1
|
Cui H, Wang Y, Zhu Y, Liu X, Liu L, Wang J, Tan X, Wang Y, Xing S, Luo N, Liu L, Liu R, Zheng M, Zhao G, Wen J. Genomic insights into the contribution of de novo lipogenesis to intramuscular fat deposition in chicken. J Adv Res 2024; 65:19-31. [PMID: 38065407 PMCID: PMC11519054 DOI: 10.1016/j.jare.2023.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 10/21/2024] Open
Abstract
INTRODUCTION The proportion of animal based foods in daily diet of consumers is constantly increasing, with chicken being highly favored due to its high protein and low fat characteristics. The consumption of chicken around the world is steadily increasing. Intramuscular fat (IMF) is a key indicator affecting meat quality. OBJECT High IMF content can contribute to improve the quality of chicken meat. The regulatory mechanism of IMF deposition in chicken is poorly understood, so its complete elucidation is essential to improve chicken meat quality. METHOD Here, we performed whole genome resequencing on 516 yellow feather chickens and single-cell RNA sequencing on 3 63-day-old female JXY chickens. In addition, transcriptome sequencing techniques were also performed on breast muscle tissue of JXY chickens at different developmental stages. And 13C isotope tracing technique was applied. RESULTS In this study, a large-scale genetic analysis of an IMF-selected population and a control population identified fatty acid synthase (FASN) as a key gene for improving IMF content. Also, contrary to conventional view, de novo lipogenesis (DNL) was deemed to be an important contributor to IMF deposition. As expected, further analyses by isotope tracing and other techniques, confirmed that DNL mainly occurs in myocytes, contributing about 40% of the total fatty acids through the regulation of FASN, using the available FAs as substrates. Additionally, we also identified a relevant causal mutation in the FASN gene with effects on FA composition. CONCLUSION These findings contribute to the understanding of fat metabolism in muscle tissue of poultry, and provide the feasible strategy for the production of high-quality chicken meat.
Collapse
Affiliation(s)
- Huanxian Cui
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yongli Wang
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yuting Zhu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Xiaojing Liu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Lu Liu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Jie Wang
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Xiaodong Tan
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yidong Wang
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Siyuan Xing
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Na Luo
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Li Liu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Ranran Liu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Maiqing Zheng
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Guiping Zhao
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Jie Wen
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| |
Collapse
|
2
|
Song Y, Wei D, Raza SHA, Zhao Y, Jiang C, Song X, Wu H, Wang X, Luoreng Z, Ma Y. Research progress of intramuscular fat formation based on co-culture. Anim Biotechnol 2023; 34:3216-3236. [PMID: 36200856 DOI: 10.1080/10495398.2022.2127410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Intramuscular fat (IMF) is closely related to the meat quality of livestock and poultry. As a new cell culture technique in vitro, cell co-culture has been gradually applied to the related research of IMF formation because it can simulate the changes of microenvironment in vivo during the process of IMF cell formation. In the co-culture model, in addition to studying the effects of skeletal muscle cells on the proliferation and differentiation of IMF, we can also consider the role of many secretion factors in the formation of IMF, thus making the cell research in vitro closer to the real level in vivo. This paper reviewed the generation and origin of IMF, summarized the existing co-culture methods and systems, and discussed the advantages and disadvantages of each method as well as the challenges faced in the establishment of the system, with emphasis on the current status of research on the formation of IMF for human and animal based on co-culture technology.
