1
|
Yan H, Chen J, Qing E, Li X, Wang W, Ling Z, Chen Z, Jiang S, Yan Y, Deng S, Hu J, Li L, Wang J, Hu S. Developmental variations of the reproductive organs of ganders from different goose breeds and the underlying mechanisms. Poult Sci 2024; 103:104233. [PMID: 39214052 PMCID: PMC11402047 DOI: 10.1016/j.psj.2024.104233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
A deep understanding of the dynamics and mechanisms of male reproductive tract development is necessary for adoption of either genetic techniques or environmental management practices for improving fertility and hatchability in poultry. However, compared with other poultry such as chickens and ducks, less is known about the age- and breed-related changes in the reproductive tract development of domestic goose ganders exhibiting relatively poor reproductive performance as well as the regulatory mechanisms. In the present study, by taking 2 Chinese domestic goose breeds (Sichuan White goose, SW and Gang goose, GE; Anser cygnoides) and one European goose breed (Landes goose, LD; Anser anser) as the experimental objects, we comprehensive analyzed the morphological, histological, and genome-wide transcriptomic variations in their testicular and external genital development during the period from hatching to sexual maturity. Results from histomorphological analysis demonstrated that the reproductive tract of all goose breeds developed in both age- and breed-dependent manners, and the left and right testis developed asymmetrically throughout posthatch development. The tenth week posthatch was a critical developmental stage for all goose ganders, because both the testicular and external genital histomorphological parameters significantly changed before and after this period. During the first 10 wk posthatch, the weight, organ index, or size of male reproductive organs developed more rapidly in SW than in LD, and so were the testicular parenchymal-to-interstitial ratio and the external genital lymphatic lumen diameter. However, the testicular seminiferous epithelium thickness, seminiferous tubule diameter, and Leydig cell number, as well as the external genital keratinized epithelium thickness were significantly higher in LD than in SW at 10 wk of age. Through comparative transcriptomics analysis and RT-qPCR validation, several pathways related to germ and somatic cell function, organ remodeling, and energy metabolism were thought to be responsible for the developmental variations in the early testicular development between Chinese and European domestic ganders, where 10 hub genes involved in the cell cycle, RNA polymerase II-dependent transcription, and mitotic cell division pathways might play essential roles. These data shed new light on the interbreed differences in the male goose reproductive tract development and the molecular mechanisms regulating male goose testicular functions and fertility.
Collapse
Affiliation(s)
- Haoyu Yan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiasen Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Enhua Qing
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaopeng Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Wanxia Wang
- Department of Animal Production, General Station of Animal Husbandry of Sichuan Province, Chengdu 610041, China
| | - Zihan Ling
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengyang Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuhan Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yue Yan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shilin Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiwei Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Liang Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiwen Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shenqiang Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
2
|
Zhang JJ, Li YQ, Shi M, Deng CC, Wang YS, Tang Y, Wang XZ. 17β-estradiol rescues the damage of thiazolidinedione on chicken Sertoli cell proliferation via adiponectin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113308. [PMID: 35176672 DOI: 10.1016/j.ecoenv.2022.113308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Thiazolidinedione (TZD) is an oral anti-diabetic drug that exhibits some side effects on the male reproductive system by interfering with the steroidogenesis and androgenic activity and also shows anti-proliferative effect on several cell types. This study investigated the effect of TZD on immature chicken Sertoli cell (SC) proliferation and the potential mechanism by which 17β-estradiol regulated this process. Chicken SC viability was investigated under different treatment concentration and time of TZD. 17β-estradiol (0.001 μM, 24 h) was added to analyze its effects on TZD-mediated cell viability, cell metabolic activity, cell growth, cell cycle progression, reactive oxygen species (ROS) level, antioxidant enzyme activity, mitochondria activity, oxygen consumption rate, adenosine triphosphate (ATP) level, and mitochondrial respiratory chain enzyme activity, adiponectin expression and several cell proliferation-related genes mRNA and protein levels. We performed the microRNA (miRNA) array to find TZD-induced