1
|
Shanmugasundaram R, Ajao AM, Fathima S, Oladeinde A, Selvaraj RK, Applegate TJ, Olukosi OA. Growth performance and immune response of broilers during active Eimeria infection are modified by dietary inclusion of canola meal or corn-DDGS in reduced-protein corn-soybean meal diets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:442-452. [PMID: 39650693 PMCID: PMC11621932 DOI: 10.1016/j.aninu.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 12/11/2024]
Abstract
The objective of this experiment was to study the effects of partial replacement of soybean meal (SBM) with canola meal (CM) or corn-distillers' dried grains with solubles (cDDGS) in reduced-protein (RP) diets for Eimeria-infected broilers. A total of 1120 broiler chicks were distributed in a 4 × 2 (4 diets × with or without infection) factorial arrangement with 7 replicates per treatment and 20 birds per replicate. The 4 diets, fed between d 7 and 42, were (i) a standard diet with crude protein at 200 g/kg (SP); (ii) a RP (crude protein at 160 g/kg) corn-SBM diet (RP-SBM); (iii) a RP diet in which 80 g/kg CM replaced 60 g/kg SBM (RP-CM); and (iv) a RP diet in which 100 g/kg cDDGS replaced 50 g/kg SBM (RP-cDDGS). On d 15, birds were infected with mixed Eimeria (+E) oocysts. Birds and feed were weighed at intervals for growth performance, and samples for immunology responses were collected on d 21. The results showed as follows: 1) during the acute infection phase, diet × Eimeria infection was shown by the diets having no effect in the uninfected group. In contrast, the RP-SBM diet tended to produce higher (P < 0.10) weight gain among the infected birds. The d 42 body weight was greater (P = 0.001) for the uninfected birds. 2) There was a significant diet × Eimeria infection on bile anti-Eimeria immunoglobulin A (IgA) concentrations (P = 0.015), splenocyte proliferation, macrophage nitric oxide (NO) production (P < 0.001), and cecal tonsil interleukin (IL)-17 mRNA amounts (P < 0.001). Most of these responses were not influenced by the diets in the uninfected birds. However, among the infected birds, birds fed RP-SBM had higher (P < 0.05) bile IgA than those fed SP or RP-cDDGS. For the spleen, the interaction was that birds fed RP-SBM or RP-cDDGS diets had the highest or lowest NO production, respectively, and birds that received RP-SBM had greater (P < 0.05) splenic CD8+:CD4+ cell ratio than other diets. In conclusion, partial replacement of SBM with CM or cDDGS had only a marginal effect on d 42 body weight and FCR of the broiler chickens receiving the RP diets. In contrast, these had a negative impact on the immune responses of the broiler chickens.
Collapse
Affiliation(s)
| | - Adeleye M. Ajao
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Shahna Fathima
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | | | | | - Todd J. Applegate
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
2
|
Wang X, Deng T, Zhou X, Chu L, Zeng X, Zhang S, Guan W, Chen F. A Mixture of Formic Acid, Benzoic Acid, and Essential Oils Enhanced Growth Performance via Modulating Nutrient Uptake, Mitochondrion Metabolism, and Immunomodulation in Weaned Piglets. Antioxidants (Basel) 2024; 13:246. [PMID: 38397844 PMCID: PMC10886008 DOI: 10.3390/antiox13020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
This study aimed to evaluate the effects of a complex comprising formic acid, benzoic acid, and essential oils (AO3) on the growth performance of weaned piglets and explore the underlying mechanism. Dietary AO3 supplementation significantly enhanced the average daily gain (ADG) and average daily feed intake (ADFI), while decreasing the feed conversion rate (FCR) and diarrhea rate (p < 0.05). Additionally, AO3 addition altered the fecal microflora composition with increased abundance of f_Prevotellaceae. LPS challenges were further conducted to investigate the detailed mechanism underlying the benefits of AO3 supplementation. The piglets fed with AO3 exhibited a significant increase in villus height and decrease in crypt depth within the jejunum, along with upregulation of ZO-1, occludin, and claudin-1 (p < 0.05) compared with those piglets subjected to LPS. Furthermore, AO3 supplementation significantly ameliorated redox disturbances (T-AOC, SOD, and GSH) and inflammation (TNF-α, IL-1β, IL-6, and IL-12) in both the serum and jejunum of piglets induced by LPS, accompanied by suppressed activation of the MAPK signaling pathway (ERK, JNK, P38) and NF-κB. The LPS challenge downregulated the activation of the AMPK signaling pathway, mRNA levels of electron transport chain complexes, and key enzymes involved in ATP synthesis, which were significantly restored by the AO3 supplementation. Additionally, AO3 supplementation restored the reduced transport of amino acids, glucose, and fatty acids induced by LPS back to the levels observed in the control group. In conclusion, dietary AO3 supplementation positively affected growth performance and gut microbiota composition, also enhancing intestinal barrier integrity, nutrient uptake, and energy metabolism, as well as alleviating oxidative stress and inflammation under LPS stimulation.
