1
|
Torkzadeh T, Asadi Z, Jafari Atrabi M, Khodadi M, Eivazkhani F, Hajiaghalou S, Akbarinejad V, Fathi R. Combination of FSH and testosterone could enhance activation of primordial follicles and growth of activated follicles in 1-day-old mice ovaries in vitro cultured for 12 days. ZYGOTE 2024:1-9. [PMID: 39710995 DOI: 10.1017/s0967199424000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Treatment with follicle-stimulating hormone (FSH) and testosterone (T2) and their combination have been observed to be influential on ovarian follicles of 1-day-old mice ovaries cultured for 8 days. Given that extension of the culture period could positively impact the development of follicles in cultured ovaries, the present study was conducted to evaluate the main and interaction effects of FSH by T2 on the development of ovarian follicles in 1-day-old mice ovaries cultured for 12 days. One-day-old mice ovaries were initially cultured with base medium for 4 days; thereafter, different hormonal treatments were added to the culture media, and the culture was continued for 8 additional days until day 12. Ovaries were collected for histological and molecular assessments on day 12. The greatest activation of primordial follicles and progression of activated follicles to the preantral stage was detected in ovaries treated with the combination of FSH and T2 (P < 0.05). This positive effect on the morphology of ovarian follicles was accompanied by upregulation of Pi3k, Gdf9, Bmp15, Cx37 and Fshr in the ovaries cultured with the combination of FSH and T2 (P < 0.05). Nonetheless, treatment with FSH and T2 led to a diminished proportion of intact follicles (P < 0.05), even though Bax/Bcl2 gene expression ratio, as an apoptotic index, was less in hormone-treated ovaries (P < 0.05). In conclusion, the combination of FSH and T2 could improve the activation of primordial follicles and the growth of activated follicles towards the preantral stage. This positive effect of FSH plus T2 appeared to be at least partly mediated through the upregulation of Pi3k and oocyte-derived growth factors including Gdf9 and Bmp15.
Collapse
Affiliation(s)
- Tahoura Torkzadeh
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Zahra Asadi
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Mohammad Jafari Atrabi
- Institute of Pharmacology and Toxicology, University Medical Center, Georg August University, Göttingen, Germany
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research (DPZ), Göttingen, Germany
| | - Maryam Khodadi
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farideh Eivazkhani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Samira Hajiaghalou
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
2
|
Kavarthapu R, Lou H, Pham T, Do H, Soliman ME, Badger T, Balasubramanian R, Huyhn V, De La Luz Sierra M, Yano Maher JC, Gomez-Lobo V. Single-nucleus and spatial transcriptomics of paediatric ovary: Molecular insights into the dysregulated signalling pathways underlying premature ovarian insufficiency in classic galactosemia. Clin Transl Med 2024; 14:e70043. [PMID: 39440457 DOI: 10.1002/ctm2.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Classic galactosemia (CG) is an inborn error of galactose metabolism caused by mutations in the GALT gene. Premature ovarian insufficiency (POI) is a later complication that affects 80% of women with CG due to a significant decline in ovarian reserve (primordial follicle pool). The definite mechanisms underlying the early onset of POI in CG patients are not fully understood. METHODS In this study, we performed single-nucleus RNA sequencing (snRNA-seq) and spatial transcriptomics on ovary tissue biopsies from prepubertal girls diagnosed with CG to investigate dynamic changes in gene expression and altered signalling pathways in granulosa cells, oocytes, and stromal cells. RESULTS We generated single-nucleus and spatial transcriptomics atlas of human ovaries from prepubertal girls diagnosed with and without CG. snRNA-seq profiling of the paediatric ovary revealed a diverse ovarian microenvironment with seven distinct major cell types. Our transcriptomic analysis revealed an increase in the expression of several endoplasmic reticulum stress and oxidative stress associated genes, which can promote apoptosis of granulosa cells in CG. PTEN/PI3K/AKT signalling, which is crucial for primordial follicle activation and survival was dysregulated as supported by upregulated PTEN transcripts and a significant reduction in phospho-AKT levels in the granulosa cells and oocytes. We also found a marked increase in expression of phospho-H2A.X, LC3A/B and CASP9 in the primordial follicles of CG ovaries suggesting DNA damage, autophagy, and accelerated follicular atresia. Furthermore, we noticed genes participating in extracellular matrix organisation, integrin and gap junction signalling, essential for structural support of the ovarian stroma were profoundly altered. CONCLUSIONS Our findings provide molecular insights into the dysregulated cellular signalling pathways essential for primordial follicle growth and survival that can explain the etiology of POI in CG patients. This study has implications in the development of future therapeutic interventions to preserve ovarian function and promote female reproductive health. HIGHLIGHTS Created a comprehensive single-nucleus transcriptomic atlas and spatial landscape of paediatric ovary tissue from prepubertal girls diagnosed with classic galactosemia (CG). Our transcriptomic analysis revealed activation of genes associated with ER-stress signalling, oxidative stress response and ATM signalling/DNA damage response as shown by significant increase in expression of p-EIF2A, p-H2A.X and LC3A/B in the primordial follicles of CG ovary. PTEN/PI3K/AKT signalling pathways was dysregulated evidenced by a significant reduction in phospho-AKT expression in the primordial follicles of CG ovary, suggesting impaired follicle activation and survival.