Collapse
Affiliation(s)
- Yaping Song
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Dawei Wei
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | | | - Yiang Zhao
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Chao Jiang
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Xiaoyu Song
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Hao Wu
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Xingping Wang
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Zhuoma Luoreng
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| |
Collapse
|
3
|
Hue I, Capilla E, Rosell-Moll E, Balbuena-Pecino S, Goffette V, Gabillard JC, Navarro I. Recent advances in the crosstalk between adipose, muscle and bone tissues in fish. Front Endocrinol (Lausanne) 2023; 14:1155202. [PMID: 36998471 PMCID: PMC10043431 DOI: 10.3389/fendo.2023.1155202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Control of tissue metabolism and growth involves interactions between organs, tissues, and cell types, mediated by cytokines or direct communication through cellular exchanges. Indeed, over the past decades, many peptides produced by adipose tissue, skeletal muscle and bone named adipokines, myokines and osteokines respectively, have been identified in mammals playing key roles in organ/tissue development and function. Some of them are released into the circulation acting as classical hormones, but they can also act locally showing autocrine/paracrine effects. In recent years, some of these cytokines have been identified in fish models of biomedical or agronomic interest. In this review, we will present their state of the art focusing on local actions and inter-tissue effects. Adipokines reported in fish adipocytes include adiponectin and leptin among others. We will focus on their structure characteristics, gene expression, receptors, and effects, in the adipose tissue itself, mainly regulating cell differentiation and metabolism, but in muscle and bone as target tissues too. Moreover, lipid metabolites, named lipokines, can also act as signaling molecules regulating metabolic homeostasis. Regarding myokines, the best documented in fish are myostatin and the insulin-like growth factors. This review summarizes their characteristics at a molecular level, and describes both, autocrine effects and interactions with adipose tissue and bone. Nonetheless, our understanding of the functions and mechanisms of action of many of these cytokines is still largely incomplete in fish, especially concerning osteokines (i.e., osteocalcin), whose potential cross talking roles remain to be elucidated. Furthermore, by using selective breeding or genetic tools, the formation of a specific tissue can be altered, highlighting the consequences on other tissues, and allowing the identification of communication signals. The specific effects of identified cytokines validated through in vitro models or in vivo trials will be described. Moreover, future scientific fronts (i.e., exosomes) and tools (i.e., co-cultures, organoids) for a better understanding of inter-organ crosstalk in fish will also be presented. As a final consideration, further identification of molecules involved in inter-tissue communication will open new avenues of knowledge in the control of fish homeostasis, as well as possible strategies to be applied in aquaculture or biomedicine.
Collapse
Affiliation(s)
- Isabelle Hue
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Enrique Rosell-Moll
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Sara Balbuena-Pecino
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Valentine Goffette
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Jean-Charles Gabillard
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Verma R, Lee Y, Salamone DF. iPSC Technology: An Innovative Tool for Developing Clean Meat, Livestock, and Frozen Ark. Animals (Basel) 2022; 12:3187. [PMID: 36428414 PMCID: PMC9686897 DOI: 10.3390/ani12223187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) technology is an emerging technique to reprogram somatic cells into iPSCs that have revolutionary benefits in the fields of drug discovery, cellular therapy, and personalized medicine. However, these applications are just the tip of an iceberg. Recently, iPSC technology has been shown to be useful in not only conserving the endangered species, but also the revival of extinct species. With increasing consumer reliance on animal products, combined with an ever-growing population, there is a necessity to develop alternative approaches to conventional farming practices. One such approach involves the development of domestic farm animal iPSCs. This approach provides several benefits in the form of reduced animal death, pasture degradation, water consumption, and greenhouse gas emissions. Hence, it is essentially an environmentally-friendly alternative to conventional farming. Additionally, this approach ensures decreased zoonotic outbreaks and a constant food supply. Here, we discuss the iPSC technology in the form of a "Frozen Ark", along with its potential impact on spreading awareness of factory farming, foodborne disease, and the ecological footprint of the meat industry.
Collapse
Affiliation(s)
- Rajneesh Verma
- VG Biomed Thailand Ltd., 888 Polaris Tower, 6th Floor, Soi Sukhumvit 20, Bangkok 10110, Thailand
| | - Younghyun Lee
- VG Biomed Thailand Ltd., 888 Polaris Tower, 6th Floor, Soi Sukhumvit 20, Bangkok 10110, Thailand
- Laboratory of Reproductive Biotechnology, Building 454, Rm 343, Gyeongsang National University, 501 Jinjudae-ro, Jinju 52828, Republic of Korea
| | - Daniel F. Salamone
- Department de Produccion Animal, Facultad de Agronomia, University of Buenos Aires, Av. San Martin 4453 Ciudad Autonoma de Buenos Aires, Buenos Aires B1406, Argentina
| |
Collapse
|
5
|
Wang Y, Liu L, Liu X, Tan X, Zhu Y, Luo N, Zhao G, Cui H, Wen J. SLC16A7 Promotes Triglyceride Deposition by De Novo Lipogenesis in Chicken Muscle Tissue. BIOLOGY 2022; 11:1547. [PMID: 36358250 PMCID: PMC9687483 DOI: 10.3390/biology11111547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/22/2022] [Accepted: 10/08/2022] [Indexed: 07/30/2023]
Abstract
Triglyceride (TG) content in chicken muscle tissue signifies intramuscular fat (IMF) content, which is important for improving meat quality. However, the genetic basis of TG deposition in chicken is still unclear. Using 520 chickens from an artificially selected line with significantly increased IMF content and a control line, a genome-wide association study (GWAS) with TG content reports a region of 802 Kb located in chromosome 1. The XP-EHH and gene expression analysis together reveal that the solute carrier family 16 member A7 (SLC16A7) gene is the key candidate gene associated with TG content in chicken muscle tissue. Furthermore, the weighted gene co-expression network analysis (WGCNA) confirmed the regulatory effects of SLC16A7 on promoting TG deposition by de novo lipogenesis (DNL). Functional verification of SLC16A7 in vitro also supports this view, and reveals that this effect mainly occurs in myocytes. Our data highlight a potential IMF deposition pathway by DNL, induced by SLC16A7 in chicken myocytes. These findings will improve the understanding of IMF regulation in chicken and guide the formulation of breeding strategies for high-quality chicken.
