1
|
Ruggiero C, Baroni M, Xenos D, Parretti L, Macchione IG, Bubba V, Laudisio A, Pedone C, Ferracci M, Magierski R, Boccardi V, Antonelli-Incalzi R, Mecocci P. Dementia, osteoporosis and fragility fractures: Intricate epidemiological relationships, plausible biological connections, and twisted clinical practices. Ageing Res Rev 2024; 93:102130. [PMID: 38030092 DOI: 10.1016/j.arr.2023.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
Dementia, osteoporosis, and fragility fractures are chronic diseases, often co-existing in older adults. These conditions pose severe morbidity, long-term disability, and mortality, with relevant socioeconomic implications. While in the research arena, the discussion remains on whether dementia is the cause or the consequence of fragility fractures, healthcare professionals need a better understanding of the interplay between such conditions from epidemiological and physiological standpoints. With this review, we summarized the available literature surrounding the relationship between cognitive impairment, dementia, and both low bone mineral density (BMD) and fragility fractures. Given the strength of the bi-directional associations and their impact on the quality of life, we shed light on the biological connections between brain and bone systems, presenting the main mediators, including gut microbioma, and pathological pathways leading to the dysregulation of bone and brain metabolism. Ultimately, we synthesized the evidence about the impact of available pharmacological treatments for the prevention of fragility fractures on cognitive functions and individuals' outcomes when dementia coexists. Vice versa, the effects of symptomatic treatments for dementia on the risk of falls and fragility fractures are explored. Combining evidence alongside clinical practice, we discuss challenges and opportunities related to the management of older adults affected by cognitive impairment or dementia and at high risk for fragility fracture prevention, which leads to not only an improvement in patient health-related outcomes and survival but also a reduction in healthcare cost and socio-economic burden.
Collapse
Affiliation(s)
- C Ruggiero
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy.
| | - M Baroni
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - D Xenos
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - L Parretti
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - I G Macchione
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - V Bubba
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - A Laudisio
- Department of Medicine, Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy
| | - C Pedone
- Department of Medicine, Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy
| | - M Ferracci
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - R Magierski
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | - V Boccardi
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - R Antonelli-Incalzi
- Department of Medicine, Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy
| | - P Mecocci
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| |
Collapse
|
2
|
Händel MN, Andersen HK, Ussing A, Virring A, Jennum P, Debes NM, Laursen T, Baandrup L, Gade C, Dettmann J, Holm J, Krogh C, Birkefoss K, Tarp S, Bliddal M, Edemann-Callesen H. The short-term and long-term adverse effects of melatonin treatment in children and adolescents: a systematic review and GRADE assessment. EClinicalMedicine 2023; 61:102083. [PMID: 37483551 PMCID: PMC10359736 DOI: 10.1016/j.eclinm.2023.102083] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Background Currently, melatonin is used to treat children and adolescents with insomnia without knowing the full extent of the short-term and long-term consequences. Our aim was to provide clinicians and guideline panels with a systematic assessment of serious-and non-serious adverse events seen in continuation of melatonin treatment and the impact on pubertal development and bone health following long-term administration in children and adolescents with chronic insomnia. Methods We searched PubMed, Embase, Cinahl and PsycINFO via Ovid, up to March 17, 2023, for studies on melatonin treatment among children and adolescents (aged 5-20 years) with chronic insomnia. The language was restricted to English, Danish, Norwegian, and Swedish. Outcomes were non-serious adverse events and serious adverse events assessed 2-4 weeks after initiating treatment and pubertal development and bone health, with no restriction on definition or time of measurement. Observational studies were included for the assessment of long-term outcomes, and serious and non-serious adverse events were assessed via randomised studies. The certainty of the evidence was assessed using Grades of Recommendation, Assessment, Development and Evaluation (GRADE). The protocol is registered with the Danish Health Authority. Findings We identified 22 randomised studies with 1350 patients reporting on serious-and non-serious adverse events and four observational studies with a total of 105 patients reporting on pubertal development. Melatonin was not associated with serious adverse events, yet the number of patients experiencing non-serious adverse events was increased (Relative risk 1.56, 95% CI 1.01-2.43, 17 studies, I2 = 47%). Three studies reported little or no influence on pubertal development following 2-4 years of treatment, whereas one study registered a potential delay following longer treatment durations (>7 years). These findings need further evaluation due to several methodological limitations. Interpretation Children who use melatonin are likely to experience non-serious adverse events, yet the actual extent to which melatonin leads to non-serious adverse events and the long-term consequences remain uncertain. This major gap of knowledge on safety calls for caution against complacent use of melatonin in children and adolescents with chronic insomnia and for more research to inform clinicians and guideline panels on this key issue. Funding The Danish Health Authority. The Parker Institute, Bispebjerg and Frederiksberg Hospital, supported by the Oak Foundation.
