = 1.42, 95% CI: 1.28–1.53) and 3.32–5.74 dolphins km−2 ( x¯ = 4.43, 95% CI: 2.70–5.63), respectively. The estimated annual survival rate for dolphins with distinctive fins was very low in the year following the spill, 0.73 (95% CI: 0.67–0.78), and consistent with the occurrence of a large scale cetacean unusual mortality event that was in part attributed to the DWH oil spill. Fluctuations in density were not as large or seasonally consistent as previously reported. Total abundance for MSS extrapolated from density results ranged from 4,610 in July 2011 to 3,046 in January 2012 ( x¯ = 3,469, 95% CI: 3,113–3,725).
Collapse
Affiliation(s)
- Keith D. Mullin
- Southeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Pascagoula, Mississippi, United States of America
- * E-mail:
| | - Trent McDonald
- Western Ecosystems Technology, Inc., Cheyenne, Wyoming, United States of America
| | - Randall S. Wells
- Sarasota Dolphin Research Program, Chicago Zoological Society, % Mote Marine Laboratory, Sarasota, Florida, United States of America
| | - Brian C. Balmer
- Hollings Marine Laboratory, National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, Charleston, South Carolina, United States of America
| | - Todd Speakman
- Hollings Marine Laboratory, National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, Charleston, South Carolina, United States of America
| | - Carrie Sinclair
- Southeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Pascagoula, Mississippi, United States of America
| | - Eric S. Zolman
- Hollings Marine Laboratory, National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, Charleston, South Carolina, United States of America
| | - Fawn Hornsby
- Western Ecosystems Technology, Inc., Cheyenne, Wyoming, United States of America
| | - Shauna M. McBride
- Sarasota Dolphin Research Program, Chicago Zoological Society, % Mote Marine Laboratory, Sarasota, Florida, United States of America
| | - Krystan A. Wilkinson
- Sarasota Dolphin Research Program, Chicago Zoological Society, % Mote Marine Laboratory, Sarasota, Florida, United States of America
| | - Lori H. Schwacke
- Hollings Marine Laboratory, National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, Charleston, South Carolina, United States of America
| |
Collapse
|
14
|
Wallace BP, Brosnan T, McLamb D, Rowles T, Ruder E, Schroeder B, Schwacke L, Stacy B, Sullivan L, Takeshita R, Wehner D. Effects of the Deepwater Horizon oil spill on protected marine species. ENDANGER SPECIES RES 2017. [DOI: 10.3354/esr00789] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|