1
|
Colombo G, Caviglia GP, Ravera A, Tribocco E, Frara S, Rosso C, Travelli C, Genazzani AA, Ribaldone DG. NAMPT and NAPRT serum levels predict response to anti-TNF therapy in inflammatory bowel disease. Front Med (Lausanne) 2023; 10:1116862. [PMID: 36817780 PMCID: PMC9928959 DOI: 10.3389/fmed.2023.1116862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Background Nicotinamide phosphoribosyltransferase (NAMPT) and nicotinic acid phosphoribosyl transferase (NAPRT) are key intracellular enzymes that participate in the biosynthesis on NAD but have also been shown to be released as proinflammatory cytokines. A number of reports have shown that circulating NAMPT is increased in serum of patients with inflammatory disorders, including inflammatory bowel diseases (IBD), while nothing is known regarding circulating NAPRT and the presence of both cytokines in IBD patient stools. In the present study, we evaluated eNAMPT and eNAPRT levels in a large cohort of IBD patients not on biological therapy and in a subset that then was prescribed biologics. Methods We conducted a retro-perspective study on 180 patients, of which 111 underwent subsequent biological treatment (adalimumab, vedolizumab, and ustekinumab). We analyzed eNAMPT and eNAPRT concentrations in serum and faces of IBD patients, correlating them with response to biologics. Results We now report that eNAMPT and eNAPRT are significantly increased in both serum and stools of IBD patients. NAMPT and NAPRT levels correlate with disease severity, with C reactive protein and with serum IL-6 levels. Importantly, levels of NAMPT in patients starting treatment with adalimumab correlate with response failure at three months: patients with levels above 4 ng/ml were significantly less likely to obtain benefit. Serum NAMPT as a biomarker of response yields a sensitivity of 91% and a specificity of 100%. Conclusion The present work strongly suggests that a prospective trial evaluating eNAMPT and eNAPRT levels in relation to response to biologicals in IBD should be initiated.
Collapse
Affiliation(s)
- Giorgia Colombo
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Gian Paolo Caviglia
- Division of Gastroenterology, Department of Medical Sciences, Università di Torino, Turin, Italy
| | - Alberto Ravera
- Division of Gastroenterology, Department of Medical Sciences, Università di Torino, Turin, Italy
| | - Elisa Tribocco
- Division of Gastroenterology, Department of Medical Sciences, Università di Torino, Turin, Italy
| | - Simone Frara
- Division of Gastroenterology, Department of Medical Sciences, Università di Torino, Turin, Italy
| | - Chiara Rosso
- Division of Gastroenterology, Department of Medical Sciences, Università di Torino, Turin, Italy
| | - Cristina Travelli
- Department of Drug Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | | |
Collapse
|
2
|
Radzicka-Mularczyk S, Zaborowski MP, Brązert J, Pietryga M. Serum visfatin as a metabolic biomarker in obese patients with gestational diabetes mellitus. Minerva Endocrinol (Torino) 2022; 46:396-405. [PMID: 35078309 DOI: 10.23736/s2724-6507.20.03280-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Visfatin is an adipokine produced and secreted by the adipose tissue. It exerts an insulin-like effect by the insulin receptor-1 and has a hypoglycemic effect. We aimed to investigate how serum visfatin changes in women with gestational diabetes mellitus (GDM), and whether it is predictive of neonatal outcomes. METHODS Visfatin levels were prospectively measured in peripheral blood serum by enzyme immunoassay in 210 pregnant women, 156 of which were diagnosed with GDM, 18 of which suffered from pregnancy-induced hypertension (PIH) and 36 healthy controls. RESULTS Patients with obesity class II (median=2.562 ng/mL) and class III (median=6.2940 ng/mL) had higher serum visfatin than overweight patients (median=0.735 ng/mL); (Mann-Whitney U test, P=0.037 and P=0.023, respectively). In GDM patients with BMI above 30, serum visfatin was associated to glycosylated hemoglobin (Spearman correlation test, R=0.26, P=0.045). Women with BMI above 25 treated with insulin had lower serum visfatin levels than those treated with diet only (Mann-Whitney U test, P=0.045). No correlation was found between visfatin and parameters of lipid profile such as HDL, LDL, or triglycerides (Spearman correlation tests, R=-0.051, -0.1, 0.0019; P=0.54, 0.29, 0.98, respectively). We observed that visfatin was not associated with birth weight (Spearman correlation test, R=-0.014, P=0.86) or adverse neonatal outcome as measured by umbilical artery pH below 7.25 (Mann-Whitney U test, P=0.55) or Apgar score below 10 (Mann-Whitney U test, P=0.21). CONCLUSIONS In GDM patients with higher BMI, serum visfatin was elevated, correlated positively with glycosylated hemoglobin, and decreased upon treatment with insulin therapy.
