1
|
Li W, Chen M, Chen F, Li Y, Zhong Y, Lu Y, Zhang K, Yang F. Vitamin D combined with whole-body vibration training for the treatment of osteo-sarcopenia: study protocol for a randomized controlled trial. Trials 2024; 25:638. [PMID: 39350307 PMCID: PMC11440726 DOI: 10.1186/s13063-024-08498-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Osteo-sarcopenia (OS) has become a global public health problem and a frontier research problem, as a combination of sarcopenia (SP) and osteoporosis (OP) diseases. The clinical performances include muscle weakness, systemic bone pain, standing difficulty, even falls and fractures, etc., which seriously affect the patient's life and work. The pathological mechanism of the OS may be the abnormal metabolism which disrupts the equilibrium stability of the musculoskeletal system. Therefore, this study combined vitamin D (Vit. D) and whole-body vibration training (WBVT) to intervene in subjects of OS, aiming to evaluate the effectiveness and safety of the diagnosis and treatment protocol and to explore the efficacy mechanism. METHODS We propose a multicenter, parallel-group clinical trial to evaluate the efficacy and safety of Vit. D combined with WBVT intervention in OS. Subjects who met the inclusion or exclusion criteria and signed the informed consent form would be randomly assigned to the WBVT group, Vit. D group, or WBVT+ Vit. D group. All subjects will be treated for 1 month and followed up after 3 and 6 months. The primary outcomes are lumbar bone mineral density (BMD) and appendicular skeletal muscle mass (ASM) measured by dual-energy X-ray absorptiometry (DXA) and handgrip strength measured by grip strength meter. Secondary outcomes include serum markers of myostatin (MSTN), irisin and bone turnover markers (BTM), SARC-CalF questionnaire, 1-min test question of osteoporosis risk, patient health status (evaluated by the SF-36 health survey), physical performance measurement that includes 5-time chair stand test, 6-m walk, and the short physical performance battery (SPPB). DISCUSSION If Vit. D combined with WBVT can well relieve OS symptoms without adverse effects, this protocol may be a new treatment strategy for OS. After therapeutic intervention, if the serum marker MSTN/irisin is significant, both have the potential to become sensitive indicators for screening OS effective drugs and treatments, which also indicates that WBVT combined with Vit. D plays a role in improving OS by regulating MSTN/irisin. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2400082269 . Registered on March 26, 2024.
Collapse
Affiliation(s)
- Wenxiong Li
- Shaanxi University of Chinese Medicine, Xi'an, 712046, China
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, 712083, China
| | - Menghan Chen
- Hancheng Hospital of Traditional Chinese Medicine, Hancheng, 715400, China
| | - Feifei Chen
- Baoji Hospital of Traditional Chinese Medicine, Baoji, 721001, China
| | - Yanan Li
- Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yuan Zhong
- Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yu Lu
- Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Kuaiqiang Zhang
- Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, 712083, China.
| | - Feng Yang
- Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, 712083, China.
| |
Collapse
|
2
|
Machado MIP, Gomes AM, Zambuzzi WF. Hypoxia modulates the phenotype of mechanically stressed endothelial cells responding to CoCr-enriched medium. J Trace Elem Med Biol 2024; 82:127341. [PMID: 38091868 DOI: 10.1016/j.jtemb.2023.127341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 01/10/2024]
Abstract
Given the importance of the endothelial cell phenotype in dental peri-implant healing processes, the aim of this study was to better assess the involvement of endothelial cells responding to cobalt-chromium (CoCr)-enriched medium. Biologically, cobalt is widely used molecule to induce chemical experimental hypoxia because it stabilizes hypoxia inducible factors (HIF1α). The aplication of hypoxia models provides better experimental condition to allow its impact on cellular metabolism, by looking for biochemical and molecular issues. Thus, this study looks for understaing whether CoCr-based materials are able to modulate endothelial cells considering the hypoxic effect prmoted by cobalt. Firstly, our data shows there is a siginificant effect on endothelial phenotype by modulating the expression of VEGF and eNOS genes, whith low requirement of genes related with proteasome intracellular complex. Importantly, the data were validated using classical chemical modulators of hypoxia signaling [chrysin (5,7-dihydroxyflavone) and Dimethyloxalylglycine (DMOG)] in functional assays. Altogether, these data validate the hypothesis that hipoxya is important to maintain the phenotype of endothelial cells, and it is properly interesting during the tissue regeneration surrounding implants and so compromising osseointegration process. Finally, it is important to mention that the cobalt released from CoCr devices might contribute with an sufficient microenvironment surrounding implanted devices and it paviments new roads looking for more bioactive surfaces of implantable materials in human health.