Collapse
Affiliation(s)
- Yongli Wang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lu Liu
- College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaojing Liu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaodong Tan
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuting Zhu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Na Luo
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huanxian Cui
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Wen
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
6
|
Sugii S, Wong CYQ, Lwin AKO, Chew LJM. Reassessment of adipocyte technology for cellular agriculture of alternative fat. Compr Rev Food Sci Food Saf 2022; 21:4146-4163. [PMID: 36018497 DOI: 10.1111/1541-4337.13021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/24/2022] [Accepted: 07/18/2022] [Indexed: 01/28/2023]
Abstract
Alternative proteins, such as cultivated meat, have recently attracted significant attention as novel and sustainable food. Fat tissue/cell is an important component of meat that makes organoleptic and nutritional contributions. Although adipocyte biology is relatively well investigated, there is limited focus on the specific techniques and strategies to produce cultivated fat from agricultural animals. In the assumed standard workflow, stem/progenitor cell lines are derived from tissues of animals, cultured for expansion, and differentiated into mature adipocytes. Here, we compile information from literature related to cell isolation, growth, differentiation, and analysis from bovine, porcine, chicken, other livestock, and seafood species. A diverse range of tissue sources, cell isolation methods, cell types, growth media, differentiation cocktails, and analytical methods for measuring adipogenic levels were used across species. Based on our analysis, we identify opportunities and challenges in advancing new technology era toward producing "alternative fat" that is suitable for human consumption.
Collapse
Affiliation(s)
- Shigeki Sugii
- Bioengineering Systems Division, Institute of Bioengineering and Bioimaging (IBB), A*STAR, Singapore.,Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Cheryl Yeh Qi Wong
- Bioengineering Systems Division, Institute of Bioengineering and Bioimaging (IBB), A*STAR, Singapore
| | - Angela Khin Oo Lwin
- Bioengineering Systems Division, Institute of Bioengineering and Bioimaging (IBB), A*STAR, Singapore
| | - Lamony Jian Ming Chew
- Bioengineering Systems Division, Institute of Bioengineering and Bioimaging (IBB), A*STAR, Singapore
| |
Collapse
|
7
|
Knežić T, Janjušević L, Djisalov M, Yodmuang S, Gadjanski I. Using Vertebrate Stem and Progenitor Cells for Cellular Agriculture, State-of-the-Art, Challenges, and Future Perspectives. Biomolecules 2022; 12:699. [PMID: 35625626 PMCID: PMC9138761 DOI: 10.3390/biom12050699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 12/19/2022] Open
Abstract
Global food systems are under significant pressure to provide enough food, particularly protein-rich foods whose demand is on the rise in times of crisis and inflation, as presently existing due to post-COVID-19 pandemic effects and ongoing conflict in Ukraine and resulting in looming food insecurity, according to FAO. Cultivated meat (CM) and cultivated seafood (CS) are protein-rich alternatives for traditional meat and fish that are obtained via cellular agriculture (CA) i.e., tissue engineering for food applications. Stem and progenitor cells are the building blocks and starting point for any CA bioprocess. This review presents CA-relevant vertebrate cell types and procedures needed for their myogenic and adipogenic differentiation since muscle and fat tissue are the primary target tissues for CM/CS production. The review also describes existing challenges, such as a need for immortalized cell lines, or physical and biochemical parameters needed for enhanced meat/fat culture efficiency and ways to address them.
