1
|
Scanes CG, Pierzchała-Koziec K, Gajewska A. Effects of Restraint Stress on Circulating Corticosterone and Met Enkephalin in Chickens: Induction of Shifts in Insulin Secretion and Carbohydrate Metabolism. Animals (Basel) 2024; 14:752. [PMID: 38473137 DOI: 10.3390/ani14050752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
This study examined the effects of acute restraint stress in the presence or absence of naltrexone on the circulating concentrations of insulin, glucose, Met-enkephalin and corticosterone in 14-week-old chickens [design: 2 sex × 2 stress/non-stress × 2 +/- naltrexone]. In chickens (five male and five females per treatment) subjected to restraint for 30 min, there were increases in the plasma concentrations of corticosterone and Met-enkephalin. The plasma concentrations of insulin and glucose were also increased in the chickens during restraint. Moreover, there were increases in the plasma concentrations of insulin and glucose in the chickens. The patterns of expression of the proenkephalin gene (PENK) in both the anterior pituitary gland and the adrenal gland were very similar to that of plasma Met-enkephalin. There were relationships between the plasma concentrations of corticosterone, Met-enkephalin, insulin and glucose after 30 min of restraint. The effects of naltrexone treatment on both untreated and stressed chickens were also examined, with naltrexone attenuating the stress-induced increases in the plasma concentrations of corticosterone, Met-enkephalin and glucose but not in those of insulin. The present study demonstrates that stress increases insulin secretion in chickens but also induces insulin resistance.
Collapse
Affiliation(s)
- Colin G Scanes
- Department of Biological Science, University of Wisconsin Milwaukee, Milwaukee, WI 53211, USA
| | - Krystyna Pierzchała-Koziec
- Department of Animal Physiology and Endocrinology, University of Agriculture, Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Alina Gajewska
- Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna, Poland
| |
Collapse
|
2
|
Salgado Pardo JI, Navas González FJ, González Ariza A, León Jurado JM, Galán Luque I, Delgado Bermejo JV, Camacho Vallejo ME. Study of Meat and Carcass Quality-Related Traits in Turkey Populations through Discriminant Canonical Analysis. Foods 2023; 12:3828. [PMID: 37893720 PMCID: PMC10606380 DOI: 10.3390/foods12203828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The present research aimed to determine the main differences in meat and carcass quality traits among turkey genotypes worldwide and describe the clustering patterns through the use of a discriminant canonical analysis (DCA). To achieve this goal, a comprehensive meta-analysis of 75 documents discussing carcass and meat characteristics in the turkey species was performed. Meat and carcass attributes of nine different turkey populations were collected and grouped in terms of the following clusters: carcass dressing traits, muscle fiber properties, pH, color-related traits, water-retaining characteristics, texture-related traits, and meat chemical composition. The Bayesian ANOVA analysis reported that the majority of variables statistically differed (p < 0.05), and the multicollinearity analysis revealed the absence of redundancy problems among variables (VIF < 5). The DCA reported that cold carcass weight, slaughter weight, sex-male, carcass/piece weight, and the protein and fat composition of meat were the traits explaining variability among different turkey genotypes (Wilks' lambda: 0.488, 0.590, 0.905, 0.906, 0.937, and 0.944, respectively). The combination of traits in the first three dimensions explained 94.93% variability among groups. Mahalanobis distances cladogram-grouped populations following a cluster pattern and suggest its applicability as indicative of a turkey genotype's traceability.
Collapse
Affiliation(s)
- José Ignacio Salgado Pardo
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (J.I.S.P.); (F.J.N.G.); (I.G.L.); (J.V.D.B.)
| | - Francisco Javier Navas González
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (J.I.S.P.); (F.J.N.G.); (I.G.L.); (J.V.D.B.)
| | - Antonio González Ariza
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (J.I.S.P.); (F.J.N.G.); (I.G.L.); (J.V.D.B.)
- Agropecuary Provincial Centre, Diputación Provincial de Córdoba, 14071 Córdoba, Spain;
| | | | - Inés Galán Luque
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (J.I.S.P.); (F.J.N.G.); (I.G.L.); (J.V.D.B.)
| | - Juan Vicente Delgado Bermejo
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (J.I.S.P.); (F.J.N.G.); (I.G.L.); (J.V.D.B.)