Collapse
Affiliation(s)
- Sandra Radzicka-Mularczyk
- Division of Obstetrics and Women's Diseases, Department of Gynecology, Obstetrics and Gynecologic Oncology, Poznan University of Medical Sciences, Poznań, Poland -
| | - Mikołaj P Zaborowski
- Division of Gynecologic Oncology, Department of Gynecology, Obstetrics and Gynecologic Oncology, Poznan University of Medical Sciences, Poznań, Poland
| | - Jacek Brązert
- Division of Obstetrics and Women's Diseases, Department of Gynecology, Obstetrics and Gynecologic Oncology, Poznan University of Medical Sciences, Poznań, Poland
| | - Marek Pietryga
- Division of Obstetrics and Women's Diseases, Department of Gynecology, Obstetrics and Gynecologic Oncology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
3
|
Complex Positive Effects of SGLT-2 Inhibitor Empagliflozin in the Liver, Kidney and Adipose Tissue of Hereditary Hypertriglyceridemic Rats: Possible Contribution of Attenuation of Cell Senescence and Oxidative Stress. Int J Mol Sci 2021; 22:ijms221910606. [PMID: 34638943 PMCID: PMC8508693 DOI: 10.3390/ijms221910606] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
(1) Background: empagliflozin, sodium-glucose co-transporter 2 (SGLT-2) inhibitor, is an effective antidiabetic agent with strong cardio- and nephroprotective properties. The mechanisms behind its cardio- and nephroprotection are still not fully clarified. (2) Methods: we used male hereditary hypertriglyceridemic (hHTG) rats, a non-obese model of dyslipidaemia, insulin resistance, and endothelial dysfunction fed standard diet with or without empagliflozin for six weeks to explore the molecular mechanisms of empagliflozin effects. Nuclear magnetic resonance (NMR)-based metabolomics; quantitative PCR of relevant genes involved in lipid and glucose metabolism, or senescence; glucose and palmitic acid oxidation in isolated tissues and cell lines of adipocytes and hepatocytes were used. (3) Results: empagliflozin inhibited weight gain and decreased adipose tissue weight, fasting blood glucose, and triglycerides and increased HDL-cholesterol. It also improved insulin sensitivity in white fat. NMR spectroscopy identified higher plasma concentrations of ketone bodies, ketogenic amino acid leucine and decreased levels of pyruvate and alanine. In the liver, adipose tissue and kidney, empagliflozin up-regulated expression of genes involved in gluconeogenesis and down-regulated expression of genes involved in lipogenesis along with reduction of markers of inflammation, oxidative stress and cell senescence. (4) Conclusion: multiple positive effects of empagliflozin, including reduced cell senescence and oxidative stress, could contribute to its long-term cardio- and nephroprotective actions.
Collapse
|
4
|
Šimják P, Anderlová K, Cinkajzlová A, Pařízek A, Kršek M, Haluzík M. The possible role of endocrine dysfunction of adipose tissue in gestational diabetes mellitus. MINERVA ENDOCRINOL 2021; 45:228-242. [PMID: 33000620 DOI: 10.23736/s0391-1977.20.03192-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gestational diabetes mellitus (GDM) is diabetes that is first diagnosed in the second or third trimester of pregnancy in patients who did not have a history of diabetes before pregnancy. Consequences of GDM include increased risk of macrosomia and birth complications in the infant and an increased risk of maternal type 2 diabetes mellitus (T2DM) after pregnancy. There is also a longer-term risk of obesity, T2DM, and cardiovascular diseases in the child. GDM is the result of impaired glucose tolerance due to pancreatic β-cell dysfunction on a background of insulin resistance that physiologically increases during pregnancy. The strongest clinical predictors of GDM are overweight and obesity. The fact that women with GDM are more likely to be overweight or obese suggests that adipose tissue dysfunction may be involved in the pathogenesis of GDM, similarly to T2DM. Adipose tissue is not only involved in energy storage but also functions as an active endocrine organ secreting adipokines (specific hormones and cytokines) with the ability to alter insulin sensitivity. Recent evidence points to a crucial role of numerous adipokines produced by fat in the development of GDM. The following text summarizes the current knowledge about a possible role of selected adipokines in the development of GDM.