Collapse
Affiliation(s)
- Teodora Knežić
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Ljiljana Janjušević
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Mila Djisalov
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Supansa Yodmuang
- Research Affairs, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd, Pathumwan, Bangkok 10330, Thailand;
| | - Ivana Gadjanski
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| |
Collapse
|
8
|
Yuen JSK, Stout AJ, Kawecki NS, Letcher SM, Theodossiou SK, Cohen JM, Barrick BM, Saad MK, Rubio NR, Pietropinto JA, DiCindio H, Zhang SW, Rowat AC, Kaplan DL. Perspectives on scaling production of adipose tissue for food applications. Biomaterials 2022; 280:121273. [PMID: 34933254 PMCID: PMC8725203 DOI: 10.1016/j.biomaterials.2021.121273] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
With rising global demand for food proteins and significant environmental impact associated with conventional animal agriculture, it is important to develop sustainable alternatives to supplement existing meat production. Since fat is an important contributor to meat flavor, recapitulating this component in meat alternatives such as plant based and cell cultured meats is important. Here, we discuss the topic of cell cultured or tissue engineered fat, growing adipocytes in vitro that could imbue meat alternatives with the complex flavor and aromas of animal meat. We outline potential paths for the large scale production of in vitro cultured fat, including adipogenic precursors during cell proliferation, methods to adipogenically differentiate cells at scale, as well as strategies for converting differentiated adipocytes into 3D cultured fat tissues. We showcase the maturation of knowledge and technology behind cell sourcing and scaled proliferation, while also highlighting that adipogenic differentiation and 3D adipose tissue formation at scale need further research. We also provide some potential solutions for achieving adipose cell differentiation and tissue formation at scale based on contemporary research and the state of the field.
Collapse
Affiliation(s)
- John S K Yuen
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Andrew J Stout
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - N Stephanie Kawecki
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; Department of Integrative Biology & Physiology, University of California Los Angeles, Terasaki Life Sciences Building, 610 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Sophia M Letcher
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Sophia K Theodossiou
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Julian M Cohen
- W. M. Keck Science Department, Pitzer College, 925 N Mills Ave, Claremont, CA, 91711, USA
| | - Brigid M Barrick
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Michael K Saad
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Natalie R Rubio
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Jaymie A Pietropinto
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Hailey DiCindio
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Sabrina W Zhang
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Amy C Rowat
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; Department of Integrative Biology & Physiology, University of California Los Angeles, Terasaki Life Sciences Building, 610 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - David L Kaplan
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA.
| |
Collapse
|
9
|
Bomkamp C, Skaalure SC, Fernando GF, Ben‐Arye T, Swartz EW, Specht EA. Scaffolding Biomaterials for 3D Cultivated Meat: Prospects and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102908. [PMID: 34786874 PMCID: PMC8787436 DOI: 10.1002/advs.202102908] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/12/2021] [Indexed: 05/03/2023]
Abstract
Cultivating meat from stem cells rather than by raising animals is a promising solution to concerns about the negative externalities of meat production. For cultivated meat to fully mimic conventional meat's organoleptic and nutritional properties, innovations in scaffolding technology are required. Many scaffolding technologies are already developed for use in biomedical tissue engineering. However, cultivated meat production comes with a unique set of constraints related to the scale and cost of production as well as the necessary attributes of the final product, such as texture and food safety. This review discusses the properties of vertebrate skeletal muscle that will need to be replicated in a successful product and the current state of scaffolding innovation within the cultivated meat industry, highlighting promising scaffold materials and techniques that can be applied to cultivated meat development. Recommendations are provided for future research into scaffolds capable of supporting the growth of high-quality meat while minimizing production costs. Although the development of appropriate scaffolds for cultivated meat is challenging, it is also tractable and provides novel opportunities to customize meat properties.