| | | |
Collapse
|
3
|
Zhu X, Kong X, Zang L, Sun N, Yu Q, Han L. Reactive oxygen species-mediated oxidative stress accelerates glycolysis via activation of the CaMKKβ/AMPK pathway in the yak longissimus dorsi postmortem. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:514-523. [PMID: 36468614 DOI: 10.1002/jsfa.12161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Adenosine monophosphate-activated protein kinase (AMPK) is instrumental in the initiation of early postmortem glycolysis and the advent of pale, soft, and exudative (PSE) meat when cellular energy is altered. However, conflicting studies show that AMPK activation without corresponding energy level changes in PSE meat challenges this long-held notion. Here, we examined the effects of reactive oxygen species (ROS)-mediated oxidative stress on AMPK activation in the context of glycolysis, protein solubility, and water-holding capacity (WHC) in the postmortem yak longissimus dorsi (LD) muscle. Further, we explored the mechanisms underlying these effects. RESULTS Hydrogen peroxide (H2 O2 ) significantly augmented the degree of oxidative stress, increasing the production of ROS and malondialdehyde excessive production and reducing the activity of the anti-oxidants superoxide dismutase and glutathione peroxidase. In turn, oxidative stress dramatically promoted AMPK activation and glycolysis by increasing glycogen depletion and promoting hexokinase and phosphofructokinase activity. Subsequently, lactic acid accumulation increased, leading to a rapid decline in pH, which aggravated protein solubility degree and centrifugal loss in the early postmortem yak LD muscle. Importantly, these changes caused by oxidative stress were eliminated by the AMPK inhibitor. Mechanistically, oxidative stress elevated calcium ion (Ca2+ ) levels, which mobilized calcium/calmodulin-dependent protein kinase β (CaMKKβ) and AMPK. Rescue experiments confirmed that the increases were attenuated using Ca2+ and CaMKKβ chelators, respectively. CONCLUSION These results indicated that oxidative stress caused by ROS hastened early-stage postmortem glycolysis and reduced the WHC of yak meat. These effects were likely mediated by the alternative and energy-independent CaMKKβ/AMPK signaling pathway. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xijin Zhu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, P. R. China
| | - Xiangying Kong
- Animal Husbandry and Veterinary Institute of Haibei Prefecture, Haibei, 812200, P. R. China
| | - Lei Zang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, P. R. China
| | - Nan Sun
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, P. R. China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, P. R. China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, P. R. China
| |
Collapse
|
4
|
Effects of oxidation and precursors (lysine, glyoxal and Schiff base) on the formation of Nε-carboxymethyl-lysine in aged, stored and thermally treated chicken meat. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Overexpression of Heat Shock Protein 70 Ameliorates Meat Quality of Broilers Subjected to Pre-Slaughter Transport at High Ambient Temperatures by Improving Energy Status of Pectoralis Major Muscle and Antioxidant Capacity. Antioxidants (Basel) 2022; 11:antiox11081468. [PMID: 36009186 PMCID: PMC9405431 DOI: 10.3390/antiox11081468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
The induction of heat shock protein 70 (HSP70) potentially mediates meat-quality development under stress conditions. To investigate the effects and mechanism of HSP70 on the meat quality of the pectoralis major (PM) muscles of broilers exposed to pre-slaughter transport, a total of 168 broilers were intraperitoneally injected with L-glutamine (Gln) or saline. Twenty-four hours later, broilers were subjected to transport or held under normal living conditions. The results indicated that acute Gln supplementation significantly increased HSP70 expression in the PM of transported broilers (p < 0.05). The overexpression of HSP70 significantly alleviated the decreases in muscle pH and water-holding capacity and improved the shrinking of muscle fibers induced by transport (p < 0.05). HSP70 induction increased ATP content, decreased the activities of glycolytic enzymes, and lowered the phosphorylation level of AMP-activated protein kinase in transported broilers (p < 0.05). In addition, the overexpression of HSP70 greatly increased total superoxide dismutase and the total antioxidant capability and decreased the levels of reactive oxygen species, malonaldehyde, and carbonyls in the PM of transported broilers (p < 0.05). Overall, this work indicated that HSP70 could effectively improve the meat quality of transported broilers by improving the energy status, inhibiting glycolytic influx, and restoring redox homeostasis.