Collapse
Affiliation(s)
- Patrik Šimják
- Department of Gynecology and Obstetrics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Kateřina Anderlová
- Department of Gynecology and Obstetrics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.,Third Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Anna Cinkajzlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Antonín Pařízek
- Department of Gynecology and Obstetrics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Michal Kršek
- Third Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Haluzík
- Diabetes Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic -
| |
Collapse
|
5
|
Berezin AE, Berezin AA, Lichtenauer M. Emerging Role of Adipocyte Dysfunction in Inducing Heart Failure Among Obese Patients With Prediabetes and Known Diabetes Mellitus. Front Cardiovasc Med 2020; 7:583175. [PMID: 33240938 PMCID: PMC7667132 DOI: 10.3389/fcvm.2020.583175] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue dysfunction is a predictor for cardiovascular (CV) events and heart failure (HF) in patient population with obesity, metabolic syndrome, and known type 2 diabetes mellitus. Previous preclinical and clinical studies have yielded controversial findings regarding the role of accumulation of adipose tissue various types in CV risk and HF-related clinical outcomes in obese patients. There is evidence for direct impact of infiltration of epicardial adipocytes into the underlying myocardium to induce adverse cardiac remodeling and mediate HF development and atrial fibrillation. Additionally, perivascular adipocytes accumulation is responsible for release of proinflammatory adipocytokines (adiponectin, leptin, resistin), stimulation of oxidative stress, macrophage phenotype switching, and worsening vascular reparation, which all lead to microvascular inflammation, endothelial dysfunction, atherosclerosis acceleration, and finally to increase in CV mortality. However, systemic effects of white and brown adipose tissue can be different, and adipogenesis including browning of adipose tissue and deficiency of anti-inflammatory adipocytokines (visfatin, omentin, zinc-α2-glycoprotein, glypican-4) was frequently associated with adipose triglyceride lipase augmentation, altered glucose homeostasis, resistance to insulin of skeletal muscles, increased cardiomyocyte apoptosis, lowered survival, and weak function of progenitor endothelial cells, which could significantly influence on HF development, as well as end-organ fibrosis and multiple comorbidities. The exact underlying mechanisms for these effects are not fully understood, while they are essential to help develop improved treatment strategies. The aim of the review is to summarize the evidence showing that adipocyte dysfunction may induce the onset of HF and support advance of HF through different biological mechanisms involving inflammation, pericardial, and perivascular adipose tissue accumulation, adverse and electrical cardiac remodeling, and skeletal muscle dysfunction. The unbalancing effects of natriuretic peptides, neprilysin, and components of renin–angiotensin system, as exacerbating cause of altered adipocytokine signaling on myocardium and vasculature, in obesity patients at high risk of HF are disputed. The profile of proinflammatory and anti-inflammatory adipocytokines as promising biomarker for HF risk stratification is discussed in the review.
