1
|
Elings J, Bruneel S, Pauwels IS, Schneider M, Kopecki I, Coeck J, Mawer R, Goethals PLM. Finding navigation cues near fishways. Biol Rev Camb Philos Soc 2024; 99:313-327. [PMID: 37813384 DOI: 10.1111/brv.13023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Many fish species depend on migration for various parts of their life cycle. Well-known examples include diadromous fish such as salmon and eels that need both fresh water and salt water to complete their life cycle. Migration also occurs within species that depend only on fresh water. In recent decades, anthropogenic pressures on freshwater systems have increased greatly, and have resulted, among other effects, in drastic habitat fragmentation. Fishways have been developed to mitigate the resulting habitat fragmentation, but these are not always effective. To improve fishway efficiency, the variety of navigation cues used by fish must be better understood: fish use a multitude of sensory inputs ranging from flow variables to olfactory cues. The reaction of a fish is highly dependent on the intensity of the cue, the fish species involved, and individual traits. Recently developed monitoring technologies allow us to gain insights into different combinations of environmental and physiological conditions. By combining fish behavioural models with environmental models, interactions among these components can be investigated. Several methods can be used to analyse fish migration, with state-space models, hidden Markov models, and individual-based models potentially being the most relevant since they can use individual data and can tie them to explicit spatial locations within the considered system. The aim of this review is to analyse the navigational cues used by fish and the models that can be applied to gather knowledge on these processes. Such knowledge could greatly improve the design and operation of fishways for a wider range of fish species and conditions.
Collapse
Affiliation(s)
- Jelger Elings
- Aquatic Ecology Research Unit, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
| | - Stijn Bruneel
- Aquatic Ecology Research Unit, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
| | - Ine S Pauwels
- INBO, Team Aquatic Management, Research Institute for Nature and Forest, Havenlaan 88, Brussel, Belgium
| | - Matthias Schneider
- SJE Ecohydraulic Engineering GmbH, Dilleniusstrasse 13, Backnang, 71522, Germany
| | - Ianina Kopecki
- SJE Ecohydraulic Engineering GmbH, Dilleniusstrasse 13, Backnang, 71522, Germany
| | - Johan Coeck
- INBO, Team Aquatic Management, Research Institute for Nature and Forest, Havenlaan 88, Brussel, Belgium
| | - Rachel Mawer
- Aquatic Ecology Research Unit, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
| | - Peter L M Goethals
- Aquatic Ecology Research Unit, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
| |
Collapse
|
2
|
Georgopoulou DG, Fanouraki E, Voskakis D, Mitrizakis N, Papandroulakis N. European seabass show variable responses in their group swimming features after tag implantation. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.997948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The usefulness of acoustic telemetry on the study of movements, interactions, and behaviors has been revealed by many field and laboratory studies. The process of attaching acoustic tags on fish can, however, impact their physiological, behavioral, and growth performance traits. The potential negative effects are still unknown for several species and behavioral attributes. Previous studies have attempted to shed light on the effects of tag implantation on fish, focusing mainly on fish growth and physiological parameters, and one or two behavioral properties mainly on the individual level. However, the effect of this procedure could also be expressed at the group level. This study investigated the short-term effects of dummy and active body-implanted acoustic tags on the group-level swimming performance of adult European seabass (Dicentrarchus labrax) using optical flow analysis. We studied four main swimming performance properties—group speed, alignment (polarization), cohesion, and exploratory behavior. To help in the interpretation of any detected differences, physiological stress-related parameters were also extracted. The results show that the tag implantation procedure has variable effects on the different swimming performance attributes of fish. Group cohesion, polarization, and the group’s exploratory tendency were significantly impacted initially, and the effect persisted but to a lesser extent two weeks after surgery. In contrast, group speed was not affected initially but showed a significant decrease in comparison with the control group two weeks post-surgery. In addition, the physiological parameters tested did not show any significant difference between the control and the treated group 14 days after the onset of the experiment. The findings suggest that the effect of tagging is non-trivial, leading to responses and response times that could affect behavioral studies carried out using acoustic telemetry.
Collapse
|
3
|
Butler GL, Davis TR, Brooks SG, Bowen C, Cameron LM, Rowland SJ, Smith D, St Vincent Welch J, Carpenter-Bundhoo L. Combining bio-telemetry and underwater imagery to elucidate the reproductive behaviour of a large, long-lived Australian freshwater teleost. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115298. [PMID: 35617858 DOI: 10.1016/j.jenvman.2022.115298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Murray cod Maccullochella peelii (Mitchell) have a key ecological role in ensuring the health of Australia's largest inland waterway, but many aspects surrounding its reproductive strategies in the wild are unknown. From 2015 to 2019 within the Northern Murray-Darling Basin, Australia, we used a combination of bio-telemetry and underwater imagery to quantify the behaviour of Murray cod across their breeding cycle in a natural riverine environment. In most years, breeding behaviour including nest site selection was observed from early-August and spawning from late-August through to late-October, which is considerably earlier than previously reported. There was a positive correlation between the onset of breeding behaviour and week-of-year, and spawning was correlated with moon-phase. Whilst some nesting sites were amongst woody debris and in hollow logs, the majority were located in shallow water on hard substrate underneath undercuts along the riverbank edge. Nests were frequently established in isolated and disconnected pools with little or no measurable flow, suggesting that river hydraulics is not a key component driving spawning of Murray cod across at least some areas of its range. Larvae were observed actively swimming and controlling their position within and near nests and used a scatter tactic when dispersing. We also established that disturbing nesting Murray cod had a negative impact on egg and larval survival. We suggest a review of current regulations to safeguard the long-term conservation of the species across all sections of its range.
