1
|
Pilarczyk P, Graff G, Amigó JM, Tessmer K, Narkiewicz K, Graff B. Differentiating patients with obstructive sleep apnea from healthy controls based on heart rate-blood pressure coupling quantified by entropy-based indices. CHAOS (WOODBURY, N.Y.) 2023; 33:103140. [PMID: 37889953 DOI: 10.1063/5.0158923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023]
Abstract
We introduce an entropy-based classification method for pairs of sequences (ECPS) for quantifying mutual dependencies in heart rate and beat-to-beat blood pressure recordings. The purpose of the method is to build a classifier for data in which each item consists of two intertwined data series taken for each subject. The method is based on ordinal patterns and uses entropy-like indices. Machine learning is used to select a subset of indices most suitable for our classification problem in order to build an optimal yet simple model for distinguishing between patients suffering from obstructive sleep apnea and a control group.
Collapse
Affiliation(s)
- Paweł Pilarczyk
- Faculty of Applied Physics and Mathematics and Digital Technologies Center, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Grzegorz Graff
- Faculty of Applied Physics and Mathematics and BioTechMed Center, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - José M Amigó
- Centro de Investigación Operativa (CIO), Universidad Miguel Hernández, 03202 Elche, Spain
| | - Katarzyna Tessmer
- Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Beata Graff
- Department of Hypertension and Diabetology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| |
Collapse
|
2
|
Javorka K, Hašková K, Czippelová B, Zibolen M, Javorka M. Baroreflex sensitivity and blood pressure in premature infants - dependence on gestational age, postnatal age and sex. Physiol Res 2021; 70:S349-S356. [PMID: 35099253 PMCID: PMC8884388 DOI: 10.33549/physiolres.934829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/22/2021] [Indexed: 11/25/2022] Open
Abstract
To characterize the differences in baroreflex sensitivity (BRS), blood pressure (BP), heart rate (HR) and respiration rate (RR) in preterm infants with a similar postconceptional age reached by various combinations of gestational and postnatal ages. To detect potential sex differences in assessed cardiovascular parameters. The study included 49 children (24 boys and 25 girls), postconceptional age 34.6+/-1.9 weeks. Two subgroups of infants were selected with the similar postconceptional age (PcA) and current weight, but differing in gestational (GA) and postnatal (PnA) ages, as well as two matched subgroups of boys and girls. Blood pressure (BP) was recorded continuously using Portapres device (FMS). A stationary segment of 250 beat-to-beat BP values was analyzed for each child. Baroreflex sensitivity (BRS) was calculated by cross-correlation sequence method. Despite the same PcA age and current weight, children with longer GA had higher BRS, diastolic and mean BP than children with shorter GA and longer PnA age. Postconceptional age in preterm infants is a parameter of maturation better predicting baroreflex sensitivity and blood pressure values compared to postnatal age. Sex related differences in BRS, BP, HR and RR were not found in our group of preterm infants.
Collapse
Affiliation(s)
- K Javorka
- Department of Physiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovak Republic.
| | | | | | | | | |
Collapse
|
3
|
Svačinová J, Hrušková J, Jakubík J, Budinskaya K, Hidegová S, Fabšík M, Sieglová H, Kaščáková Z, Novák J, Nováková Z. Variability of peripheral pulse wave velocity in patients with diabetes mellitus type 2 during orthostatic challenge. Physiol Res 2020; 69:S433-S441. [PMID: 33471543 DOI: 10.33549/physiolres.934594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Diabetes mellitus 2 (DM2) is the seventh cause of death worldwide. One of the reasons is late diagnosis of vascular damage. Pulse wave velocity (PWV) has become an independent marker of arterial stiffness and cardiovascular risk. Moreover, the previous studies have shown the importance of beat-to-beat PWV measurement due to its variability among the heart cycle. However, variability of PWV (PWVv) of the whole body hasn't been examined yet. We have studied a group of DM II and heathy volunteers, to investigate the beat-to-beat mean PWV (PWVm) and PWVv in the different body positions. PWV of left lower and upper extremities were measured in DM2 (7 m/8 f, age 68+/-10 years, BP 158/90+/-19/9 mm Hg) and healthy controls (5 m/6 f, age 23+/-2 years, BP 117/76+/-9/5 mm Hg). Volunteers were lying in the resting position and of head-up-tilt in 45° (HUT) for 6 min. PWVv was evaluated as a mean power spectrum in the frequency bands LF and HF (0.04-0.15 Hz, 0.15-0.5 Hz). Resting PWVm of upper extremity was higher in DM2. HUT increased lower extremity PWVm only in DM2. Extremities PWVm ratio was significantly lower in DM2 during HUT compared to controls. LF and HF PWVv had the same response to HUT. Resting PWVv was higher in DM2. Lower extremity PWVv increased during HUT in both groups. PWVm and PWVv in DM2 differed between extremities and were significantly influenced by postural changes due to hydrostatic pressure. Increased resting PWVm and PWVv in DM2 is a marker of increased arterial stiffness.