Collapse
Affiliation(s)
- Alexander E Berezin
- Internal Medicine Department, State Medical University, Ministry of Health of Ukraine, Zaporozhye, Ukraine
| | - Alexander A Berezin
- Internal Medicine Department, Medical Academy of Post-Graduate Education, Ministry of Health of Ukraine, Zaporozhye, Ukraine
| | - Michael Lichtenauer
- Division of Cardiology, Department of Internal Medicine II, Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
6
|
Ezzati-Mobaser S, Malekpour-Dehkordi Z, Nourbakhsh M, Tavakoli-Yaraki M, Ahmadpour F, Golpour P, Nourbakhsh M. The up-regulation of markers of adipose tissue fibrosis by visfatin in pre-adipocytes as well as obese children and adolescents. Cytokine 2020; 134:155193. [PMID: 32707422 DOI: 10.1016/j.cyto.2020.155193] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/25/2020] [Accepted: 07/04/2020] [Indexed: 01/01/2023]
Abstract
Adipocytes are surrounded by a three-dimensional network of extracellular matrix (ECM) proteins. Aberrant ECM accumulation and remodeling leads to adipose tissue fibrosis. Visfatin is one of the adipocytokines that is increased in obesity and is implicated in insulin resistance. The objective of this study was to investigate the effect of visfatin on major components of ECM remodeling. In this study, plasma levels of both endotrophin and visfatin in obese children and adolescents were significantly higher than those in control subjects and they showed a positive correlation with each other. Treatment of 3T3-L1 pre-adipocytes with visfatin caused significant up-regulation of Osteopontin (Opn), Collagen type VI (Col6), matrix metalloproteinases MMP-2 and MMP-9. By using inhibitors of major signaling pathways it was shown that visfatin exerted its effect on Col6a3 gene expression through PI3K, JNK, and NF-кB pathways, while induced Opn gene expression via PI3K, JNK, MAPK/ERK, and NOTCH1. Our conclusion is that, the relationship between visfatin, endotrophin and insulin resistance parameters in obesity as well as increased expression of ECM proteins by visfatin suggests adipose tissue fibrosis as a mechanism for devastating effects of visfatin in obesity.
Collapse
Affiliation(s)
- Samira Ezzati-Mobaser
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Malekpour-Dehkordi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Nourbakhsh
- Hazrat Aliasghar Children's Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ahmadpour
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pegah Golpour
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Pace NP, Bonello A, Roshan MH, Vassallo J. Circulating visfatin levels in the second and third trimester of pregnancies with gestational diabetes: a systematic review. MINERVA GINECOLOGICA 2019; 71:329-343. [PMID: 31274262 DOI: 10.23736/s0026-4784.18.04293-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION There are multiple published conflicting associations of the adipocytokine visfatin with gestational diabetes. In this study, we attempted to investigate this relationship via a systematic review of the published literature. EVIDENCE ACQUISITION Literature retrieval using PubMed, Google Scholar, Scopus and Hydi databases followed by article selection and data extraction were conducted. Relevant studies published up to June 2018 were included. In total, 29 cohorts that were published in 27 articles were analyzed. Three studies carried out in early pregnancy were excluded. A total of 2365 individuals, with 1069 gestational diabetes (GDM) cases and 1296 controls from studies describing visfatin in the second or third trimester of gestation were included. EVIDENCE SYNTHESIS The difference in visfatin levels between women with GDM and the controls in the second and third trimester was measured by weighted mean difference (WMD) and 95% confidence intervals (CI). Heterogeneity was inspected by using both subgroup and meta-regression analysis. Analysis was restricted to studies describing singleton pregnancies. The quality of included studies was assessed by the Newcastle-Ottawa Scale. CONCLUSIONS No significant difference in circulating visfatin levels in GDM during the second trimester of pregnancy (WMD -0.30 ng/mL, 95% CI: -2.06, 1.45, SE=0.895, P=0.733) was detected. Meta-analysis of the studies in the third trimester revealed a significant negative effect, that was however driven by only one study. This finding limits the meaningful interpretation of the pooled analysis. Significant heterogeneity was identified between studies, and meta-regression analysis showed that homeostatic model assessment for insulin resistance contributes significantly to heterogeneity. In conclusion, our findings suggest that peripheral blood visfatin concentration cannot be robustly associated with gestational diabetes status in the second and third trimesters of pregnancy.