Collapse
Affiliation(s)
- G L Butler
- NSW Department of Primary Industries (Fisheries), Grafton, NSW, Australia; Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, Qld, 4111, Australia.
| | - T R Davis
- NSW Department of Primary Industries (Fisheries), Grafton, NSW, Australia
| | - S G Brooks
- Department of Agriculture and Fisheries, Brisbane, Qld, Australia
| | - C Bowen
- NSW Department of Primary Industries (Fisheries), Grafton, NSW, Australia
| | - L M Cameron
- NSW Department of Primary Industries (Fisheries), Grafton, NSW, Australia
| | - S J Rowland
- NSW Department of Primary Industries (Fisheries), Grafton, NSW, Australia
| | - D Smith
- Department of Agriculture and Fisheries, Brisbane, Qld, Australia
| | - J St Vincent Welch
- NSW Department of Primary Industries (Fisheries), Grafton, NSW, Australia
| | - L Carpenter-Bundhoo
- NSW Department of Primary Industries (Fisheries), Grafton, NSW, Australia; Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, Qld, 4111, Australia
| |
Collapse
|
4
|
Espinoza T, Burke CL, Carpenter-Bundhoo L, Marshall SM, McDougall AJ, Roberts DT, Campbell HA, Kennard MJ. Quantifying movement of multiple threatened species to inform adaptive management of environmental flows. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113067. [PMID: 34171782 DOI: 10.1016/j.jenvman.2021.113067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
There is a growing need for water managers to refine and optimise environmental flow strategies (e-flows) to balance water requirements for humans and nature. With increasing demands for freshwater and consequent declines in biodiversity, managers are faced with the problem of how to adaptively manage e-flows for multiple stakeholders and species whose flow requirements may overlap or vary. This study assessed the effectiveness of a regulated e-flow release strategy from a dam, aimed at providing movement opportunities and facilitating reproductive processes for multiple threatened species. Movements of 24 Mary River cod (Maccullochella mariensis), 20 Australian lungfish (Neoceratodus forsteri) and 13 Mary River turtle (Elusor macrurus) were quantified using acoustic telemetry over a three-year period. The influence of regulated e-flow releases, season, river depth, water temperature and rainfall on animal movements was assessed using Generalised linear mixed models (GLMMs). Models showed that hydraulic connectivity provided by both natural flows and regulated e-flow releases facilitated movement of all three species between pool habitats, throughout the year. Mary River turtles made extensive use of regulated e-flow releases when moving between habitats, whereas Mary River cod and Australian lungfish required additional natural rises in river height above the regulated e-flows to trigger movements. Significant movement activity was also recorded for cod and turtles during the dry season (winter and spring), broadly coinciding with breeding periods for these species. The effectiveness of, and potential improvements to, current e-flow strategies to sustain key life-history requirements of these species is discussed. Findings suggest a revised e-flow strategy with relatively minor increases in the magnitude of e-flow releases throughout winter and spring, would be effective in providing movement opportunities and supporting reproductive success for all three species. This study demonstrates that by quantifying movement behaviour in an e-flow context, ecological risk assessment frameworks can then be used to assess and provide for critical life-history requirements of multiple species within the context of a highly regulated system under increasing water use demands.
Collapse
Affiliation(s)
- T Espinoza
- Department of Regional Development, Manufacturing and Water, Bundaberg, QLD, 4670, Australia.
| | - C L Burke
- Australian Rivers Institute, Griffith University, Nathan, Queensland, 4111, Australia
| | - L Carpenter-Bundhoo
- Australian Rivers Institute, Griffith University, Nathan, Queensland, 4111, Australia
| | - S M Marshall
- Department of Regional Development, Manufacturing and Water, Bundaberg, QLD, 4670, Australia
| | - A J McDougall
- Department of Regional Development, Manufacturing and Water, Bundaberg, QLD, 4670, Australia
| | - D T Roberts
- Seqwater, Ipswich, Queensland, 4305, Australia
| | - H A Campbell
- Research Institute for the Environment and Livelihoods, School of Environment, Charles Darwin University, Darwin, NT, 0909, Australia
| | - M J Kennard
- Australian Rivers Institute, Griffith University, Nathan, Queensland, 4111, Australia
| |
Collapse
|