Collapse
Affiliation(s)
- Mariana Issler Pinheiro Machado
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP - São Paulo State University, 18618-970 Botucatu, São Paulo, Brazil
| | - Anderson Moreira Gomes
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP - São Paulo State University, 18618-970 Botucatu, São Paulo, Brazil
| | - Willian Fernando Zambuzzi
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP - São Paulo State University, 18618-970 Botucatu, São Paulo, Brazil.
| |
Collapse
|
3
|
Kent MH, Jacob JC, Bowen G, Bhalerao J, Desinor S, Vavra D, Leserve D, Ott KR, Angeles B, Martis M, Sciandra K, Gillenwater K, Glory C, Meisel E, Choe A, Olivares-Navarrete R, Puetzer JL, Lambert K. Disrupted development from head to tail: Pervasive effects of postnatal restricted resources on neurobiological, behavioral, and morphometric outcomes. Front Behav Neurosci 2022; 16:910056. [PMID: 35990727 PMCID: PMC9389412 DOI: 10.3389/fnbeh.2022.910056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
When a maternal rat nurtures her pups, she relies on adequate resources to provide optimal care for her offspring. Accordingly, limited environmental resources may result in atypical maternal care, disrupting various developmental outcomes. In the current study, maternal Long-Evans rats were randomly assigned to either a standard resource (SR) group, provided with four cups of bedding and two paper towels for nesting material or a limited resource (LR) group, provided with a quarter of the bedding and nesting material provided for the SR group. Offspring were monitored at various developmental phases throughout the study. After weaning, pups were housed in same-sex dyads in environments with SRs for continued observations. Subsequent behavioral tests revealed a sex × resource interaction in play behavior on PND 28; specifically, LR reduced play attacks in males while LR increased play attacks in females. A sex × resource interaction was also observed in anxiety-related responses in the open field task with an increase in thigmotaxis in LR females and, in the social interaction task, females exhibited more external rears oriented away from the social target. Focusing on morphological variables, tail length measurements of LR males and females were shorter on PND 9, 16, and 21; however, differences in tail length were no longer present at PND 35. Following the behavioral assessments, animals were perfused at 56 days of age and subsequent immunohistochemical assays indicated increased glucocorticoid receptors in the lateral habenula of LR offspring and higher c-Fos immunoreactivity in the basolateral amygdala of SR offspring. Further, when tail vertebrae and tail tendons were assessed via micro-CT and hydroxyproline assays, results indicated increased trabecular separation, decreased bone volume fraction, and decreased connectivity density in bones, along with reduced collagen concentration in tendons in the LR animals. In sum, although the restricted resources only persisted for a brief duration, the effects appear to be far-reaching and pervasive in this early life stress animal model.
