1
|
Cerda-Kohler H, Haichelis D, Reuquén P, Miarka B, Homer M, Zapata-Gómez D, Aedo-Muñoz E. Training at moderate altitude improves submaximal but not maximal performance-related parameters in elite rowers. Front Physiol 2022; 13:931325. [PMID: 36311238 PMCID: PMC9614325 DOI: 10.3389/fphys.2022.931325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Maximal oxygen consumption (V̇O2max), physiological thresholds, and hemoglobin mass are strong predictors of endurance performance. High values of V̇O2max, maximal aerobic power (MAP), and power output at anaerobic thresholds are key variables in elite rowers. Endurance athletes often use altitude training as a strategy to improve performance. However, no clear evidence exists that training at natural altitude enhances sea-level performance in elite rowers. This study aimed to evaluate the effect of altitude training on rowing-performance parameters at sea level. The study was conducted on eleven rowers (Six females, five males) from the Chilean National Team during a 3-week moderate altitude training (∼2,900 m. a.s.l.) under the live high-train high (LHTH) model. It included a rowing ergometer maximal incremental test and blood analysis (pre and post-altitude). Gas exchange analysis was performed to measure V̇O2max, ventilatory thresholds (VTs) and rowing economy/efficiency (ECR/GE%). LHTL training improves performance-related variables at sea level (V̇Emax: 3.3% (95% CI, 1.2–5.5); hemoglobin concentration ([Hb]): 4.3% (95% CI, 1.7–6.9); hematocrit (%): 4.5% (95% CI, 0.9–8.2); RBC (red blood cells) count: 5.3% (95% CI, 2.3–8.2); power at VT2: 6.9% (95% CI, 1.7–12.1), V̇EVT2: 6.4% (95% CI, 0.4–12.4); power at VT1: 7.3% (95% CI, 1.3–13.3), V̇EVT1: 8.7% (95% CI, 1.6–15.8)) and economy/efficiency-related variables (ECRVT2: 5.3% (95% CI, −0.6 to −10.0); GE(%): 5.8% (95% CI, 0.8–10.7)). The LHTH training decreased breathing economy at MAP (−2.8% (95% CI, 0.1–5.6)), pVT2 (−9.3% (95% CI, −5.9 to −12.7)), and pVT1 (−9.3% (95% CI, −4.1 to −14.4)). Non-significant changes were found for V̇O2max and MAP. This study describes the effects of a 3-week moderate altitude (LHTH training) on performance and economy/efficiency-related variables in elite rowers, suggesting that it is an excellent option to induce positive adaptations related to endurance performance.
Collapse
Affiliation(s)
- Hugo Cerda-Kohler
- Escuela de Ciencias del Deporte y Actividad Física, Facultad de Salud, Universidad Santo Tomás, Santiago, Chile
- Departamento de Educación Física, eporte y Recreación, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Laboratory of Psychophysiology and Performance in Sports and Combats, Postgraduate Program in Physical Education, School of Physical Education and Sport, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago, Chile
| | - Danni Haichelis
- Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago, Chile
- Unidad de Ciencias Aplicadas al Deporte, Instituto Nacional de Deportes, Santiago, Chile
| | - Patricia Reuquén
- Unidad de Ciencias Aplicadas al Deporte, Instituto Nacional de Deportes, Santiago, Chile
- Escuela de Ciencias de la Actividad Física, el Deporte y la Salud, Universidad de Santiago de Chile, Santiago, Chile
- Laboratorio de Ciencias de la Actividad Física, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Bianca Miarka
- Laboratory of Psychophysiology and Performance in Sports and Combats, Postgraduate Program in Physical Education, School of Physical Education and Sport, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mark Homer
- School of Human and Social Sciences, Buckinghamshire New University, Buckinghamshire, United Kingdom
| | - Daniel Zapata-Gómez
- Unidad de Ciencias Aplicadas al Deporte, Instituto Nacional de Deportes, Santiago, Chile
| | - Esteban Aedo-Muñoz
- Laboratory of Psychophysiology and Performance in Sports and Combats, Postgraduate Program in Physical Education, School of Physical Education and Sport, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Unidad de Ciencias Aplicadas al Deporte, Instituto Nacional de Deportes, Santiago, Chile
- Escuela de Ciencias de la Actividad Física, el Deporte y la Salud, Universidad de Santiago de Chile, Santiago, Chile
- *Correspondence: Esteban Aedo-Muñoz,
| |
Collapse
|
2
|
Effects of Living High-Training Low and High on Body Composition and Metabolic Risk Markers in Overweight and Obese Females. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3279710. [PMID: 32104687 PMCID: PMC7036094 DOI: 10.1155/2020/3279710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
This study examined the effects of 4 weeks of living high-training low and high (LHTLH) under moderate hypoxia on body weight, body composition, and metabolic risk markers of overweight and obese females. Nineteen healthy overweight or obese females participated in this study. Participants were assigned to the normoxic training group (NG) or the LHTLH group (HG). The NG participants lived and trained at sea level. The HG participants stayed for approximately 10 hours in a simulated 2300 m normobaric state of hypoxia for six days a week and trained for 2 hours 3 times a week under the same simulated hypoxia. The interventions lasted for 4 weeks. All groups underwent dietary restriction based on resting metabolic rate. The heart rate of the participants was monitored every ten minutes during exercise to ensure that the intensity was in the aerobic range. Compared with the preintervention values, body weight decreased significantly in both the NG and the HG (−8.81 ± 2.09% and −9.09 ± 1.15%, respectively). The fat mass of the arm, leg, trunk, and whole body showed significant reductions in both the NG and the HG, but no significant interaction effect was observed. The percentage of lean soft tissue mass loss in the total body weight loss tended to be lower in the HG (27.61% versus 15.94%, P=0.085). Between the NG and the HG, significant interaction effects of serum total cholesterol (−12.66 ± 9.09% versus −0.05 ± 13.36%,) and apolipoprotein A1 (−13.66 ± 3.61% versus −5.32 ± 11.07%, P=0.042) were observed. A slight increase in serum high-density lipoprotein cholesterol (HDL-C) was observed in the HG (1.12 ± 12.34%) but a decrease was observed in the NG (−11.36 ± 18.91%). The interaction effect of HDL-C between NG and HG exhibited a significant trend (P=0.055). No added effects on serum triglycerides (TGs), low-density lipoprotein cholesterol (LDL-C), or APO-B were observed after 4 weeks of LHTLH. In conclusion, 4 weeks of LHTLH combined with dietary restriction could effectively reduce the body weight and body fat mass of overweight and obese females. Compared with training and sleeping under normoxia, no additive benefit of LHTLH on the loss of body weight and body fat mass was exhibited. However, LHTLH may help to relieve the loss of lean soft tissue mass and serum HDL-C.
Collapse
|