Collapse
Affiliation(s)
- J Svačinová
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
González-Gómez GH, Infante O, Martínez-García P, Lerma C. Analysis of diagonals in cross recurrence plots between heart rate and systolic blood pressure during supine position and active standing in healthy adults. CHAOS (WOODBURY, N.Y.) 2018; 28:085704. [PMID: 30180620 DOI: 10.1063/1.5024685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
The inter beat interval (IBI) duration and systolic blood pressure (SBP) are cardiovascular variables related through several feedback mechanisms. We propose the analysis of diagonal lines in cross recurrence plots (CRPs) from IBI and SBP embedded within the same phase space to identify events where trajectories of both variables concur. The aim of the study was to describe the relationship between IBI and SBP of healthy subjects using CRP and diagonal analysis during baseline condition-supine position (SP)-and how the relationship changes during the physiological stress of active standing (AS). IBI and SBP time series were obtained from continuous blood pressure recordings during SP and AS (15 min each) in 19 young healthy subjects. IBI and SBP time series were embedded within a five-dimensional phase space using an embedding delay estimated from cross correlation between IBI and SBP. During SP, mean CRP showed high determinism (≥85%) and also brief but repeated events where both variables stay within a reduced space. Most quantitative recurrences analysis indexes of CRP increased significantly (p < 0.05) during AS. CRP analysis showed short diagonals indicating a very strong deterministic relationship between IBI and SBP with intermittent unlocking periods. The strength of IBI and SBP relationship increased during the physiological stress of AS. The CRP method allowed a rigorous quantitative description of the deterministic association between these two variables. Diagonal lines were intermittent and not always parallel, showing that there is not a defined and unique rhythm. This suggests the activation of different influences at different times and with different precedence between the heart rate and blood pressure in response to AS.
Collapse
Affiliation(s)
| | - Oscar Infante
- Departamento de Instrumentación Electromecánica, Instituto Nacional de Cardiología Ignacio Chávez, 14080 Mexico D.F., Mexico
| | - Paola Martínez-García
- Servicio de Radio-Oncología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080 Mexico D.F., Mexico
| | - Claudia Lerma
- Departamento de Instrumentación Electromecánica, Instituto Nacional de Cardiología Ignacio Chávez, 14080 Mexico D.F., Mexico
| |
Collapse
|
5
|
Verma AK, Xu D, Bruner M, Garg A, Goswami N, Blaber AP, Tavakolian K. Comparison of Autonomic Control of Blood Pressure During Standing and Artificial Gravity Induced via Short-Arm Human Centrifuge. Front Physiol 2018; 9:712. [PMID: 29988521 PMCID: PMC6026653 DOI: 10.3389/fphys.2018.00712] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
Autonomic control of blood pressure is essential toward maintenance of cerebral perfusion during standing, failure of which could lead to fainting. Long-term exposure to microgravity deteriorates autonomic control of blood pressure. Consequently, astronauts experience orthostatic intolerance on their return to gravitational environment. Ground-based studies suggest sporadic training in artificial hypergravity can mitigate spaceflight deconditioning. In this regard, short-arm human centrifuge (SAHC), capable of creating artificial hypergravity of different g-loads, provides an auspicious training tool. Here, we compare autonomic control of blood pressure during centrifugation creating 1-g and 2-g at feet with standing in natural gravity. Continuous blood pressure was acquired simultaneously from 13 healthy participants during supine baseline, standing, supine recovery, centrifugation of 1-g, and 2-g, from which heart rate (RR) and systolic blood pressure (SBP) were derived. The autonomic blood pressure regulation was assessed via spectral analysis of RR and SBP, spontaneous baroreflex sensitivity, and non-linear heart rate and blood pressure causality (RR↔SBP). While majority of these blood pressure regulatory indices were significantly different (p < 0.05) during standing and 2-g centrifugation compared to baseline, no change (p > 0.05) was observed in the same indices during 2-g centrifugation compared to standing. The findings of the study highlight the capability of artificial gravity (2-g at feet) created via SAHC toward evoking blood pressure regulatory controls analogous to standing, therefore, a potential utility toward mitigating deleterious effects of microgravity on cardiovascular performance and minimizing post-flight orthostatic intolerance in astronauts.