Collapse
Affiliation(s)
- Xinyu Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China; (X.W.); (X.Z.)
| | - Tanyi Deng
- College of Animal Science and National Engineering Research Center for Pig Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (T.D.); (X.Z.); (L.C.); (S.Z.); (W.G.)
- Guangdong Laboratory of Modern Agriculture in Lingnan, Guangzhou 510642, China
| | - Xuemei Zhou
- College of Animal Science and National Engineering Research Center for Pig Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (T.D.); (X.Z.); (L.C.); (S.Z.); (W.G.)
- Guangdong Laboratory of Modern Agriculture in Lingnan, Guangzhou 510642, China
| | - Licui Chu
- College of Animal Science and National Engineering Research Center for Pig Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (T.D.); (X.Z.); (L.C.); (S.Z.); (W.G.)
- Guangdong Laboratory of Modern Agriculture in Lingnan, Guangzhou 510642, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China; (X.W.); (X.Z.)
| | - Shihai Zhang
- College of Animal Science and National Engineering Research Center for Pig Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (T.D.); (X.Z.); (L.C.); (S.Z.); (W.G.)
- Guangdong Laboratory of Modern Agriculture in Lingnan, Guangzhou 510642, China
| | - Wutai Guan
- College of Animal Science and National Engineering Research Center for Pig Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (T.D.); (X.Z.); (L.C.); (S.Z.); (W.G.)
- Guangdong Laboratory of Modern Agriculture in Lingnan, Guangzhou 510642, China
| | - Fang Chen
- College of Animal Science and National Engineering Research Center for Pig Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (T.D.); (X.Z.); (L.C.); (S.Z.); (W.G.)
- Guangdong Laboratory of Modern Agriculture in Lingnan, Guangzhou 510642, China
| |
Collapse
|
3
|
Shanmugasundaram R, Adams D, Ramirez S, Murugesan GR, Applegate TJ, Cunningham S, Pokoo-Aikins A, Glenn AE. Subclinical Doses of Combined Fumonisins and Deoxynivalenol Predispose Clostridium perfringens–Inoculated Broilers to Necrotic Enteritis. Front Physiol 2022; 13:934660. [PMID: 35936897 PMCID: PMC9353554 DOI: 10.3389/fphys.2022.934660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
Fumonisins (FB) and deoxynivalenol (DON) are mycotoxins which may predispose broiler chickens to necrotic enteritis (NE). The objective of this study was to identify the effects of subclinical doses of combined FB and DON on NE. A total of 480 day-old male broiler chicks were divided into four treatment groups; 1) control group (basal diet + Clostridium perfringens); 2) necrotic enteritis group (basal diet + Eimeria maxima + C. perfringens); 3) FB + DON group (basal diet + 3 mg/kg FB + 4 mg/kg DON + C. perfringens); and 4) FB + DON + NE group (basal diet + 3 mg/kg FB + 4 mg/kg DON + E. maxima + C. perfringens). Birds in NE and FB + DON + NE groups received 2.5 × 103E. maxima on day 14. All birds were inoculated with C. perfringens on days 19, 20, and 21. On day 35, birds in the NE, FB + DON, and FB + DON + NE groups had 242, 84, and 339 g lower BWG and a 19-, 2-, and 22-point increase in FCR respectively, than in the control group. Subclinical doses of FB + DON increased (p < 0.05) the NE lesion scores compared to the control group on day 21. On day 21, birds in the NE, FB + DON, and FB + DON + NE groups had increased (p < 0.05) serum FITC-D, lower (p < 0.05) jejunal tight junction protein mRNA, and increased (p < 0.05) cecal tonsil IL-1 mRNA compared to control group. On day 21, birds in the NE group had decreased (p < 0.05) villi height to crypt depth ratio compared to the control group and the presence of FB + DON in NE-induced birds further decreased the villi height to crypt depth ratio. Birds in the NE, FB + DON, and FB + DON + NE groups had increased (p < 0.05) C. perfringens, lower (p < 0.05) Lactobacillus loads in the cecal content, and a lower (p < 0.05) CD8+: CD4+ cell ratio in the cecal tonsils compared to the control group. It can be concluded that subclinical doses of combined FB and DON predispose C. perfringens-inoculated birds to NE, and the presence of FB + DON in NE-induced birds exacerbated the severity of NE.