Collapse
Affiliation(s)
- Molly H. Kent
- Department of Biology, Virginia Military Institute, Lexington, VA, United States
| | - Joanna C. Jacob
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Gabby Bowen
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Janhavi Bhalerao
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Stephanie Desinor
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Dylan Vavra
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Danielle Leserve
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Kelly R. Ott
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Benjamin Angeles
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael Martis
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Katherine Sciandra
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | | | - Clark Glory
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Eli Meisel
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Allison Choe
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer L. Puetzer
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Kelly Lambert
- Department of Psychology, University of Richmond, Richmond, VA, United States
- *Correspondence: Kelly Lambert,
| |
Collapse
|
4
|
Pleić N, Brdar D, Gunjača I, Babić Leko M, Torlak V, Punda A, Polašek O, Hayward C, Zemunik T. Thyroid Hormones Are Not Associated with Plasma Osteocalcin Levels in Adult Population with Normal Thyroid Function. Metabolites 2022; 12:metabo12080719. [PMID: 36005591 PMCID: PMC9412351 DOI: 10.3390/metabo12080719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023] Open
Abstract
Thyroid hormones (THs) play an indispensable role in skeletal development and bone remodeling. Some studies have reported associations of THs with serum osteocalcin (OC) levels, but the results are quite inconsistent and the molecular mechanism of their simultaneous or interdependent activity on bone is almost unknown. Therefore, the aim of this study was to determine the possible associations of plasma THs with plasma OC levels and the possible mediating effect of OC on the relationship between THs and bone mineral density (BMD). For this purpose, out of the initial 1981 participants, we selected healthy euthyroid participants controlled for available confounding factors that can affect thyroid function and bone metabolism (N = 694). Given our results, we could not confirm any associations of THs with plasma OC levels nor the mediating effect of OC on the relationship between THs and BMD in euthyroid population. In the group of women controlled for menopause status (N = 396), we found a significant negative association of body mass index (BMI) with OC levels (β = −0.14, p = 0.03). We also found a negative association of free triiodothyronine (fT3) (β = −0.01, p = 0.02) and age (β = −0.003, p < 0.001) with BMD, and a positive association of BMI (β = 0.004, p < 0.001) and male gender (β = 0.1, p < 0.001) with BMD. In addition, we found significantly higher plasma OC levels and lower values of BMD in postmenopausal euthyroid women compared with premenopausal euthyroid women. In our opinion, the results of previous studies suggesting an association between circulating THs and serum OC levels may be influenced by an inconsistent selection of participants and the influence of confounding factors.
Collapse
Affiliation(s)
- Nikolina Pleić
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia
| | - Dubravka Brdar
- Department of Nuclear Medicine, University Hospital Split, Spinčićeva 1, 21000 Split, Croatia
| | - Ivana Gunjača
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia
| | - Mirjana Babić Leko
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia
| | - Vesela Torlak
- Department of Nuclear Medicine, University Hospital Split, Spinčićeva 1, 21000 Split, Croatia
| | - Ante Punda
- Department of Nuclear Medicine, University Hospital Split, Spinčićeva 1, 21000 Split, Croatia
| | - Ozren Polašek
- Department of Public Health, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Tatijana Zemunik
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia
- Correspondence:
| |
Collapse
|
5
|
Dušková M, Kolátorová L, Jandíková H, Pospíšilová H, Stárka L. Are there sex differences in the reaction of undercarboxylated osteocalcin to hypoglycemia? Physiol Res 2021; 69:S315-S320. [PMID: 33094629 DOI: 10.33549/physiolres.934520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
There has been increasing evidence in recent years for the hypothesis of bones as endocrine organs. Osteocalcin, long considered just a marker of new bone formation, is now seen as the first hormone produced by bones, and seems to be associated with regulating glucose metabolism and reproduction. The aim of this work was to monitor changes of osteocalcin in reaction to hypoglycemia, and determine if there are differences in such reactions between the sexes. The study included 61 healthy probands with physiological calciophosphate metabolism (30 men and 31 women). We applied to each of them an insulin tolerance test, and then monitored levels of undercarboxylated osteocalcin and reactions to hypoglycemia at regular time intervals. We found differences in the reaction to hypoglycemia between the sexes. In men there was a significant decline in undercarboxylated osteocalcin between the 30 and 40 min (p<0.0015), which reflects a reaction to a glycemic decline between 25-30 min, followed by reversal. Low undercarboxylated osteocalcin in men lasted up to 90 min, after which they returned to levels before the test. In women we did not find any significant changes in undercarboxylated osteocalcin levels. Changes in undercarboxylated osteocalcin induced by hypoglycemia indicate a relationship between bones and glucose metabolism. There was an interesting difference between the sexes. However, a definitive conclusion about the role of osteocalcin in human metabolism will require numerous future studies.