Collapse
Affiliation(s)
- Nikolai P Pace
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta -
| | - Antonia Bonello
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Mohsin H Roshan
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Josanne Vassallo
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| |
Collapse
|
8
|
Svoboda P, Krizova E, Sestakova S, Vapenkova K, Knejzlik Z, Rimpelova S, Rayova D, Volfova N, Krizova I, Rumlova M, Sykora D, Kizek R, Haluzik M, Zidek V, Zidkova J, Skop V. Nuclear transport of nicotinamide phosphoribosyltransferase is cell cycle-dependent in mammalian cells, and its inhibition slows cell growth. J Biol Chem 2019; 294:8676-8689. [PMID: 30975903 DOI: 10.1074/jbc.ra118.003505] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 04/04/2019] [Indexed: 01/26/2023] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is located in both the nucleus and cytoplasm and has multiple biological functions including catalyzing the rate-limiting step in NAD synthesis. Moreover, up-regulated NAMPT expression has been observed in many cancers. However, the determinants and regulation of NAMPT's nuclear transport are not known. Here, we constructed a GFP-NAMPT fusion protein to study NAMPT's subcellular trafficking. We observed that in unsynchronized 3T3-L1 preadipocytes, 25% of cells had higher GFP-NAMPT fluorescence in the cytoplasm, and 62% had higher GFP-NAMPT fluorescence in the nucleus. In HepG2 hepatocytes, 6% of cells had higher GFP-NAMPT fluorescence in the cytoplasm, and 84% had higher GFP-NAMPT fluorescence in the nucleus. In both 3T3-L1 and HepG2 cells, GFP-NAMPT was excluded from the nucleus immediately after mitosis and migrated back into it as the cell cycle progressed. In HepG2 cells, endogenous, untagged NAMPT displayed similar changes with the cell cycle, and in nonmitotic cells, GFP-NAMPT accumulated in the nucleus. Similarly, genotoxic, oxidative, or dicarbonyl stress also caused nuclear NAMPT localization. These interventions also increased poly(ADP-ribosyl) polymerase and sirtuin activity, suggesting an increased cellular demand for NAD. We identified a nuclear localization signal in NAMPT and amino acid substitution in this sequence (424RSKK to ASGA), which did not affect its enzymatic activity, blocked nuclear NAMPT transport, slowed cell growth, and increased histone H3 acetylation. These results suggest that NAMPT is transported into the nucleus where it presumably increases NAD synthesis required for cell proliferation. We conclude that specific inhibition of NAMPT transport into the nucleus might be a potential avenue for managing cancer.
Collapse
Affiliation(s)
- Petr Svoboda
- From the Departments of Biochemistry and Microbiology.,the Institute of Physiology, Czech Academy of Sciences, Prague 4, 142 20, Czech Republic
| | - Edita Krizova
- From the Departments of Biochemistry and Microbiology
| | | | | | | | | | - Diana Rayova
- From the Departments of Biochemistry and Microbiology
| | - Nikol Volfova
- From the Departments of Biochemistry and Microbiology
| | | | | | - David Sykora
- Analytical Chemistry, University of Chemistry and Technology Prague, Prague 6, 166 28, Czech Republic
| | - Rene Kizek
- the Department of Human Pharmacology and Toxicology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, 612 42, Czech Republic
| | - Martin Haluzik
- the Centre for Experimental Medicine and.,Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague 4, 140 21, Czech Republic, and.,the Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University and General University Hospital in Prague, Prague 2, 128 08, Czech Republic
| | - Vaclav Zidek
- the Institute of Physiology, Czech Academy of Sciences, Prague 4, 142 20, Czech Republic
| | | | - Vojtech Skop
- From the Departments of Biochemistry and Microbiology, .,the Centre for Experimental Medicine and
| |
Collapse
|
9
|
Travelli C, Colombo G, Mola S, Genazzani AA, Porta C. NAMPT: A pleiotropic modulator of monocytes and macrophages. Pharmacol Res 2018; 135:25-36. [PMID: 30031171 DOI: 10.1016/j.phrs.2018.06.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 12/11/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the bottleneck enzyme of the NAD salvage pathway and thereby is a controller of intracellular NAD concentrations. It has been long known that the same enzyme can be secreted by a number of cell types and acts as a cytokine, although its receptor is at present unknown. Investigational compounds have been developed that target the enzymatic activity as well as the extracellular action (i.e. neutralizing antibodies). The present contribution reviews the evidence that links intracellular and extracellular NAMPT to myeloid biology, for example governing monocyte/macrophage differentiation, polarization and migration. Furthermore, it reviews the evidence that links this protein to some disorders in which myeloid cells have a prominent role (acute infarct, inflammatory bowel disease, acute lung injury and rheumatoid arthritis) and the data showing that inhibition of the enzymatic activity or the neutralization of the cytokine is beneficial in preclinical animal models.
Collapse
Affiliation(s)
- Cristina Travelli
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Giorgia Colombo
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Silvia Mola
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Chiara Porta
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|