differentially expressed miRNAs and validated whether miR-1577 can target on adiponectin via the dual luciferase reporter assay, as well as verified the effect of adiponectin addition with different concentrations on the SC viability. Further, SCs were transfected with miR-1577 agomir (a double-stranded synthetic miRNA mimic) in the presence or absence of TZD and antagomir (a single-stranded synthetic miRNA inhibitor) in the presence or absence of 17β-estradiol to analyze whether miR-1577 was involved in TZD-mediated SC proliferation and whether 17β-estradiol regulated this process. Results showed that TZD significantly inhibited SC viability, cell metabolic activity, cell growth, and cell cycle progression, while increased adiponectin level and ROS generation. TZD-treated SCs presented decreases of antioxidant enzyme activity, mitochondria activity, basal and maximal respiration, ATP production and level, mitochondrial respiratory chain enzyme activity, and mRNA and protein expressions of several cell proliferation-related genes, as well as the significant alteration of miRNA expressions (a total number of 55 miRNAs were up-regulated whereas 53 miRNAs down-regulated). Whereas, 17β-estradiol played a positive role in chicken SC proliferation and rescued the damage of TZD on SC proliferation by up-regulating miR-1577 expression whose target gene was validated to be the adiponectin. In addition, exogenous adiponectin (more than 1 μg/ml) treatment exhibited a significant inhibition on the SC viability. Transfection of miR-1577 agomir promoted the SC proliferation via down-expressed adiponectin, and increased the mitochondrial function and cell proliferation-related gene expression, while TZD weakened the positive effect of miR-1577 agomir on SCs. On the other hand, transfection of miR-1577 antagomir inhibited SC proliferation by producing the opposite effects on above parameters, while 17β-estradiol attenuated the negative effect of miR-1577 antagomir on SCs. These findings suggest down-expressed miR-1577 is involved in the regulation of TZD-inhibited SC proliferation through increasing adiponectin level, and this damage of TZD on the immature chicken SC proliferation can be ameliorated by appropriate dose of exogenous 17β-estradiol treatment. This study provides an insight into the cytoprotective effect of 17β-estradiol on TZD-damaged SC proliferation and may suggest a potential strategy for reducing the risk of SC dysfunction caused by the abuse of TZD.
Collapse
Affiliation(s)
- Jiao Jiao Zhang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Ya Qi Li
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Mei Shi
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Cheng Chen Deng
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Yu Sha Wang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Yao Tang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Xian Zhong Wang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
3
|
Zhuang ZX, Chen SE, Chen CF, Lin EC, Huang SY. Single-nucleotide polymorphisms in genes related to oxidative stress and ion channels in chickens are associated with semen quality and hormonal responses to thermal stress. J Therm Biol 2022; 105:103220. [DOI: 10.1016/j.jtherbio.2022.103220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/18/2022] [Accepted: 02/22/2022] [Indexed: 10/19/2022]
|
4
|
Effect of the Age and Body Weight of the Broiler Breeders Male on the Presentation of Oxidative Stress and Its Correlation with the Quality of Testicular Parenchyma and Physiological Antioxidant Levels. Vet Sci 2020; 7:vetsci7020069. [PMID: 32466565 PMCID: PMC7356014 DOI: 10.3390/vetsci7020069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022] Open
Abstract
Chicken meat is a food of high nutritional quality; its production requires birds called broilers breeders and looking after all aspects that influence their reproductive capacity. An ongoing controversy exists among researchers related to the weight of the rooster and its fertilization capacity. By histological and biochemical tests, the association between weight and age with oxidant damage, testicular parenchyma and antioxidant capacity was evaluated in Ross 308 roosters. Testicular integrity was assessed by histological analysis, oxidative stress was determined by malondialdehyde content, non-enzymatic antioxidant capacity was determined by oxygen radical absorbance capacity assay and enzymatic antioxidant capacity through glutathione peroxidase, glutathione reductase and glutathione-S-transferase activities. Histological analysis showed vacuolization of the epithelium from the seminiferous tubules. A significant negative association was observed between malondialdehyde and the deterioration of the integrity of the seminiferous epithelium, as well as between age and integrity of the seminiferous epithelium. It became evident that oxidative damage directly affects the quality of testicular parenchyma. Weight and age were not associated with the antioxidant enzymes activities, but with non-enzymatic capacity. The data obtained suggest that weight is not the most important factor that influences the fertility of the rooster.
