1
|
Ponphaiboon J, Limmatvapirat S, Limmatvapirat C. Development and Evaluation of a Stable Oil-in-Water Emulsion with High Ostrich Oil Concentration for Skincare Applications. Molecules 2024; 29:982. [PMID: 38474494 DOI: 10.3390/molecules29050982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
This study investigates the development of an oil-in-water (O/W) emulsion enriched with a high concentration of ostrich oil, recognized for its abundant content of oleic acid (34.60 ± 0.01%), tailored for skincare applications. Using Span and Tween emulsifiers, we formulated an optimized emulsion with 20% w/w ostrich oil and a 15% w/w blend of Span 20 and Tween 80. This formulation, achieved via homogenization at 3800 rpm for 5 min, yielded the smallest droplet size (5.01 ± 0.43 μm) alongside an appropriate zeta potential (-32.22 mV). Our investigation into the influence of Span and Tween concentrations, types, and ratios on the stability of 20% w/w ostrich oil emulsions, maintaining a hydrophile-lipophile balance (HLB) of 5.5, consistently demonstrated the superior stability of the optimized emulsion across various formulations. Cytotoxicity assessments on human dermal fibroblasts affirmed the safety of the emulsion. Notably, the emulsion exhibited a 52.20 ± 2.01% inhibition of linoleic acid oxidation, surpassing the 44.70 ± 1.94% inhibition observed for ostrich oil alone. Moreover, it demonstrated a superior inhibitory zone against Staphylococcus aureus (12.32 ± 0.19 mm), compared to the 6.12 ± 0.15 mm observed for ostrich oil alone, highlighting its enhanced antioxidant and antibacterial properties and strengthening its potential for skincare applications. The optimized emulsion also demonstrates the release of 78.16 ± 1.22% of oleic acid across the cellulose acetate membrane after 180 min of study time. This successful release of oleic acid further enhances the overall efficacy and versatility of the optimized emulsion. Stability assessments, conducted over 6 months at different temperatures (4 °C, 25 °C, 45 °C), confirmed the emulsion's sustained physicochemical and microbial stability, supporting its promise for topical applications. Despite minor fluctuations in acid values (AV) and peroxide values (PV), the results remained within the acceptable limits. This research elucidates the crucial role of emulsification in optimizing the efficacy and stability of ostrich oil in skincare formulations, providing valuable insights for practical applications where stability is paramount.
Collapse
Affiliation(s)
- Juthaporn Ponphaiboon
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Natural Products Research Center (NPRC), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Sontaya Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Natural Products Research Center (NPRC), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chutima Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Natural Products Research Center (NPRC), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
2
|
Kim JE, Tun HM, Bennett DC, Leung FC, Cheng KM. Microbial diversity and metabolic function in duodenum, jejunum and ileum of emu (Dromaius novaehollandiae). Sci Rep 2023; 13:4488. [PMID: 36934111 PMCID: PMC10024708 DOI: 10.1038/s41598-023-31684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/15/2023] [Indexed: 03/20/2023] Open
Abstract
Emus (Dromaius novaehollandiae), a large flightless omnivorous ratite, are farmed for their fat and meat. Emu fat can be rendered into oil for therapeutic and cosmetic use. They are capable of gaining a significant portion of its daily energy requirement from the digestion of plant fibre. Despite of its large body size and low metabolic rate, emus have a relatively simple gastroinstetinal (GI) tract with a short mean digesta retention time. However, little is known about the GI microbial diversity of emus. The objective of this study was to characterize the intraluminal intestinal bacterial community in the different segments of small intestine (duodenum, jejunum, and ileum) using pyrotag sequencing and compare that with the ceca. Gut content samples were collected from each of four adult emus (2 males, 2 females; 5-6 years old) that were free ranged but supplemented with a barley-alfalfa-canola based diet. We amplified the V3-V5 region of 16S rRNA gene to identify the bacterial community using Roche 454 Junior system. After quality trimming, a total of 165,585 sequence reads were obtained from different segments of the small intestine (SI). A total of 701 operational taxonomic units (OTUs) were identified in the different segments of small intestine. Firmicutes (14-99%) and Proteobacteria (0.5-76%) were the most predominant bacterial phyla in the small intestine. Based on species richness estimation (Chao1 index), the average number of estimated OTUs in the small intestinal compartments were 148 in Duodenum, 167 in Jejunum, and 85 in Ileum, respectively. Low number of core OTUs identified in each compartment of small intestine across individual birds (Duodenum: 13 OTUs, Jejunum: 2 OTUs, Ileum: 14 OTUs) indicated unique bacterial community in each bird. Moreover, only 2 OTUs (Escherichia and Sinobacteraceae) were identified as core bacteria along the whole small intestine. PICRUSt analysis has indicated that the detoxification of plant material and environmental chemicals seem to be performed by SI microbiota, especially those in the jejunum. The emu cecal microbiome has more genes than SI segments involving in protective or immune response to enteric pathogens. Microbial digestion and fermentation is mostly in the jejunum and ceca. This is the first study to characterize the microbiota of different compartments of the emu intestines via gut samples and not fecal samples. Results from this study allow us to further investigate the influence of the seasonal and physiological changes of intestinal microbiota on the nutrition of emus and indirectly influence the fatty acid composition of emu fat.