Collapse
Affiliation(s)
- Mina Nicole Händel
- The Danish Health Authority, 2300, Copenhagen, Denmark
- Research Unit OPEN, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- The Parker Institute, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
| | | | - Anja Ussing
- The Danish Health Authority, 2300, Copenhagen, Denmark
| | - Anne Virring
- Department of Child and Adolescent Psychiatry, Aarhus University Hospital, Psychiatry, Aarhus, Denmark
| | - Poul Jennum
- Danish Centre for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Nanette Mol Debes
- Department of Pediatrics, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Torben Laursen
- Department of Clinical Pharmacology, Aarhus University Hospital, Denmark
| | - Lone Baandrup
- Bispebjerg and Gentofte Departments, Mental Health Centre Copenhagen, Copenhagen University Hospital – the Mental Health Services of the Capital Region in Denmark & Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christina Gade
- Departments of Clinical Pharmacology and Clinical Medicine, Copenhagen University Hospital, Bispebjerg and Frederiksberg, University of Copenhagen, Denmark
| | - Jette Dettmann
- Department of Pediatrics, Copenhagen University Hospital – NOH, Hillerød, Denmark
| | - Jonas Holm
- The Occupational Therapist Association, Denmark
| | - Camilla Krogh
- The Danish Health Authority, 2300, Copenhagen, Denmark
| | | | - Simon Tarp
- The Danish Health Authority, 2300, Copenhagen, Denmark
| | - Mette Bliddal
- Research Unit OPEN, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Henriette Edemann-Callesen
- The Danish Health Authority, 2300, Copenhagen, Denmark
- Centre for Evidence-Based Psychiatry, Psychiatric Research Unit, Psychiatry Region Zealand, 4200, Slagelse, Denmark
| |
Collapse
|
3
|
Recent Advances in the Knowledge of the Mechanisms of Leptin Physiology and Actions in Neurological and Metabolic Pathologies. Int J Mol Sci 2023; 24:ijms24021422. [PMID: 36674935 PMCID: PMC9860943 DOI: 10.3390/ijms24021422] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Excess body weight is frequently associated with low-grade inflammation. Evidence indicates a relationship between obesity and cancer, as well as with other diseases, such as diabetes and non-alcoholic fatty liver disease, in which inflammation and the actions of various adipokines play a role in the pathological mechanisms involved in these disorders. Leptin is mainly produced by adipose tissue in proportion to fat stores, but it is also synthesized in other organs, where leptin receptors are expressed. This hormone performs numerous actions in the brain, mainly related to the control of energy homeostasis. It is also involved in neurogenesis and neuroprotection, and central leptin resistance is related to some neurological disorders, e.g., Parkinson's and Alzheimer's diseases. In peripheral tissues, leptin is implicated in the regulation of metabolism, as well as of bone density and muscle mass. All these actions can be affected by changes in leptin levels and the mechanisms associated with resistance to this hormone. This review will present recent advances in the molecular mechanisms of leptin action and their underlying roles in pathological situations, which may be of interest for revealing new approaches for the treatment of diseases where the actions of this adipokine might be compromised.