Collapse
|
5
|
Sharideh H, Zhandi M, Zeinoaldini S, Zaghari M, Sadeghi M. The effect of dietary coenzyme Q10 on plasma metabolites and hepatic gene expression in broiler breeder hens. Br Poult Sci 2020; 61:281-286. [PMID: 31973572 DOI: 10.1080/00071668.2020.1720908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1. This study was performed to evaluate the effects of dietary supplementation of coenzyme Q10 (CoQ10) on laying rate, body weight, plasma metabolites and some liver gene expression in broiler breeder hens. 2. A total of 128 broiler breeder hens (Arbor Acres Plus, 47 weeks of age) were randomly distributed to four dietary groups supplemented with different levels of CoQ10 (0, 300, 600 or 900 mg/kg diet) with four replicates of eight hens each. During 47-54 weeks of age, laying rate, egg mass and body weight were recorded weekly. To assay plasma biochemical indicators, blood samples were collected at 54 weeks of age. At the end of the experiment, for evaluating the abdominal fat weight, liver weight and expression of the adiponectin and proliferator-activated receptor-α (PPAR-α) genes in the liver, eight hens per treatment were selected, weighed and humanely killed by decapitation. 3. Dietary supplementation of CoQ10 linearly decreased abdominal fat weight, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities by increased levels of CoQ10. The plasma levels of glucose, cholesterol and alkaline phosphatase (ALP) activity were quadratically decreased by increased levels of CoQ10. The best plasma levels of glucose, cholesterol and ALP activity were estimated at 562.5, 633.3 and 517.8 mg CoQ10/kg diet, respectively. Adiponectin and PPARα gene expression exhibited a linear increased by increased levels of CoQ10. 4. In conclusion, addition of CoQ10 to the diet influenced lipid metabolism and expression of the adiponectin and PPAR-α genes, which might be partially due to the improvement in mitochondrial metabolism and energy production. However, further studies are necessary to determine the effects of CoQ10 on these indicators in broiler breeder hens during ageing.
Collapse
Affiliation(s)
- H Sharideh
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran , Karaj, Iran
| | - M Zhandi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran , Karaj, Iran
| | - S Zeinoaldini
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran , Karaj, Iran
| | - M Zaghari
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran , Karaj, Iran
| | - M Sadeghi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran , Karaj, Iran
| |
Collapse
|
6
|
Sharideh H, Zeinoaldini S, Zhandi M, Zaghari M, Sadeghi M, Akhlaghi A, Peebles ED. Use of supplemental dietary coenzyme Q10 to improve testicular function and fertilization capacity in aged broiler breeder roosters. Theriogenology 2019; 142:355-362. [PMID: 31711704 DOI: 10.1016/j.theriogenology.2019.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022]
Abstract
In numerous studies it has been suggested that targeting mitochondria with specific compounds could efficiently inhibit various conditions associated with oxidative stress. The treatment of aged roosters with compounds such as coenzyme Q10 (CoQ10), may improve their reproductive performance by providing protection from oxidative stress. Therefore, this study was performed to assess the effect of supplemental dietary CoQ10 on the testicular function and fertility of aged broiler breeder roosters. A total of 36 roosters)47 weeks of age) were randomly divided into dietary treatments containing either 0, 300 or 600 mg CoQ10/kg diet. Three birds were allocated to each of four replicate groups in each dietary treatment. Between 47 and 54 weeks of age, ejaculates were obtained weekly from the three roosters in each replicate group. Samples in a replicate were pooled and analyzed as a single sample. Between 51 and 54 weeks of age, seminal plasma total antioxidant capacity (TAC), alanine amino transferase (ALAT) and aspartate amino transferase (ASAT) levels were assessed. Fertility, hatchability, and sperm penetration (SP) rates were likewise evaluated. Seminal volume, sperm concentration, sperm plasma membrane functionality, sperm plasma membrane integrity, seminiferous tubule diameter and seminiferous epithelium thickness exhibited quadratic increases in response to increasing levels of dietary CoQ10. Respectively, the 429.19, 433.33, 464.50, 613.50, 392.78 and 447.99 mg/kg dietary concentrations of CoQ10 provided the best results for each of the aforementioned variables. Also, other seminal traits, as well as testosterone concentration, fertility, and SP rates, displayed linear increases in response to the increasing levels of CoQ10. Dietary supplementation of CoQ10 linearly decreased seminal plasma ALAT and ASAT and linearly increased seminal plasma TAC. In conclusion, CoQ10 supplementation in the diet (a minimum of 300 mg CoQ10/kg diet) has the potential to improve the reproductive performance of aged broiler breeder roosters.