Collapse
Affiliation(s)
- Ji Eun Kim
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Hein M Tun
- School of Public Health, Li Ka Shing, Faculty of Medicine, HKU-Pasteur Research Pole, University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- JC School of Public Health and Primary Care, Faculty of Medicine, Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Darin C Bennett
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Animal Science Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Frederick C Leung
- School of Biological Sciences, Faculty of Science, University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Kimberly M Cheng
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
3
|
Wright K, Nip KM, Kim JE, Cheng KM, Birol I. Seasonal and sex-dependent gene expression in emu (Dromaius novaehollandiae) fat tissues. Sci Rep 2022; 12:9419. [PMID: 35676317 PMCID: PMC9177602 DOI: 10.1038/s41598-022-13681-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/10/2022] [Indexed: 12/02/2022] Open
Abstract
Emu (Dromaius novaehollandiae) farming has been gaining wide interest for fat production. Oil rendered from this large flightless bird’s fat is valued for its anti-inflammatory and antioxidant properties for uses in therapeutics and cosmetics. We analyzed the seasonal and sex-dependent differentially expressed (DE) genes involved in fat metabolism in emus. Samples were taken from back and abdominal fat tissues of a single set of four male and four female emus in April, June, and November for RNA-sequencing. We found 100 DE genes (47 seasonally in males; 34 seasonally in females; 19 between sexes). Seasonally DE genes with significant difference between the sexes in gene ontology terms suggested integrin beta chain-2 (ITGB2) influences fat changes, in concordance with earlier studies. Six seasonally DE genes functioned in more than two enriched pathways (two female: angiopoietin-like 4 (ANGPTL4) and lipoprotein lipase (LPL); four male: lumican (LUM), osteoglycin (OGN), aldolase B (ALDOB), and solute carrier family 37 member 2 (SLC37A2)). Two sexually DE genes, follicle stimulating hormone receptor (FSHR) and perilipin 2 (PLIN2), had functional investigations supporting their influence on fat gain and loss. The results suggested these nine genes influence fat metabolism and deposition in emus.
Collapse
|
4
|
Retracted:A Biomimetic Emu Oil-Blended Electrospun Nanofibrous Mat for Maintaining Stemness of Adipose Tissue-Derived Stem Cells. Biopreserv Biobank 2018; 16:66-76. [DOI: 10.1089/bio.2017.0056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
5
|
Arezoumand KS, Alizadeh E, Esmaeillou M, Ghasemi M, Alipour S, Pilehvar-Soltanahmadi Y, Zarghami N. The emu oil emulsified in egg lecithin and butylated hydroxytoluene enhanced the proliferation, stemness gene expression, and in vitro wound healing of adipose-derived stem cells. In Vitro Cell Dev Biol Anim 2018; 54:205-216. [DOI: 10.1007/s11626-018-0228-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022]
|
6
|
Pilehvar-Soltanahmadi Y, Nouri M, Martino MM, Fattahi A, Alizadeh E, Darabi M, Rahmati-Yamchi M, Zarghami N. Cytoprotection, proliferation and epidermal differentiation of adipose tissue-derived stem cells on emu oil based electrospun nanofibrous mat. Exp Cell Res 2017; 357:192-201. [PMID: 28527695 DOI: 10.1016/j.yexcr.2017.05.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/08/2017] [Accepted: 05/15/2017] [Indexed: 01/14/2023]
Abstract
Electrospun nanofibrous scaffolds containing natural substances with wound healing properties such as Emu oil (EO) may have a great potential for increasing the efficiency of stem cell-based skin bioengineering. For this purpose, EO blended PCL/PEG electrospun nanofibrous mats were successfully fabricated and characterized using FE-SEM, FTIR and Universal Testing Machine. The efficiency of the scaffolds in supporting the adherence, cytoprotection, proliferation and differentiation of adipose tissue-derived stem cells (ADSCs) to keratinocyte was evaluated. GC/MS and HPLC were used to determine the composition of pure EO, which revealed to be mainly fatty acids and carotenoids. FE-SEM and cell proliferation assays showed that adhesion and proliferation of ADSCs on EO-PCL/PEG nanofibers was significantly higher than on PCL/PEG nanofibers. Additionally, EO-PCL/PEG nanofibers with free radical scavenging properties conferred a cytoprotective effect against cell-damaging free radicals, while the ability to support cell adhesion and growth was maintained or even improved. Immunostaining of ADSCs on EO-PCL/PEG nanofibers confirmed the change in morphology of ADSCs from spindle to polygonal shape suggesting their differentiation toward an epidermal linage. Moreover, the expression levels of the keratin 10, filaggrin, and involucrin that are involved in epidermal differentiation were upregulated in a stage-specific manner. This preliminary study shows that EO-PCL/PEG nanofibers could be a good candidate for the fabrication of wound dressings and skin bioengineered substitutes with ADSCs.
Collapse
Affiliation(s)
- Younes Pilehvar-Soltanahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Australian Regenerative Medicine Institute, Monash University, Clayton 3800, Australia
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mikaël M Martino
- Australian Regenerative Medicine Institute, Monash University, Clayton 3800, Australia
| | - Amir Fattahi
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati-Yamchi
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|