Collapse
Affiliation(s)
- M Dušková
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
6
|
Evidence Supporting the Regulatory Relationships through a Paracrine Pathway between the Sternum and Pectoral Muscles in Ducks. Genes (Basel) 2021; 12:genes12040463. [PMID: 33804959 PMCID: PMC8063953 DOI: 10.3390/genes12040463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Muscles and bones are anatomically closely linked, and they can conduct communication by mechanical and chemical signals. However, the specific regulatory mechanism between the pectoral muscle and sternum in birds was largely unknown. The present study explored the potential relationship between them in ducks. The result of the sections showed that more nuclei in proliferate states were observed in the pectoral muscle fibers attached to the calcified sternum, than those attached to the un-calcified sternum. The RNA-seq identified 328 differentially expressed genes (DEGs) in the sternum between the calcified and un-calcified groups. Gene ontology (GO) showed that the DEGs were mainly enriched in pathways associated with calcification. In addition, DEGs in the muscles between the calcified and un-calcified sternum groups were mainly annotated to signal transduction receptor pathways. The expression patterns of genes encoding for secreted proteins, in bone (CXCL12, BMP7 and CTSK) and muscle (LGI1), were clustered with muscle development (MB) and bone calcification (KCNA1, OSTN, COL9A3, and DCN) related genes, respectively, indicating the regulatory relationships through a paracrine pathway existing between the sternum and pectoral muscles in ducks. Together, we demonstrated that the pectoral muscle development was affected by the sternal ossification states in ducks. The VEGFA, CXCL12, SPP1, NOG, and BMP7 were possibly the key genes to participate in the ossification of the duck sternum. We firstly listed evidence supporting the regulatory relationships through a paracrine pathway between the sternum and pectoral muscles in ducks, which provided scientific data for the study of the synergistic development of bone and skeletal muscle.
Collapse
|
7
|
Wegner B, Tenhündfeld J, Vogels J, Beumer M, Kamphues J, Hansmann F, Rieger H, Grosse Beilage E, Hennig-Pauka I. Lameness in fattening pigs - Mycoplasma hyosynoviae, osteochondropathy and reduced dietary phosphorus level as three influencing factors: a case report. Porcine Health Manag 2020; 6:41. [PMID: 33323132 PMCID: PMC7739479 DOI: 10.1186/s40813-020-00184-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple diagnostic procedures, their results and interpretation in a case with severe lameness in fattening pigs are described. It is shown that selected diagnostic steps lead to identification of various risk factors for disease development in the affected herd. One focus of this case report is the prioritization of diagnostic steps to verify the impact of the different conditions, which finally led to the clinical disorder. Assessing a sufficient dietary phosphorus (P) supply and its impact on disease development proved most difficult. The diagnostic approach based on estimated calculation of phosphorus intake is presented in detail. CASE PRESENTATION On a farrow-to-finishing farm, lameness occurred in pigs with 30-70 kg body weight. Necropsy of three diseased pigs revealed claw lesions and alterations at the knee and elbow joints. Histologic findings were characteristic of osteochondrosis. All pigs were positively tested for Mycoplasma hyosynoviae in affected joints. P values in blood did not indicate a P deficiency, while bone ashing in one of three animals resulted in a level indicating an insufficient mineral supply. Analysis of diet composition revealed a low phosphorus content in two diets, which might have led to a marginal P supply in individuals with high average daily gains with respect to development of bone mass and connective tissue prior to presentation of affected animals. Finally, the impact of dietary factors for disease development could not be evidenced in all submitted animals in this case. CONCLUSIONS Mycoplasma (M.) hyosynoviae was identified to be an important etiologic factor for disease. Other, non-infectious factors, such as osteochondrosis and claw lesions might have favored development of lameness. In addition, a relevant marginal P supply for pigs was found in a limited time period in a phase of intense growing, but the potential interaction with infection by M. hyosynoviae is unknown. The presented case of severe lameness in fattening pigs revealed that three different influences presumably act in pathogenesis. Focusing only on one factor and ignoring others might be misleading regarding subsequent decision-making for prevention and therapy. Finally, clinical symptoms disappeared after some changes in diet composition and anti-inflammatory treatment of individual animals.
Collapse
Affiliation(s)
- B Wegner
- Veterinary Practice Duemmerland, Steinfeld, Oldenburg, Germany
| | - J Tenhündfeld
- Vetland® Dr. Tenhündfeld & Kollegen, Vreden, Germany
| | - J Vogels
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - M Beumer
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - J Kamphues
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - F Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - H Rieger
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - E Grosse Beilage
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - I Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
8
|
Abstract
Starling's original definition of a hormone from 1905 was "a hormone is a substance produced by glands with internal secretion, which serve to carry signals through the blood to target organs". Today, this definition is understood to be lacking, but newer definitions also do not encompass the entire meaning of hormones as specific carriers of information. One main problem is that there is no delineation between hormones and other signaling molecules such as cytokines, growth factors or autacoid compounds. It seems that a precise definition is not even possible, since some cytokines and growth factors, such as the cytokines erythropoietin, lipocalin-2 and asprosin or fibroblast growth factor 23, act as hormones under certain conditions.