Collapse
Affiliation(s)
- R. Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
- *Correspondence: R. Shanmugasundaram,
| | - D. Adams
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - S. Ramirez
- DSM Animal Nutrition and Health, Kaiseraugst, Switzerland
| | | | - T. J. Applegate
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - S. Cunningham
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| | - A. Pokoo-Aikins
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| | - A. E. Glenn
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| |
Collapse
|
4
|
Rahman MRT, Fliss I, Biron E. Insights in the Development and Uses of Alternatives to Antibiotic Growth Promoters in Poultry and Swine Production. Antibiotics (Basel) 2022; 11:766. [PMID: 35740172 PMCID: PMC9219610 DOI: 10.3390/antibiotics11060766] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
The overuse and misuse of antibiotics has contributed to the rise and spread of multidrug-resistant bacteria. To address this global public health threat, many countries have restricted the use of antibiotics as growth promoters and promoted the development of alternatives to antibiotics in human and veterinary medicine and animal farming. In food-animal production, acidifiers, bacteriophages, enzymes, phytochemicals, probiotics, prebiotics, and antimicrobial peptides have shown hallmarks as alternatives to antibiotics. This review reports the current state of these alternatives as growth-promoting factors for poultry and swine production and describes their mode of action. Recent findings on their usefulness and the factors that presently hinder their broader use in animal food production are identified by SWOT (strength, weakness, opportunity, and threat) analysis. The potential for resistance development as well as co- and cross-resistance with currently used antibiotics is also discussed. Using predetermined keywords, we searched specialized databases including Scopus, Web of Science, and Google Scholar. Antibiotic resistance cannot be stopped, but its spreading can certainly be hindered or delayed with the development of more alternatives with innovative modes of action and a wise and careful use of antimicrobials in a One Health approach.
Collapse
Affiliation(s)
- Md Ramim Tanver Rahman
- Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada;
- Laboratory of Medicinal Chemistry, CHU de Québec Research Center, Québec, QC G1V 4G2, Canada
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC G1V 0A6, Canada;
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, Québec, QC G1V 0A6, Canada
| | - Eric Biron
- Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada;
- Laboratory of Medicinal Chemistry, CHU de Québec Research Center, Québec, QC G1V 4G2, Canada
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC G1V 0A6, Canada;
| |
Collapse
|
5
|
Ebeid TA, Al-Homidan IH. Organic acids and their potential role for modulating the gastrointestinal tract, antioxidative status, immune response, and performance in poultry. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2022.1988803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tarek A. Ebeid
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Ibrahim H. Al-Homidan
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|