Collapse
Affiliation(s)
- Raghuveer Kavarthapu
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Hong Lou
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Thang Pham
- BioTuring Inc, San Diego, California, USA
| | - Han Do
- BioTuring Inc, San Diego, California, USA
| | - Mary E Soliman
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Taylor Badger
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Ramya Balasubramanian
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Victoria Huyhn
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Maria De La Luz Sierra
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Jacqueline C Yano Maher
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
- Division of Pediatric and Adolescent Gynecology, Children's National Hospital, Washington, District of Columbia, USA
| | - Veronica Gomez-Lobo
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
- Division of Pediatric and Adolescent Gynecology, Children's National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
3
|
Ghorbani M, Sanoee Farimani M, Khodadadi I, Mohagheghi S, Amiri I, Tayebinia H. The regulatory roles of Smad2/3 protein and SMURF2 gene expression in granulosa cells of germinal vesicle and metaphase II oocytes in polycystic ovarian syndrome: A case-control study. Int J Reprod Biomed 2024; 22:441-450. [PMID: 39205921 PMCID: PMC11347763 DOI: 10.18502/ijrm.v22i6.16794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background The impaired functions of granulosa cells (GCs) in the delayed development and immaturity of oocytes have been reported in polycystic ovary syndrome (PCOs). Even with ovarian stimulation, a large number of oocytes in these patients are still in the stage germinal vesicle (GV). Objective The levels of Smad2/3, phosphorylated Smad2/3 (P-Smad2/3), the expression of SARA, Smad4, and SMURF2 genes in the GCs surrounding metaphase II (MII) or GV oocytes in PCOs women were investigated. Materials and Methods GCs of MII and GV oocytes were isolated from 38 women with PCOs and the expression levels of SARA, Smad4, and SMURF2 in surrounding GCs of MII and GV oocytes were determined using reverse-transcription polymerase chain reaction. Also, Smad2/3 and P-Smad2/3 proteins were determined using western blotting. Results The expression level of SMURF2 was significantly higher in GCs surrounding GV oocytes compared with that of GCs encompassing MII oocytes (p < 0.001). At the same time, no significant differences were observed in SARA and Smad4 expression levels in GCs surrounding GV and MII oocytes. A lower level of P-Smad2/3 was also found in GCs GV oocytes compared with GCs of MII oocytes (p < 0.001). Conclusion It seems that P-Smad2/3 plays a role in oocyte development, and the downregulation of this protein is associated with a defect in the maturation of GV oocytes. On the other hand, the upregulation of the SMURF2 gene also affects the growth process of GCs and the maturation of GV oocytes.