Collapse
Affiliation(s)
- L Stárka
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czech Republic.
| | | |
Collapse
|
9
|
Wang Y, Bu L, Cao X, Qu H, Zhang C, Ren J, Huang Z, Zhao Y, Luo C, Hu X, Shu D, Li N. Genetic Dissection of Growth Traits in a Unique Chicken Advanced Intercross Line. Front Genet 2020; 11:894. [PMID: 33033489 PMCID: PMC7509424 DOI: 10.3389/fgene.2020.00894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022] Open
Abstract
The advanced intercross line (AIL) that is created by successive generations of pseudo-random mating after the F2 generation is a valuable resource, especially in agricultural livestock and poultry species, because it improves the precision of quantitative trait loci (QTL) mapping compared with traditional association populations by introducing more recombination events. The growth traits of broilers have significant economic value in the chicken industry, and many QTLs affecting growth traits have been identified, especially on chromosomes 1, 4, and 27, albeit with large confidence intervals that potentially contain dozens of genes. To promote a better understanding of the underlying genetic architecture of growth trait differences, specifically body weight and bone development, in this study, we report a nine-generation AIL derived from two divergent outbred lines: High Quality chicken Line A (HQLA) and Huiyang Bearded (HB) chicken. We evaluate the genetic architecture of the F0, F2, F8, and F9 generations of AIL and demonstrate that the population of the F9 generation sufficiently randomized the founder genomes and has the characteristics of rapid linkage disequilibrium decay, limited allele frequency decline, and abundant nucleotide diversity. This AIL yielded a much narrower QTL than the F2 generations, especially the QTL on chromosome 27, which was reduced to 120 Kb. An ancestral haplotype association analysis showed that most of the dominant haplotypes are inherited from HQLA but with fluctuation of the effects between them. We highlight the important role of four candidate genes (PHOSPHO1, IGF2BP1, ZNF652, and GIP) in bone growth. We also retrieved a missing QTL from AIL on chromosome 4 by identifying the founder selection signatures, which are explained by the loss of association power that results from rare alleles. Our study provides a reasonable resource for detecting quantitative trait genes and tracking ancestor history and will facilitate our understanding of the genetic mechanisms underlying chicken bone growth.
Collapse
Affiliation(s)
- Yuzhe Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lina Bu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuemin Cao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hao Qu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chunyuan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiangli Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhuolin Huang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yiqiang Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chenglong Luo
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dingming Shu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Jackuliak P, Kužma M, Killinger Z, Payer J. Good long-term glycemic compensation is associated with better trabecular bone score in postmenopausal women with type 2 diabetes. Physiol Res 2020; 68:S149-S156. [PMID: 31842578 DOI: 10.33549/physiolres.934304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Osteoporosis is an increasingly widespread disease, as well as diabetes mellitus. It is now accepted that osteoporotic fractures are a serious co-morbidity and complication of diabetes. Despite of good bone mineral density in Type 2 Diabetes (T2DM) patients is the fracture risk elevated. It is due to reduced bone quality. To determine the effect of glycemic compensation on bone density and trabecular bone score (TBS) in T2DM. We analyzed a cohort of 105 postmenopausal women with T2DM. For all patients, central bone density (spinal and lumbar spine) was tested by DXA methodology, glycemic control parameters were assessed, and anthropometric parameters were measured. Bone quality was analyzed using TBS software. The results were statistically processed. Good glycemic compensation with glycated hemoglobin (A1c) value <7.0 % DCCT did not lead to BMD changes in patients with T2DM. However, patients with HbA1c <7 % DCCT had significantly better TBS (1.254±0.148 vs. 1.166±0.094, p=0.01). There was a negative correlation between TBS and glycated hemoglobin (r= -0,112, p<0.05) with glycemic fasting (r= -0.117, p<0.05). The optimal effect on TBS is achieved when all three markers of glycemic compensation (glycated hemoglobin, fasting plasma glucose and postprandial glycemia) are in optimal range. By using ROC curves glycated hemoglobin has the most significant effect on TBS. Optimal glycemic compensation, evaluated by glycated hemoglobin, does not lead to changes in BMD but has a beneficial effect on TBS in T2DM. Good glycemic control is required also for reduction of the risk of osteoporosis and osteoporotic fractures.