Collapse
Affiliation(s)
- Ajay K. Verma
- Department of Electrical Engineering, University of North Dakota, Grand Forks, ND, United States
| | - Da Xu
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Michelle Bruner
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Amanmeet Garg
- Department of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Nandu Goswami
- Physiology Division, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Andrew P. Blaber
- Department of Electrical Engineering, University of North Dakota, Grand Forks, ND, United States
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Kouhyar Tavakolian
- Department of Electrical Engineering, University of North Dakota, Grand Forks, ND, United States
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
6
|
Li K, Rüdiger H, Haase R, Ziemssen T. An Innovative Technique to Assess Spontaneous Baroreflex Sensitivity with Short Data Segments: Multiple Trigonometric Regressive Spectral Analysis. Front Physiol 2018; 9:10. [PMID: 29403393 PMCID: PMC5786552 DOI: 10.3389/fphys.2018.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/05/2018] [Indexed: 11/13/2022] Open
Abstract
Objective: As the multiple trigonometric regressive spectral (MTRS) analysis is extraordinary in its ability to analyze short local data segments down to 12 s, we wanted to evaluate the impact of the data segment settings by applying the technique of MTRS analysis for baroreflex sensitivity (BRS) estimation using a standardized data pool. Methods: Spectral and baroreflex analyses were performed on the EuroBaVar dataset (42 recordings, including lying and standing positions). For this analysis, the technique of MTRS was used. We used different global and local data segment lengths, and chose the global data segments from different positions. Three global data segments of 1 and 2 min and three local data segments of 12, 20, and 30 s were used in MTRS analysis for BRS. Results: All the BRS-values calculated on the three global data segments were highly correlated, both in the supine and standing positions; the different global data segments provided similar BRS estimations. When using different local data segments, all the BRS-values were also highly correlated. However, in the supine position, using short local data segments of 12 s overestimated BRS compared with those using 20 and 30 s. In the standing position, the BRS estimations using different local data segments were comparable. There was no proportional bias for the comparisons between different BRS estimations. Conclusion: We demonstrate that BRS estimation by the MTRS technique is stable when using different global data segments, and MTRS is extraordinary in its ability to evaluate BRS in even short local data segments (20 and 30 s). Because of the non-stationary character of most biosignals, the MTRS technique would be preferable for BRS analysis especially in conditions when only short stationary data segments are available or when dynamic changes of BRS should be monitored.
Collapse
Affiliation(s)
- Kai Li
- Autonomic and Neuroendocrinological Lab, Department of Neurology, Center of Clinical Neuroscience, University Hospital Carl-Gustav Carus, Technical University of Dresden, Dresden, Germany.,Department of Neurology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Heinz Rüdiger
- Autonomic and Neuroendocrinological Lab, Department of Neurology, Center of Clinical Neuroscience, University Hospital Carl-Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Rocco Haase
- Autonomic and Neuroendocrinological Lab, Department of Neurology, Center of Clinical Neuroscience, University Hospital Carl-Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Autonomic and Neuroendocrinological Lab, Department of Neurology, Center of Clinical Neuroscience, University Hospital Carl-Gustav Carus, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
7
|
KROHOVA J, CZIPPELOVA B, TURIANIKOVA Z, LAZAROVA Z, TONHAJZEROVA I, JAVORKA M. Preejection Period as a Sympathetic Activity Index: a Role of Confounding Factors. Physiol Res 2017; 66:S265-S275. [DOI: 10.33549/physiolres.933682] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In previous studies, one of the systolic time intervals – preejection period (PEP) – was used as an index of sympathetic activity reflecting the cardiac contractility. However, PEP could be also influenced by several other cardiovascular variables including preload, afterload and diastolic blood pressure (DBP). The aim of this study was to assess the behavior of the PEP together with other potentially confounding cardiovascular system characteristics in healthy humans during mental and orthostatic stress (head-up tilt test – HUT). Forty-nine healthy volunteers (28 females, 21 males, mean age 18.6 years (SD=1.8 years)) participated in the study. We recorded finger arterial blood pressure by volume-clamp method (Finometer Pro, FMS, Netherlands), PEP, thoracic fluid content (TFC) – a measure of preload, and cardiac output (CO) by impedance cardiography (CardioScreen® 2000, Medis, Germany). Systemic vascular resistance (SVR) – a measure of afterload – was calculated as a ratio of mean arterial pressure and CO. We observed that during HUT, an expected decrease in TFC was accompanied by an increase of PEP, an increase of SVR and no significant change in DBP. During mental stress, we observed a decrease of PEP and an increase of TFC, SVR and DBP. Correlating a change in assessed measures (delta values) between mental stress and previous supine rest, we found that ΔPEP correlated negatively with ΔCO and positively with ΔSVR. In orthostasis, no significant correlation between ΔPEP and ΔDBP, ΔTFC, ΔCO, ΔMBP or ΔSVR was found. We conclude that despite an expected increase of sympathetic activity during both challenges, PEP behaved differently indicating an effect of other confounding factors. To interpret PEP values properly, we recommend simultaneously to measure other variables influencing this cardiovascular measure.