Collapse
Affiliation(s)
- Hossein Sharideh
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Saeed Zeinoaldini
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Mahdi Zhandi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Mojtaba Zaghari
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mostafa Sadeghi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Amir Akhlaghi
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
7
|
MicroRNA-7450 regulates non-thermal plasma-induced chicken Sertoli cell apoptosis via adenosine monophosphate-activated protein kinase activation. Sci Rep 2018; 8:8761. [PMID: 29884805 PMCID: PMC5993736 DOI: 10.1038/s41598-018-27123-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023] Open
Abstract
Non-thermal plasma treatment is an emerging innovative technique with a wide range of biological applications. This study was conducted to investigate the effect of a non-thermal dielectric barrier discharge plasma technique on immature chicken Sertoli cell (SC) viability and the regulatory role of microRNA (miR)-7450. Results showed that plasma treatment increased SC apoptosis in a time- and dose-dependent manner. Plasma-induced SC apoptosis possibly resulted from the excess production of reactive oxygen species via the suppression of antioxidant defense systems and decreased cellular energy metabolism through the inhibition of adenosine triphosphate (ATP) release and respiratory enzyme activity in the mitochondria. In addition, plasma treatment downregulated miR-7450 expression and activated adenosine monophosphate-activated protein kinase α (AMPKα), which further inhibited mammalian target of rapamycin (mTOR) phosphorylation in SCs. A single-stranded synthetic miR-7450 antagomir disrupted mitochondrial membrane potential and decreased ATP level and mTOR phosphorylation by targeting the activation of AMPKα, which resulted in significant increases in SC lethality. A double-stranded synthetic miR-7450 agomir produced opposite effects on these parameters and ameliorated plasma-mediated apoptotic effects on SCs. Our findings suggest that miR-7450 is involved in the regulation of plasma-induced SC apoptosis through the activation of AMPKα and the further inhibition of mTOR signaling pathway.
Collapse
|
8
|
Cheng Y, Chen G, Wang L, Kong J, Pan J, Xi Y, Shen F, Huang Z. Triptolide-induced mitochondrial damage dysregulates fatty acid metabolism in mouse sertoli cells. Toxicol Lett 2018; 292:136-150. [PMID: 29723566 DOI: 10.1016/j.toxlet.2018.04.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/09/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
Abstract
Triptolide is a major active ingredient of tripterygium glycosides, used for the therapy of immune and inflammatory diseases. However, its clinical applications are limited by severe male fertility toxicity associated with decreased sperm count, mobility and testicular injures. In this study, we determined that triptoide-induced mitochondrial dysfunction triggered reduction of lactate and dysregulation of fatty acid metabolism in mouse Sertoli cells. First, triptolide induced mitochondrial damage through the suppressing of proliferator-activated receptor coactivator-1 alpha (PGC-1α) activity and protein. Second, mitochondrial damage decreased lactate production and dysregulated fatty acid metabolism. Finally, mitochondrial dysfunction was initiated by the inhibition of sirtuin 1 (SIRT1) with the regulation of AMP-activated protein kinase (AMPK) in Sertoli cells after triptolide treatment. Meanwhile, triptolide induced mitochondrial fatty acid oxidation dysregulation by increasing AMPK phosphorylation. Taken together, we provide evidence that the mechanism of triptolide-induced testicular toxicity under mitochondrial injury may involve a metabolic change.
Collapse
Affiliation(s)
- Yisen Cheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Gaojian Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - Li Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - Jiamin Kong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - Ji Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - Yue Xi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - Feihai Shen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
9
|
Mellouk N, Ramé C, Barbe A, Grandhaye J, Froment P, Dupont J. Chicken Is a Useful Model to Investigate the Role of Adipokines in Metabolic and Reproductive Diseases. Int J Endocrinol 2018; 2018:4579734. [PMID: 30018639 PMCID: PMC6029501 DOI: 10.1155/2018/4579734] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/16/2018] [Indexed: 01/04/2023] Open
Abstract
Reproduction is a complex and essential physiological process required by all species to produce a new generation. This process involves strict hormonal regulation, depending on a connection between the hypothalamus-pituitary-gonadal axis and peripheral organs. Metabolic homeostasis influences the reproductive functions, and its alteration leads to disturbances in the reproductive functions of humans as well as animals. For a long time, adipose tissue has been recognised as an endocrine organ but its ability to secrete and release hormones called adipokines is now emerging. Adipokines have been found to play a major role in the regulation of metabolic and reproductive processes at both central and peripheral levels. Leptin was initially the first adipokine that has been described to be the most involved in the metabolism/reproduction interrelation in mammals. In avian species, the role of leptin is still under debate. Recently, three novel adipokines have been discovered: adiponectin (ADIPOQ, ACRP30), visfatin (NAMPT, PBEF), and chemerin (RARRES2, TIG2). However, their mode of action between mammalian and nonmammalian species is different due to the different reproductive and metabolic systems. Herein, we will provide an overview of the structure and function related to metabolic and reproductive mechanisms of the latter three adipokines with emphasis on avian species.
Collapse
Affiliation(s)
- Namya Mellouk
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Christelle Ramé
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Alix Barbe
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Jérémy Grandhaye
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Pascal Froment
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Joëlle Dupont
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| |
Collapse
|