Collapse
Affiliation(s)
- P Jackuliak
- 5th Department of Internal Medicine, Faculty of Medicine, Comenius University Bratislava, University Hospital Bratislava, Bratislava, Slovak Republic
| | | | | | | |
Collapse
|
11
|
Bao M, Zhang K, Wei Y, Hua W, Gao Y, Li X, Ye L. Therapeutic potentials and modulatory mechanisms of fatty acids in bone. Cell Prolif 2020; 53:e12735. [PMID: 31797479 PMCID: PMC7046483 DOI: 10.1111/cpr.12735] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 02/05/2023] Open
Abstract
Bone metabolism is a lifelong process that includes bone formation and resorption. Osteoblasts and osteoclasts are the predominant cell types associated with bone metabolism, which is facilitated by other cells such as bone marrow mesenchymal stem cells (BMMSCs), osteocytes and chondrocytes. As an important component in our daily diet, fatty acids are mainly categorized as long-chain fatty acids including polyunsaturated fatty acids (LCPUFAs), monounsaturated fatty acids (LCMUFAs), saturated fatty acids (LCSFAs), medium-/short-chain fatty acids (MCFAs/SCFAs) as well as their metabolites. Fatty acids are closely associated with bone metabolism and associated bone disorders. In this review, we summarized the important roles and potential therapeutic implications of fatty acids in multiple bone disorders, reviewed the diverse range of critical effects displayed by fatty acids on bone metabolism, and elucidated their modulatory roles and mechanisms on specific bone cell types. The evidence supporting close implications of fatty acids in bone metabolism and disorders suggests fatty acids as potential therapeutic and nutritional agents for the treatment and prevention of metabolic bone diseases.
Collapse
Affiliation(s)
- Minyue Bao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Kaiwen Zhang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yangyini Wei
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Weihan Hua
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yanzi Gao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin Li
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ling Ye
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesDepartment of Cariology and EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
12
|
Daryadel A, Natale L, Seebeck P, Bettoni C, Schnitzbauer U, Gassmann M, Wagner CA. Elevated FGF23 and disordered renal mineral handling with reduced bone mineralization in chronically erythropoietin over-expressing transgenic mice. Sci Rep 2019; 9:14989. [PMID: 31628396 PMCID: PMC6802194 DOI: 10.1038/s41598-019-51577-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
Fibroblast Growth Factor 23 (FGF23) is a phosphaturic factor causing increased renal phosphate excretion as well as suppression of 1,25 (OH)2-vitamin D3. Highly elevated FGF23 can promote development of rickets and osteomalacia. We and others previously reported that acute application of erythropoietin (EPO) stimulates FGF23 production. Considering that EPO is clinically used as chronic treatment against anemia, we used here the Tg6 mouse model that constitutively overexpresses human EPO in an oxygen-independent manner, to examine the consequences of long-term EPO therapy on mineral and bone metabolism. Six to eight weeks old female Tg6 mice showed elevated intact and C-terminal fragment of FGF23 but normal plasma levels of PTH, calcitriol, calcium and phosphate. Renal function showed moderate alterations with higher urea and creatinine clearance and mild albuminuria. Renal phosphate excretion was normal whereas mild hypercalciuria was found. Renal expression of the key proteins TRPV5 and calbindin D28k involved in active calcium reabsorption was reduced in Tg6 mice. Plasma levels of the bone turnover marker osteocalcin were comparable between groups. However, urinary excretion of deoxypyridinoline (DPD) was lower in Tg6 mice. MicroCT analysis showed reduced total, cortical, and trabecular bone mineral density in femora from Tg6 mice. Our data reveal that chronic elevation of EPO is associated with high FGF23 levels and disturbed mineral homeostasis resulting in reduced bone mineral density. These observations imply the need to study the impact of therapeutically applied EPO on bone mineralization in patients, especially those suffering from chronic kidney disease.
