1
|
van Dijk A, Guabiraba R, Bailleul G, Schouler C, Haagsman HP, Lalmanach AC. Evolutionary diversification of defensins and cathelicidins in birds and primates. Mol Immunol 2023; 157:53-69. [PMID: 36996595 DOI: 10.1016/j.molimm.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Divergent evolution for more than 310 million years has resulted in an avian immune system that is complex and more compact than that of primates, sharing much of its structure and functions. Not surprisingly, well conserved ancient host defense molecules, such as defensins and cathelicidins, have diversified over time. In this review, we describe how evolution influenced the host defense peptides repertoire, its distribution, and the relationship between structure and biological functions. Marked features of primate and avian HDPs are linked to species-specific characteristics, biological requirements, and environmental challenge.
Collapse
|
2
|
He F, Zhao Z, Wu X, Duan L, Li N, Fang R, Li P, Peng Y. Transcriptomic Analysis of High- and Low-Virulence Bovine Pasteurella multocida in vitro and in vivo. Front Vet Sci 2021; 8:616774. [PMID: 33644147 PMCID: PMC7902865 DOI: 10.3389/fvets.2021.616774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
Pasteurella multocida is a gram-negative opportunistic pathogen that causes various diseases in poultry, livestock, and humans, resulting in huge economic losses. Pasteurella multocida serotype A CQ6 (PmCQ6) is a naturally occurring attenuated strain, while P. multocida serotype A strain CQ2 (PmCQ2) is a highly virulent strain isolated from calves. Compared with PmCQ2, it was found that bacterial loads and tissue lesions of lung tissue significantly decreased and survival rates significantly improved in mice infected with PmCQ6 by intranasal infection. However, comparative genome analysis showed that the similarity between the two strains is more than 99%. To further explore the virulence difference mechanism of PmCQ2 and PmCQ6, transcriptome sequencing analysis of the two strains was performed. The RNA sequencing analysis of PmCQ2 and PmCQ6 showed a large number of virulence-related differentially expressed genes (DEGs) in vivo and in vitro. Among them, 38 virulence-related DGEs were significantly up-regulated due to PmCQ6 infection, while the number of PmCQ2 infection was 46, much more than PmCQ6. In addition, 18 virulence-related DEGs (capsule, iron utilization, lipopolysaccharide, and outer membrane protein-related genes) were up-regulated in PmCQ2 infection compared to PmCQ6 infection, exhibiting a higher intensive expression level in vivo. Our findings indicate that these virulence-related DEGs (especially capsule) might be responsible for the virulence of PmCQ2 and PmCQ6, providing prospective candidates for further studies on pathogenesis.
Collapse
Affiliation(s)
- Fang He
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Zongling Zhao
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiaoyan Wu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lijie Duan
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Nengzhang Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Rendong Fang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Pan Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yuanyi Peng
- College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Li P, He F, Wu C, Zhao G, Hardwidge PR, Li N, Peng Y. Transcriptomic Analysis of Chicken Lungs Infected With Avian and Bovine Pasteurella multocida Serotype A. Front Vet Sci 2020; 7:452. [PMID: 32851030 PMCID: PMC7433353 DOI: 10.3389/fvets.2020.00452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Pasteurella multocida (P. multocida) is a common animal pathogen responsible for many animal diseases. Strains from different hosts exhibit disparate degrees of effect in other species. Here, we characterize an avian P. multocida serogroup A strain (PmQ) showing high lethality to chickens and a bovine P. multocida serogroup A strain (PmCQ2) with no lethality to chickens. We used RNA-seq to profile the transcriptomes of chicken lungs infected with PmQ and PmCQ2. A total of 1,649 differentially expressed genes (DEGs) due to PmQ infection (831 upregulated genes and 818 downregulated genes) and 1427 DEGs (633 upregulated genes and 794 downregulated genes) due to PmCQ2 infection were identified. Functional analysis of these DEGs demonstrated that the TNF signaling pathway, the toll-like receptor signaling pathway, complement and coagulation cascades, and cytokine–cytokine receptor interaction were both enriched in PmQ and PmCQ2 infection. STAT and apoptosis signaling pathways were uniquely enriched by PmQ infection, and the NOD-like receptor signaling pathway was enriched only by PmCQ2 infection. Cell-type enrichment analysis of the transcriptomes showed that immune cells, including macrophages and granulocytes, were enriched in both infection groups. Collectively, our study profiled the transcriptomic response of chicken lungs infected with P. multocida and provided valuable information to understand the chicken responses to P. multocida infection.