Collapse
Affiliation(s)
- J. KROHOVA
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | | | | | | | | | | |
Collapse
|
8
|
Ondrusova K, Svacinova J, Javorka M, Novak J, Novakova M, Novakova Z. Impaired Baroreflex Function during Orthostatic Challenge in Patients after Spinal Cord Injury. J Neurotrauma 2017; 34:3381-3387. [PMID: 28605971 DOI: 10.1089/neu.2017.4989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The level of spinal cord injury (SCI) affects baroreflex regulation of blood pressure. While a parasympathetic cardiac chronotropic effect is preserved, baroreflex response could be impaired by sympathetic dysfunction under the SCI level. This study was aimed to evaluate the baroreflex function in SCI patients by the analysis of causal interaction between systolic blood pressure (SBP) and inter-beat intervals (IBI). Blood pressure was continuously recorded in 13 cervical SCI patients (CSCI), nine thoracic SCI (ThSCI) and 13 able-bodied controls (Con) during two phases: sitting (PS) and orthostatic challenge (PO). Beat-to-beat SBP and IBI sequences were obtained from continuous blood pressure recording. Closed loop of SBP-IBI interaction was mathematically opened by bivariate autoregressive model; causal coherence and baroreflex sensitivity (BRS) were calculated in baroreflex direction. Coherence quantifies causal synchronicity between SBP and IBI. The gain of transfer function from SBP to IBI represents BRS. PS (medians of CSCI/ThSCI/Con) coherence was 0.28/0.33/0.25 (no significant difference) and PS BRS was 6.98/7.54/6.66 (no difference). PO coherence was 0.18/0.58/0.45 (CSCI < ThCSI and Con; p < 0.01) and PO BRS was 2.38/5.87/6.22 (CSCI < ThCSI and Con; p < 0.01). For position change effect, there was no change in CSCI coherence; for ThSCI and Con, PS < PO (p < 0.05). For BRS in the CSCI group, PS < PO (p < 0.01); for ThSCI and Con, there was no change. BRS and coherence correlated negatively with SCI level (p < 0.01). In conclusion, baroreflex dysfunction in SCI patients was detected using causal analysis methods during orthostatic challenge only. Baroreflex dysfunction is probably an important mechanism of the more expressed blood pressure decrease associated with CSCI. The severity of autonomic dysfunction was related to SCI level.
Collapse
Affiliation(s)
| | - Jana Svacinova
- 1 Department of Physiology, Masaryk University , Brno, Czech Republic
| | - Michal Javorka
- 2 Department of Physiology, Comenius University in Bratislava , Martin, Slovakia .,3 Biomedical Center Martin, Comenius University in Bratislava , Martin, Slovakia
| | - Jan Novak
- 1 Department of Physiology, Masaryk University , Brno, Czech Republic
| | - Marie Novakova
- 1 Department of Physiology, Masaryk University , Brno, Czech Republic .,4 International Clinical Research Center, St. Anne's University Hospital Brno , Brno, Czech Republic
| | - Zuzana Novakova
- 1 Department of Physiology, Masaryk University , Brno, Czech Republic
| |
Collapse
|
9
|
HONZÍKOVÁ N, ZÁVODNÁ E. Baroreflex Sensitivity in Children and Adolescents: Physiology, Hypertension, Obesity, Diabetes Mellitus. Physiol Res 2016; 65:879-889. [DOI: 10.33549/physiolres.933271] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The increased prevalence of obesity in children and its complications have led to a greater interest in studying baroreflex sensitivity (BRS) in children. This review of BRS in children and adolescents includes subtopics on: 1. Resting values of BRS and their reproducibility, 2. Genetics of BRS, 3. The role of a primarily low BRS and obesity in the development of hypertension, and 4. Association of diabetes mellitus, BRS, and obesity. The conclusions specific to this age follow from this review: 1. The mean heart rate (HR) influences the measurement of BRS. Since the mean HR decreases during adolescence, HR should be taken into account. 2. A genetic dependency of BRS was found. 3. Low BRS values may precede pathological blood-pressure elevation in children with white-coat hypertension. We hypothesize that low BRS plays an active role in the emergence of hypertension in youth. A contribution of obesity to the development of hypertension was also found. We hypothesize that both factors, a primarily low BRS and obesity, are partially independent risk factors for hypertension in youths. 4. In diabetics, a low BRS compared to healthy children can be associated with insulin resistance. A reversibility of the BRS values could be possible after weight loss.
Collapse
Affiliation(s)
| | - E. ZÁVODNÁ
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| |
Collapse
|