Lai J, Zhang Y, Liu X, Zhang J, Ruan G, Chaugai S, Chen C, Wang DW. Effects of extremely low frequency electromagnetic fields (100μT) on behaviors in rats.
Neurotoxicology 2015;
52:104-13. [PMID:
26593281 PMCID:
PMC7127835 DOI:
10.1016/j.neuro.2015.11.010]
[Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/20/2015] [Accepted: 11/17/2015] [Indexed: 11/16/2022]
Abstract
Prolonged exposure to ELF-EMF has no effect on the behavior of the adult male rats.
Including anxiety/depression like behavior, and spatial/fear learning and memory.
Exposure to ELF-EMF might be safe.
Recently, extremely low frequency electromagnetic fields (ELF-EMF) have received considerable attentions for their potential pathogenicity. In the present study, we explored the effects of ELF-EMF on behaviors of adult male rats. Sixty adult male rats were randomly divided into two groups, the sham exposure group and the 50 Hz/100 μT ELF-EMF exposure group. During the 24 weeks exposure, body weight, as well as food and water intake were recorded. Results showed that food and water intake and the body weight of the rats were not affected by the exposure. After 24 weeks exposure, open field test and elevated plus maze were conducted to evaluate the anxiety-like behavior, the tail suspension test and forced swim test were conducted to evaluate depression-like behavior and Morris water maze and fear conditioning tests were used to evaluate the cognitive and memory ability. Exposure to ELF-EMF did not induce any anxiety-like or depression-like behaviors compared with the sham exposure. Moreover, the cognitive and memory ability was not impaired by the ELF-EMF exposure. Furthermore, ELF-EMF exposure did not affect the morphology and histology of the brain. In conclusion, 24 weeks exposure to 50 Hz/100 μT ELF-EMF had no effect on the behaviors of the adult male rats.
Collapse