Collapse
Affiliation(s)
- Pan Li
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Fang He
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Chenlu Wu
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Guangfu Zhao
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China.,The College of Life Sciences, Sichuan University, Chengdu, China
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Nengzhang Li
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yuanyi Peng
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Schilling MA, Memari S, Cattadori IM, Katani R, Muhairwa AP, Buza JJ, Kapur V. Innate Immune Genes Associated With Newcastle Disease Virus Load in Chick Embryos From Inbred and Outbred Lines. Front Microbiol 2019; 10:1432. [PMID: 31281305 PMCID: PMC6596324 DOI: 10.3389/fmicb.2019.01432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022] Open
Abstract
Newcastle disease virus (NDV) causes substantial economic losses to smallholder farmers in low- and middle-income countries with high levels of morbidity and mortality in poultry flocks. Previous investigations have suggested differing levels of susceptibility to NDV between specific inbred lines and amongst breeds of chickens, however, the mechanisms contributing to this remain poorly understood. Studies have shown that some of these differences in levels of susceptibility to NDV infection may be accounted for by variability in the innate immune response amongst various breeds of poultry to NDV infection. Recent studies, in inbred Fayoumi and Leghorn lines, uncovered conserved, breed-dependent, and subline-dependent responses. To better understand the role of innate immune genes in engendering a protective immune response, we assessed the transcriptional responses to NDV of three highly outbred Tanzanian local chicken ecotypes, the Kuchi, the Morogoro Medium, and the Ching’wekwe. Hierarchical clustering and principal coordinate analysis of the gene expression profiles of 21-day old chick embryos infected with NDV clustered in an ecotype-dependent manner and was consistent with the relative viral loads for each of the three ecotypes. The Kuchi and Morogoro Medium exhibit significantly higher viral loads than the Ching’wekwe. The results show that the outbred ecotypes with increased levels of expression of CCL4, NOS2, and SOCS1 also had higher viral loads. The higher expression of SOCS1 is inconsistent with the expression in inbred lines. These differences may uncover new mechanisms or pathways in these populations that may have otherwise been overlooked when examining the response in highly inbred lines. Taken together, our findings provide insights on the specific conserved and differentially expressed innate immune-related genes involved the response of highly outbred chicken lines to NDV. This also suggests that several of the specific innate immunity related genes identified in the current investigation may serve as markers for the selection of chickens with reduced susceptibility to NDV.
Collapse
Affiliation(s)
- Megan A Schilling
- Animal Science Department, Pennsylvania State University, University Park, PA, United States.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology, Arusha, TZ, United States
| | - Sahar Memari
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Isabella M Cattadori
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,Applied Biological and Biosecurity Research Laboratory, Pennsylvania State University, University Park, PA, United States.,Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Robab Katani
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,Applied Biological and Biosecurity Research Laboratory, Pennsylvania State University, University Park, PA, United States
| | - Amandus P Muhairwa
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, TZ, United States
| | - Joram J Buza
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology, Arusha, TZ, United States
| | - Vivek Kapur
- Animal Science Department, Pennsylvania State University, University Park, PA, United States.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology, Arusha, TZ, United States.,Applied Biological and Biosecurity Research Laboratory, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
5
|
Transcriptome profile in bursa of Fabricius reveals potential mode for stress-influenced immune function in chicken stress model. BMC Genomics 2018; 19:918. [PMID: 30545299 PMCID: PMC6293626 DOI: 10.1186/s12864-018-5333-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The molecular mechanisms underlying stress-influenced immune function of chicken (Gallus Gallus) are not clear. The stress models can be established effectively by feeding chickens corticosterone (CORT) hormone. The bursa of Fabricius is a unique central immune organ of birds. RNA-Seq technology was used to investigate differences in the expression profiles of immune-related genes and associated pathways in the bursa of Fabricius to clarify molecular mechanisms. The aim of this study was to broaden the understanding of the stress-influenced immune function in chickens. RESULTS Differentially expressed genes (DEGs) in the bursa of Fabricius between experimental group (basal diet with added CORT 30 mg/kg; C_B group) and control group (basal diet; B_B group) were identified by using RNA-seq technology. In total, we found 1434 significant DEGs (SDEGs), which included 199 upregulated and 1235 downregulated genes in the C_B group compared with the B_B group. The immune system process GO term was the top significantly GO term, including MYD88, TLR4, IL15, VEGFA gene and so on. The cytokine-cytokine receptor interaction pathway and the Toll-like receptor signaling pathway were the key pathways affected by stress. The protein-protein interaction (PPI) analysis of the SDEGs showed that VEGFA, MyD88 and IL15 were hub genes and module analysis showed that MYD88, TLR4 and VEGFA play important roles in response to stress. CONCLUSION This study showed that the VEGFA and ILs (such as IL15) via the cytokine-cytokine receptor interaction pathway, MYD88 and TLR4 via the Toll-like receptor signaling pathway may play important roles in the regulation of immune function under stress condition with CORT administration. The results of this study provide a reference for further studies of the molecular mechanisms of stress-influenced immune function.
Collapse
|