Collapse
Affiliation(s)
- Marzieh Ghorbani
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Fertility and Infertility Research Centre, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Sanoee Farimani
- Department of Obstetrics and Gynecology, Medicine School, Hamadan University of Medical Sciences, Hamadan, Iran
- Omid Infertility Centre, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sina Mohagheghi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Amiri
- Fertility and Infertility Research Centre, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Anatomy and Embryology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidar Tayebinia
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Hong Z, Kuang J, Guo Y, Zhou G, Zhu Z, Jiang L. Effects of follicle-stimulating hormone on the proliferation and apoptosis of infantile hemangioma stem cells. Biochem Biophys Rep 2023; 35:101551. [PMID: 37823006 PMCID: PMC10562740 DOI: 10.1016/j.bbrep.2023.101551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Objective To investigate the effects of different concentrations of follicle-stimulating hormone (FSH) on the proliferation and apoptosis of human hemangioma stem cells, it will provide a basis for studying the mechanism of FSH in treating hemangioma. Methods Hemangioma specimens were collected from the Longgang District Maternity & Child Healthcare Hospital of Shenzhen City. Hemangioma stem cells were treated with different concentrations of FSH. Cell viability was detected by CCK8 method and cell apoptosis was analyzed by flow cytometry. Results Hemangioma stem cells (HemSCs) were extracted from fresh tissue of infantile hemangioma by the CD133 immunomagnetic bead method. Under the influence of FSH at different concentrations (0, 100, 1000 IU/L), the cell viability of hemangioma stem cells increased significantly in a concentration-dependent manner (P < 0.05). At the same time, the apoptosis of hemangioma stem cells decreased with increasing concentrations of follicle-stimulating hormone (P < 0.05). Specifically, 1000 IU/L FSH significantly promoted the proliferation of hemangioma stem cells and inhibited their apoptosis. Conclusion High concentration of follicle-stimulating hormone can maintain the growth of hemangioma by promoting the proliferation and inhibiting the apoptosis of hemangioma stem cells.
Collapse
Affiliation(s)
- Zhiqian Hong
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Junxi Kuang
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yadong Guo
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Guanglin Zhou
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Zhengjie Zhu
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Lewen Jiang
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Wang X, Yang J, Li H, Mu H, Zeng L, Cai S, Su P, Li H, Zhang L, Xiang W. miR-484 mediates oxidative stress-induced ovarian dysfunction and promotes granulosa cell apoptosis via SESN2 downregulation. Redox Biol 2023; 62:102684. [PMID: 36963287 PMCID: PMC10060268 DOI: 10.1016/j.redox.2023.102684] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
Ovarian dysfunction is a common cause of female infertility, which is associated with genetic, autoimmune and environmental factors. Granulosa cells (GCs) constitute the largest cell population of ovarian follicles. Changes in GCs, including oxidative stress (OS) and excessive reactive oxygen species (ROS), are involved in regulating ovary function. miR-484 is highly expressed in 3-NP-induced oxidative stress models of ovaries and GCs. miR-484 overexpression aggravated GCs dysfunction and thereby intensified ovarian oxidative stress injury in mice. Moreover, bioinformatic analyses, luciferase assays and pull-down assays indicated that LINC00958 acted as a competing endogenous RNA (ceRNA) for miR-484 and formed a signaling axis with Sestrin2(SESN2) under oxidative stress conditions, which in turn regulated mitochondrial functions and mitochondrial-related apoptosis in GCs. Additionally, the inhibition of miR-484 alleviated GCs dysfunction under ovarian oxidative stress condition. Our present study revealed the role of miR-484 in oxidative stress of ovaries and GCs and the function of LINC00958/miR-484/SESN2 axis in mitochondrial function and mitochondria-related apoptosis.
Collapse
Affiliation(s)
- Xiaofei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Jiahao Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Huiying Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Hongbei Mu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Ling Zeng
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China
| | - Siying Cai
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China; Wuhan Huake Reproductive Hospital, 128 Sanyang Road, Wuhan, 430013, China
| | - Huaibiao Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| | - Ling Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China; Wuhan Huake Reproductive Hospital, 128 Sanyang Road, Wuhan, 430013, China.
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China; Wuhan Huake Reproductive Hospital, 128 Sanyang Road, Wuhan, 430013, China.
| |
Collapse
|
6
|
Li Z, Lu S, Qian B, Meng Z, Zhou Y, Chen D, Chen B, Yang G, Ma Y. Sex differences in hepatic ischemia‒reperfusion injury: a cross-sectional study. Sci Rep 2023; 13:5724. [PMID: 37029182 PMCID: PMC10081297 DOI: 10.1038/s41598-023-32837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Several studies have shown that males suffer more severe damage than females in the process of ischemia and reperfusion of the brain, heart and kidney. Accordingly, our study will reveal the correlation between the severity of hepatic ischemia‒reperfusion injury (HIRI) and sex, and preliminarily analyze the underlying mechanism. A total of 75 patients who were considered to have "benign liver tumors" at the initial admission and underwent partial hepatectomy were enrolled. We identified potential differences between different groups and discussed the correlation between the severity of HIRI and sex through a comparative analysis. Results showed that HIRI was more severe in males than in females, especially in younger patients. To explore whether estrogen level differences are the main reason for the sex differences in HIRI, we further revealed that HIRI in premenopausal females was more severe than that in postmenopausal females. By comparing the levels of gonadal hormones, we speculated that multiple gonadal hormones, including follicle-stimulating hormone, luteinizing hormone and testosterone, may jointly participate in the regulation of sex differences in HIRI together with estrogen.
