Li D, Zhang X, Liu R, Long M, Zhou S, Lin J, Zhang L. Kainic acid induced hyperexcitability in thalamic reticular nucleus that initiates an inflammatory response through the HMGB1/TLR4 pathway.
Neurotoxicology 2023;
95:94-106. [PMID:
36669621 DOI:
10.1016/j.neuro.2023.01.007]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
OBJECTIVE
To explore the relationship between the proinflammatory factor high-mobility group box 1 (HMGB1) and glutamatergic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the development of epilepsy.
METHODS
Thalamic reticular nucleus (TRN) slices were treated with kainic acid (KA) to simulate seizures. Action potentials and spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded within TRN slices using whole-cell patch clamp techniques. The translocation of HMGB1 was detected by immunofluorescence. The HMGB1/TLR4 signaling pathway and its downstream inflammatory factors (IL-1β and NF-κB) were detected by RTPCR, Western blot and ELISA.
RESULTS
KA-evoked spikings were observed in TRN slices and blocked by perampanel. sIPSCs in the TRN were enhanced by KA and reduced by perampanel. The translocation of HMGB1 in the TRN was promoted by KA and inhibited by perampanel. The expression of the HMGB1/TLR4 signaling pathway was promoted by KA and suppressed by perampanel.
CONCLUSION
KA induced hyperexcitability activates the HMGB1/TLR4 pathway, which potentially leading to neuroinflammation in epilepsy.
Collapse