Collapse
|
6
|
Huang S, Dong X, Zhang Y, Chen Y, Yu Y, Huang M, Zheng Y. Formation of advanced glycation end products in raw and subsequently boiled broiler muscle: biological variation and effects of postmortem ageing and storage. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
7
|
Leishman EM, Vanderhout RJ, van Staaveren N, Barbut S, Mohr J, Wood BJ, Baes CF. Influence of Post Mortem Muscle Activity on Turkey Meat Quality. Front Vet Sci 2022; 9:822447. [PMID: 35265694 PMCID: PMC8900945 DOI: 10.3389/fvets.2022.822447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
Wing flapping and body movement can occur during the slaughter of poultry. Wing movement and flapping are driven primarily by the breast muscles (Pectoralis major and minor), and this muscle activity may have implications for meat quality. The objective of this study was to evaluate turkey post mortem activity during slaughter at a commercial poultry processing plant. Post mortem activity (during bleeding) was scored on 5,441 male turkeys, from six different genetic lines, using a 1–4 scale from none to severe wing flapping. Meat quality was measured on these birds in terms of pH (initial, ultimate, delta or change), color (L*, a*, b*), and physiochemical traits (drip loss, cooking loss, shear force). Linear mixed models were used to analyze the effect of activity (score 1–4), genetic line (A–F), and season (summer vs. autumn) on the nine meat quality traits. Post mortem activity influenced a*, drip loss, and shear force although the magnitude of the effects was small. There was an effect (P < 0.05) of genetic line on all the meat quality traits except for L*, cooking loss, and shear force. In general, larger, faster-growing lines had higher pH, but the relationship between the lines for the other traits is not as clear. Season affected all the meat quality traits, except for pHdelta, with meat having a higher pH, L*, b*, drip loss, cooking loss, and shear force in the summer. This study provides an exploratory assessment of post mortem activity in turkeys and identifies meat quality traits which are most affected while also accounting for the effects of genetic line and season. Although identified effect sizes are small, the cumulative effect on turkey meat quality may be more substantial.
Collapse
Affiliation(s)
- Emily M. Leishman
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | | | - Shai Barbut
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Jeff Mohr
- Hybrid Turkeys, Suite C, Kitchener, ON, Canada
| | - Benjamin J. Wood
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Hybrid Turkeys, Suite C, Kitchener, ON, Canada
- School of Veterinary Science, University of Queensland, Gatton, QLD, Australia
| | - Christine F. Baes
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern, Switzerland
- *Correspondence: Christine F. Baes
| |
Collapse
|
8
|
Zhang B, Liu N, He Z, Song P, Hao M, Xie Y, Li J, Liu R, Sun Z. Guanidino-Acetic Acid: A Scarce Substance in Biomass That Can Regulate Postmortem Meat Glycolysis of Broilers Subjected to Pre-slaughter Transportation. Front Bioeng Biotechnol 2021; 8:631194. [PMID: 33644010 PMCID: PMC7902524 DOI: 10.3389/fbioe.2020.631194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
The different substances in biomass can regulate the metabolism and reproduction of broilers. Guanidino-acetic acid (GAA) is a natural feed additive that showed a potential application in dietary for broilers, while its amount is scarce in biomass. The objective of the present study was to investigate the effects of dietary supplemented with GAA on muscle glycolysis of broilers subjected to pre-slaughter transportation. A total of 160 Qiandongnan Xiaoxiang chickens were randomly assigned into three treatments, including a basal control diet without GAA supplementation (80 birds) or supplemented with 600 mg/kg (40 birds) or 1,200 mg/kg (40 birds) GAA for 14 days. At the end of the experiment, the control group was equally divided into two groups, thus resulting in four groups. All birds in the four groups aforementioned were separately treated according to the following protocols: (1) no transport of birds of the control group fed with the basal diet; (2) a 3-h transport of birds of the control group fed with the basal diet; (3) a 3-h transport of birds fed with diets supplemented with 600 mg/kg GAA; and (4) a 3-h transport of birds fed with diets supplemented with 1,200 mg/kg GAA. The results demonstrated that 3-h pre-slaughter transport stress increased corticosterone contents and lowered glucose contents in plasma (P < 0.05), decreased pH24 h (P < 0.05), and resulted in inferior meat quality evidenced by elevating the drip loss, cooking loss, and L∗ value (P < 0.05). Meanwhile, 3-h pre-slaughter transport stress decreased the contents of Cr and ATP in muscle (P < 0.05) and elevated the ratio of AMP:ATP and the glycolytic potential of muscle (P < 0.05). Moreover, 3-h pre-slaughter transport resulted in a significant elevation of mRNA expressions of LKB1 and AMPKα2 (P < 0.05), as well as the increase in protein abundances of LKB1 phosphorylation and AMPKα phosphorylation (P < 0.05). However, 1,200 mg/kg GAA supplementation alleviated negative parameters in plasma, improved meat quality, and ameliorated postmortem glycolysis and energy metabolism through regulating the creatine-phosphocreatine cycle and key factors of AMPK signaling. In conclusion, dietary supplementation with 1,200 mg/kg GAA contributed to improving meat quality via ameliorating muscle energy expenditure and delaying anaerobic glycolysis of broilers subjected to the 3-h pre-slaughter transport.