Collapse
Affiliation(s)
- Arezoo Daryadel
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,National Centre for Competence in Research NCCR "Kidney.CH", Zurich, Switzerland
| | - Luciano Natale
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Petra Seebeck
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| | - Carla Bettoni
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,National Centre for Competence in Research NCCR "Kidney.CH", Zurich, Switzerland
| | - Udo Schnitzbauer
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,National Centre for Competence in Research NCCR "Kidney.CH", Zurich, Switzerland
| | - Max Gassmann
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland.,Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland. .,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland. .,National Centre for Competence in Research NCCR "Kidney.CH", Zurich, Switzerland.
| |
Collapse
|
13
|
Bhattacharya I, Sen Sharma S, Majumdar SS. Pubertal orchestration of hormones and testis in primates. Mol Reprod Dev 2019; 86:1505-1530. [DOI: 10.1002/mrd.23246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Indrashis Bhattacharya
- Department of Zoology & BiotechnologyHNB Garhwal University, Srinagar CampusSrinagar India
- Cellular Endocrinology LabNational Institute of ImmunologyNew Delhi India
| | - Souvik Sen Sharma
- Cellular Endocrinology LabNational Institute of ImmunologyNew Delhi India
| | - Subeer S. Majumdar
- Cellular Endocrinology LabNational Institute of ImmunologyNew Delhi India
- Gene and Protein Engineering LabNational Institute of Animal BiotechnologyHyderabad India
| |
Collapse
|
14
|
Tang B. They are not alone - Cell system and bone disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 148:2-3. [PMID: 31121189 DOI: 10.1016/j.pbiomolbio.2019.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088,Xueyuan Road, Nanshan District, ShenZhen, Guangdong, PR China.
| |
Collapse
|
15
|
Tang B. WITHDRAWN: They are not alone - Cell System and Bone Disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019:S0079-6107(19)30076-8. [PMID: 30991056 DOI: 10.1016/j.pbiomolbio.2019.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.pbiomolbio.2019.04.004. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, ShenZhen, Guangdong, PR China.
| |
Collapse
|
16
|
Zofkova I, Nemcikova P. Osteoporosis complicating some inborn or acquired diseases. Physiol Res 2018; 67:S441-S454. [PMID: 30484671 DOI: 10.33549/physiolres.934027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Osteoporosis in chronic diseases is very frequent and pathogenetically varied. It complicates the course of the underlying disease by the occurrence of fractures, which aggravate the quality of life and increase the mortality of patients from the underlying disease. The secondary deterioration of bone quality in chronic diseases, such as diabetes of type 1 and type 2 and/or other endocrine and metabolic disorders, as well as inflammatory diseases, including rheumatoid arthritis - are mostly associated with structural changes to collagen, altered bone turnover, increased cortical porosity and damage to the trabecular and cortical microarchitecture. Mechanisms of development of osteoporosis in some inborn or acquired disorders are discussed.
Collapse
Affiliation(s)
- I Zofkova
- Institute of Endocrinology, Prague, Czech Republic, Department of Nuclear Medicine, České Budějovice Hospital, Czech Republic.
| | | |
Collapse
|
17
|
Emerging role of circadian rhythm in bone remodeling. J Mol Med (Berl) 2018; 97:19-24. [PMID: 30446776 DOI: 10.1007/s00109-018-1723-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022]
Abstract
The 24-h rhythm of behavioral and physiological processes is a typical biological phenomenon regulated by a group of circadian rhythm genes. Dysfunction of the circadian rhythm can cause a wide range of problems, such as cancer and metabolic diseases. In recent decades, increased understanding of the roles of circadian rhythm genes in the bone remodeling process have been documented, including osteoblastic bone formation, osteoclastic bone resorption, and osteoblast/osteoclast communication. A timely review of the current findings may help to facilitate the new field of circadian rhythmic bone remodeling research. Targeted pharmacological modulation of circadian rhythm genes is a possible therapeutic approach through which to overcome bone remodeling problems in the future.