Collapse
Affiliation(s)
- Zhongyu Li
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, Heilongjiang, China
| | - Shounan Lu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, Heilongjiang, China
| | - Baolin Qian
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, Heilongjiang, China
| | - Zhanzhi Meng
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, Heilongjiang, China
| | - Yongzhi Zhou
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, Heilongjiang, China
| | - Dong Chen
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, Heilongjiang, China
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, Guangdong, China
| | - Bangliang Chen
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, Heilongjiang, China
| | - Guangchao Yang
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, Heilongjiang, China
| | - Yong Ma
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
7
|
Xi H, Hu Z, Han S, Liu X, Wang L, Hu J. FSH-inhibited autophagy protects against oxidative stress in goat Sertoli cells through p62-Nrf2 pathway. Theriogenology 2023; 195:103-114. [PMID: 36332369 DOI: 10.1016/j.theriogenology.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
|
8
|
Yan F, Zhao Q, Li Y, Zheng Z, Kong X, Shu C, Liu Y, Shi Y. The role of oxidative stress in ovarian aging: a review. J Ovarian Res 2022; 15:100. [PMID: 36050696 PMCID: PMC9434839 DOI: 10.1186/s13048-022-01032-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/21/2022] [Indexed: 11/29/2022] Open
Abstract
Ovarian aging refers to the process by which ovarian function declines until eventual failure. The pathogenesis of ovarian aging is complex and diverse; oxidative stress (OS) is considered to be a key factor. This review focuses on the fact that OS status accelerates the ovarian aging process by promoting apoptosis, inflammation, mitochondrial damage, telomere shortening and biomacromolecular damage. Current evidence suggests that aging, smoking, high-sugar diets, pressure, superovulation, chemotherapeutic agents and industrial pollutants can be factors that accelerate ovarian aging by exacerbating OS status. In addition, we review the role of nuclear factor E2-related factor 2 (Nrf2), Sirtuin (Sirt), mitogen-activated protein kinase (MAPK), protein kinase B (AKT), Forkhead box O (FoxO) and Klotho signaling pathways during the process of ovarian aging. We also explore the role of antioxidant therapies such as melatonin, vitamins, stem cell therapies, antioxidant monomers and Traditional Chinese Medicine (TCM), and investigate the roles of these supplements with respect to the reduction of OS and the improvement of ovarian function. This review provides a rationale for antioxidant therapy to improve ovarian aging.
Collapse
Affiliation(s)
- Fei Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Qi Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Ying Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Zhibo Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xinliang Kong
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Chang Shu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yanfeng Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
| | - Yun Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
| |
Collapse
|
9
|
Li M. The role of P53 up-regulated modulator of apoptosis (PUMA) in ovarian development, cardiovascular and neurodegenerative diseases. Apoptosis 2021; 26:235-247. [PMID: 33783663 PMCID: PMC8197724 DOI: 10.1007/s10495-021-01667-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 12/14/2022]
Abstract
P53 up-regulated modulator of apoptosis (PUMA), a pro-apoptotic BCL-2 homology 3 (BH3)-only member of the BCL-2 family, is a direct transcriptional target of P53 that elicits mitochondrial apoptosis under treatment with radiation and chemotherapy. It also induces excessive apoptosis in cardiovascular and/or neurodegenerative diseases. PUMA has been found to play a critical role in ovarian apoptosis. In the present paper, we review the progress of the study in PUMA over the past two decades in terms of its inducement and/or amplification of programmed cell death and describe recent updates to the understanding of both P53-dependent and P53-independent PUMA-mediated apoptotic pathways that are implicated in physiology and pathology, including the development of the ovary and cardiovascular and neurodegenerative diseases. We propose that PUMA may be a key regulator during ovary development, provide a model for PUMA-mediated apoptotic pathways, including intrinsic and extrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Mei Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|