Collapse
Affiliation(s)
- Bolin Zhang
- Department of Biology and Agriculture, Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Zunyi Normal College, Zunyi, China
| | - Ning Liu
- Department of Biology and Agriculture, Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Zunyi Normal College, Zunyi, China
| | - Zhen He
- Department of Biology and Agriculture, Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Zunyi Normal College, Zunyi, China
| | - Peiyong Song
- Department of Biology and Agriculture, Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Zunyi Normal College, Zunyi, China
| | - Meilin Hao
- Department of Biology and Agriculture, Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Zunyi Normal College, Zunyi, China
| | - Yuxiao Xie
- Department of Biology and Agriculture, Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Zunyi Normal College, Zunyi, China
| | - Jiahui Li
- Department of Biology and Agriculture, Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Zunyi Normal College, Zunyi, China
| | - Rujie Liu
- Department of Biology and Agriculture, Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Zunyi Normal College, Zunyi, China
| | - Zewei Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
9
|
Wu Y, Wang Y, Yin D, Mahmood T, Yuan J. Transcriptome analysis reveals a molecular understanding of nicotinamide and butyrate sodium on meat quality of broilers under high stocking density. BMC Genomics 2020; 21:412. [PMID: 32552672 PMCID: PMC7302154 DOI: 10.1186/s12864-020-06827-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Background In recent years, increased attention has been focused on breast muscle yield and meat quality in poultry production. Supplementation with nicotinamide and butyrate sodium can improve the meat quality of broilers. However, the potential molecular mechanism is not clear yet. This study was designed to investigate the effects of supplementation with a combination of nicotinamide and butyrate sodium on breast muscle transcriptome of broilers under high stocking density. A total of 300 21-d-old Cobb broilers were randomly allocated into 3 groups based on stocking density: low stocking density control group (L; 14 birds/m2), high stocking density control group (H; 18 birds/m2), and high stocking density group provided with a combination of 50 mg/kg nicotinamide and 500 mg/kg butyrate sodium (COMB; 18 birds/m2), raised to 42 days of age. Results The H group significantly increased cooking losses, pH decline and activity of lactate dehydrogenase in breast muscle when compared with the L group. COMB showed a significant decrease in these indices by comparison with the H group (P < 0.05). The transcriptome results showed that key genes involved in glycolysis, proteolysis and immune stress were up-regulated whereas those relating to muscle development, cell adhesion, cell matrix and collagen were down-regulated in the H group as compared to the L group. In contrast, genes related to muscle development, hyaluronic acid, mitochondrial function, and redox pathways were up-regulated while those associated with inflammatory response, acid metabolism, lipid metabolism, and glycolysis pathway were down-regulated in the COMB group when compared with the H group. Conclusions The combination of nicotinamide and butyrate sodium may improve muscle quality by enhancing mitochondrial function and antioxidant capacity, inhibiting inflammatory response and glycolysis, and promoting muscle development and hyaluronic acid synthesis.
Collapse
Affiliation(s)
- Yuqin Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Youli Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dafei Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tahir Mahmood
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Sun XB, Huang JC, Li TT, Ang Y, Xu XL, Huang M. Effects of preslaughter shackling on postmortem glycolysis, meat quality, changes of water distribution, and protein structures of broiler breast meat. Poult Sci 2019; 98:4212-4220. [PMID: 30982061 DOI: 10.3382/ps/pez175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/15/2019] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to investigate the effects of preslaughter shackling on stress, postmortem glycolysis, meat quality, water distribution, and protein structures of pectoralis majors. Before slaughter, Arbor Acres broilers (n = 105, 42 days old, 2.0 to 2.5 kg) were randomly categorized into 3 treatment groups: (I) control group without shackling (NS); (II) 2.5 min shackling (SS); (III) 4.5 min shackling (LS). Each treatment group consisted of 5 replicates with 7 broilers each. Results indicated that preslaughter shackling increased (P < 0.05) plasma corticosterone and adrenocorticotropic hormone concentrations in comparison with the control group. Antemortem shackling increased (P < 0.05) activity of glycogen phosphorylase and phosphofructokinase-1 (PFK-1) accompanying with rapid glycolysis and pH decline at early postmortem. LS treatment led to myosin denaturation, decreased (P < 0.05) α-helix content, and increased (P < 0.05) β-sheet structures proportion in the myofibrillar proteins. Furthermore, meat from LS treatment had higher (P < 0.05) lightness, redness, and poorer water-holding capacity. These results indicated that the longer shackling duration (4.5 min) increased stress and the rate of glycolysis, causing myosin denaturation and changes of the secondary structure in the myofibrillar proteins, which aggravated the deterioration of meat quality.
Collapse
Affiliation(s)
- X B Sun
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - J C Huang
- College of Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - T T Li
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Y Ang
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - X L Xu
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - M Huang
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|