1
|
Adámková L, Kvíčalová Z, Rozbeský D, Kukačka Z, Adámek D, Cebecauer M, Novák P. Oligomeric Architecture of Mouse Activating Nkrp1 Receptors on Living Cells. Int J Mol Sci 2019; 20:ijms20081884. [PMID: 30995786 PMCID: PMC6515139 DOI: 10.3390/ijms20081884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/03/2022] Open
Abstract
Mouse activating Nkrp1 proteins are commonly described as type II transmembrane receptors with disulfide-linked homodimeric structure. Their function and the manner in which Nkrp1 proteins of mouse strain (C57BL/6) oligomerize are still poorly understood. To assess the oligomerization state of Nkrp1 proteins, mouse activating EGFP-Nkrp1s were expressed in mammalian lymphoid cells and their oligomerization evaluated by Förster resonance energy transfer (FRET). Alternatively, Nkrp1s oligomers were detected by Western blotting to specify the ratio between monomeric and dimeric forms. We also performed structural characterization of recombinant ectodomains of activating Nkrp1 receptors. Nkrp1 isoforms c1, c2 and f were expressed prevalently as homodimers, whereas the Nkrp1a displays larger proportion of monomers on the cell surface. Cysteine-to-serine mutants revealed the importance of all stalk cysteines for protein dimerization in living cells with a major influence of cysteine at position 74 in two Nkrp1 protein isoforms. Our results represent a new insight into the oligomerization of Nkrp1 receptors on lymphoid cells, which will help to determine their function.
Collapse
Affiliation(s)
- Ljubina Adámková
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic.
| | - Zuzana Kvíčalová
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 2155/3, 18223 Prague 8, Czech Republic.
| | - Daniel Rozbeský
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic.
| | - Zdeněk Kukačka
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic.
| | - David Adámek
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic.
| | - Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 2155/3, 18223 Prague 8, Czech Republic.
| | - Petr Novák
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic.
- Department of Biochemistry, Charles University, Hlavova 8, 12843 Prague 2, Czech Republic.
| |
Collapse
|
2
|
Hernychová L, Rosůlek M, Kádek A, Mareška V, Chmelík J, Adámková L, Grobárová V, Šebesta O, Kukačka Z, Skála K, Spiwok V, Černý J, Novák P. The C-type lectin-like receptor Nkrp1b: Structural proteomics reveals features affecting protein conformation and interactions. J Proteomics 2019; 196:162-172. [DOI: 10.1016/j.jprot.2018.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022]
|