Collapse
|
18
|
Abstract
The skeleton shows an unconventional role in the physiology and pathophysiology of the human organism, not only as the target tissue for a number of systemic hormones, but also as endocrine tissue modulating some skeletal and extraskeletal systems. From this point of view, the principal cells in the skeleton are osteocytes. These cells primarily work as mechano-sensors and modulate bone remodeling. Mechanically unloaded osteocytes synthetize sclerostin, the strong inhibitor of bone formation and RANKL, the strong activator of bone resorption. Osteocytes also express hormonally active vitamin D (1,25(OH)2D) and phosphatonins, such as FGF23. Both 1,25(OH)2D and FGF23 have been identified as powerful regulators of the phosphate metabolism, including in chronic kidney disease. Further endocrine cells of the skeleton involved in bone remodeling are osteoblasts. While FGF23 targets the kidney and parathyroid glands to control metabolism of vitamin D and phosphates, osteoblasts express osteocalcin, which through GPRC6A receptors modulates beta cells of the pancreatic islets, muscle, adipose tissue, brain and testes. This article reviews some knowledge concerning the interaction between the bone hormonal network and phosphate or energy homeostasis and/or male reproduction.
Collapse
Affiliation(s)
- I. ZOFKOVA
- Institute of Endocrinology, Prague, Czech Republic
| |
Collapse
|
19
|
Yang C, Zhang M, Li Y, Wang Y, Mao W, Gao Y, Xu H. Streptozotocin Aggravated Osteopathology and Insulin Induced Osteogenesis Through Co-treatment with Fluoride. Biol Trace Elem Res 2015; 168:453-61. [PMID: 26018496 DOI: 10.1007/s12011-015-0374-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/14/2015] [Indexed: 01/28/2023]
Abstract
The role of insulin in the mechanism underlying the excessive fluoride that causes skeletal lesion was studied. The in vitro bone marrow stem cells (BMSC) collected from Kunming mice were exposed to varying concentrations of fluoride with or without insulin. The cell viability and early differentiation of BMSC co-treated with fluoride and insulin were measured by using cell counting kit-8 and Gomori modified calcium-cobalt method, respectively. We further investigated the in vivo effects of varying dose of fluoride on rats co-treated with streptozotocin (STZ). Wistar rats were divided into six groups which included normal control, 10 mg fluoride/kg day group, 20 mg fluoride/kg day group, STZ control, STZ+10 mg fluoride/kg day group, and STZ+20 mg fluoride/kg day group. The rats were administered with sodium fluoride (NaF) by gavage with water at doses 10 and 20 mg fluoride/kg day for 2 months. In a period of one month, half of rats in every group were treated with streptozotocin (STZ) once through intraperitoneal injection at 52 mg/kg body weight. The serum glucose, HbA1c, and insulin were determined. Bone mineral content and insulin release were assessed. The results showed insulin combined with fluoride stimulated BMSC cell viability in vitro. The bone mineral content reduced in rats treated with higher dose of fluoride and decreased immensely in rat co-treated with fluoride and STZ. Similarly, a combination treatment of a high dose of fluoride and STZ decreased insulin sensitivity and activity. To sum up, these data indicated fluoride influenced insulin release, activity, and sensitivity. Furthermore, the insulin state in vivo interfered in the osteogenesis in turn and implied there was a close relation between insulin and bone pathogenesis in the mechanism of fluoride toxicity.
Collapse
Affiliation(s)
- Chen Yang
- School of Pharmaceutical Sciences, Jilin University, 1163 Xinmin Street, Changchun, 130021, People's Republic of China
| | - Mengmeng Zhang
- Center of Osteoporosis, the Forth Clinical Hospital, Jilin University, Changchun, 130041, China
| | - Yagang Li
- Center of Osteoporosis, the Forth Clinical Hospital, Jilin University, Changchun, 130041, China
| | - Yan Wang
- School of Pharmaceutical Sciences, Jilin University, 1163 Xinmin Street, Changchun, 130021, People's Republic of China
| | - Weixian Mao
- Center of Osteoporosis, the Forth Clinical Hospital, Jilin University, Changchun, 130041, China
| | - Yuan Gao
- Center of Osteoporosis, the Forth Clinical Hospital, Jilin University, Changchun, 130041, China
| | - Hui Xu
- School of Pharmaceutical Sciences, Jilin University, 1163 Xinmin Street, Changchun, 130021, People's Republic of China.
| |
Collapse
|