Collapse
|
4
|
Bičíková M, Máčová L, Ostatníková D, Hanzlíková L. Vitamin D in autistic children and healthy controls. Physiol Res 2019; 68:317-320. [PMID: 30628824 DOI: 10.33549/physiolres.933902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Insufficient levels of vitamin D have been demonstrated by many authors as a risk factor for autistic patients, however, the causality has not been reliably elucidated. In the present study, levels of calcidiol were determined in group of autistic children and compared with age matched healthy children as controls. Suboptimal levels of calcidiol in more than 60 % of both autistic patients as well as of control group were found. No significant differences in vitamin D between autistic children and healthy controls were observed.
Collapse
Affiliation(s)
- M Bičíková
- Institute of Endocrinology, Prague, Czech Republic.
| | | | | | | |
Collapse
|
5
|
Baer TG, Agarwal S, Chen S, Chiuzan C, Sopher A, Tao R, Hassoun A, Shane E, Fennoy I, Oberfield SE, Vuguin PM. Deficits in Bone Geometry in Growth Hormone-Deficient Prepubertal Boys Revealed by High-Resolution Peripheral Quantitative Computed Tomography. Horm Res Paediatr 2019; 92:293-301. [PMID: 32224610 PMCID: PMC7192784 DOI: 10.1159/000506229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 01/28/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Although growth hormone (GH) is essential for attainment of peak bone mass, bone health in prepubertal children with GH deficiency is not routinely evaluated. The objective of this study was to evaluate bone microarchitecture in GH-deficient (GHD) boys using high-resolution peripheral quantitative computed tomography (HR-pQCT). METHODS Fifteen control and fifteen GHD, GH naïve pre-pubertal boys were recruited for a case-control study at a major academic center. Subjects with panhypopituitarism, chromosomal pathology, chronic steroids, or stimulant use were excluded. Volumetric bone mineral density (vBMD; total, cortical, and trabecular), bone geometry (total, cortical and trabecular cross-sectional area, cortical perimeter), bone microarchitecture, and estimated bone strength of the distal radius and tibia were assessed by HR-pQCT. Areal BMD and body composition were assessed by DXA. Insulin-like growth factor 1 (IGF-1), osteocalcin, C telopeptide, and P1NP levels were measured. RESULTS GHD subjects had a significantly smaller cortical perimeter of the distal radius compared to controls (p < 0.001), with the difference in cortical perimeter persisting after adjusting for height z score, age, lean mass, and 25-hydroxyvitamin D level (p < 0.05).No significant differences were found in vBMD. No significant differences were found in microarchitecture, estimated strength, areal BMD, body composition, or bone turnover markers. Analysis showed significant positive correlations between IGF-1 levels and cortical parameters. DISCUSSION/CONCLUSIONS Prepubertal GHD boys had deficits in bone geometry not evident with DXA. Larger prospective/longitudinal HR-pQCT studies are needed to determine the extent of these deficits, the need for routine bone evaluation, and the timing of GH replacement for prevention or restoration of these deficits.
Collapse
Affiliation(s)
- Tamar G. Baer
- Department of Pediatrics, Columbia University Irving Medical Center, New York (NY) USA
| | - Sanchita Agarwal
- Department of Medicine, Columbia University Irving Medical Center, New York (NY) USA
| | - Shaoxuan Chen
- Department of Biostatistics, Columbia University Irving Medical Center, New York (NY) USA
| | - Codruta Chiuzan
- Department of Biostatistics, Columbia University Irving Medical Center, New York (NY) USA
| | - Aviva Sopher
- Department of Pediatrics, Columbia University Irving Medical Center, New York (NY) USA
| | - Rachel Tao
- Department of Pediatrics, Columbia University Irving Medical Center, New York (NY) USA
| | - Abeer Hassoun
- Department of Pediatrics, Columbia University Irving Medical Center, New York (NY) USA
| | - Elizabeth Shane
- Department of Medicine, Columbia University Irving Medical Center, New York (NY) USA
| | - Ilene Fennoy
- Department of Pediatrics, Columbia University Irving Medical Center, New York (NY) USA
| | - Sharon E. Oberfield
- Department of Pediatrics, Columbia University Irving Medical Center, New York (NY) USA
| | - Patricia M. Vuguin
- Department of Pediatrics, Columbia University Irving Medical Center, New York (NY) USA
| |
Collapse
|