Collapse
Affiliation(s)
- Claire Bomkamp
- The Good Food Institute1380 Monroe St. NW #229WashingtonDC20010USA
| | | | | | - Tom Ben‐Arye
- The Good Food Institute1380 Monroe St. NW #229WashingtonDC20010USA
| | - Elliot W. Swartz
- The Good Food Institute1380 Monroe St. NW #229WashingtonDC20010USA
| | | |
Collapse
|
10
|
Xu X, Zhao R, Ma W, Zhao Q, Zhang G. Comparison of lipid deposition of intramuscular preadipocytes in Tan sheep co-cultured with satellite cells or alone. J Anim Physiol Anim Nutr (Berl) 2021; 106:733-741. [PMID: 34189825 DOI: 10.1111/jpn.13599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/21/2023]
Abstract
The purpose of this study was to investigate the effect of the skeletal muscle satellite cells (SMSCs) on the lipid deposition of the intramuscular preadipocytes (IMPs) in a co-culture system of the Tan sheep cells. The SMSCs and IMPs from Tan sheep were separated and cultured. After the two kinds of cells were separated and cultured, they were inoculated onto a transwell cell chamber co-culture plate for co-cultivation. When the cell density reached more than 90%, the cells were induced to differentiate. After the induction of the SMSCs differentiation for 8 days, the level of the IMPs differentiation and the expression levels of the differentiation marker genes and the key enzymes of the lipid metabolism were assessed. The results showed that the number and area of the lipid droplets in the IMPs in the co-culture system were significantly reduced compared to those in the IMPs culture alone (p < 0.05). Meanwhile, the expression levels of the PPARγ, c/EBPα, ACC, FAS mRNA in the IMPs were significantly decreased (p < 0.05); the expression level of aP2 mRNA was decreased, but the difference was not significant (p > 0.05).These findings indicate that the SMSCs of the Tan sheep in the co-culture system inhibited the lipid deposition by the IMPs.
Collapse
Affiliation(s)
- Xiaochun Xu
- North Minzu University/Collaborative Innovation Center for Food Production and Safety, Yinchuan, China
| | - Rui Zhao
- North Minzu University/Collaborative Innovation Center for Food Production and Safety, Yinchuan, China
| | - Wenping Ma
- North Minzu University/Collaborative Innovation Center for Food Production and Safety, Yinchuan, China
| | - Qingmei Zhao
- North Minzu University/Collaborative Innovation Center for Food Production and Safety, Yinchuan, China
| | - Guijie Zhang
- Ningxia University/School of Agriculture, Yinchuan, China
| |
Collapse
|
11
|
Hadi J, Brightwell G. Safety of Alternative Proteins: Technological, Environmental and Regulatory Aspects of Cultured Meat, Plant-Based Meat, Insect Protein and Single-Cell Protein. Foods 2021; 10:1226. [PMID: 34071292 PMCID: PMC8230205 DOI: 10.3390/foods10061226] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/10/2023] Open
Abstract
Food security and environmental issues have become global crises that need transformative solutions. As livestock production is becoming less sustainable, alternative sources of proteins are urgently required. These include cultured meat, plant-based meat, insect protein and single-cell protein. Here, we describe the food safety aspects of these novel protein sources, in terms of their technological backgrounds, environmental impacts and the necessary regulatory framework for future mass-scale production. Briefly, cultured meat grown in fetal bovine serum-based media can be exposed to viruses or infectious prion, in addition to other safety risks associated with the use of genetic engineering. Plant-based meat may contain allergens, anti-nutrients and thermally induced carcinogens. Microbiological risks and allergens are the primary concerns associated with insect protein. Single-cell protein sources are divided into microalgae, fungi and bacteria, all of which have specific food safety risks that include toxins, allergens and high ribonucleic acid (RNA) contents. The environmental impacts of these alternative proteins can mainly be attributed to the production of growth substrates or during cultivation. Legislations related to novel food or genetic modification are the relevant regulatory framework to ensure the safety of alternative proteins. Lastly, additional studies on the food safety aspects of alternative proteins are urgently needed for providing relevant food governing authorities with sufficient data to oversee that the technological progress in this area is balanced with robust safety standards.
Collapse
Affiliation(s)
- Joshua Hadi
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand;
| | - Gale Brightwell
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand;
- New Zealand Food Safety Science and Research Centre, Massey University Manawatu (Turitea), Tennent Drive, Palmerston North 4474, New Zealand
| |
Collapse
|
12
|
Ma Z, Luo N, Liu L, Cui H, Li J, Xiang H, Kang H, Li H, Zhao G. Identification of the molecular regulation of differences in lipid deposition in dedifferentiated preadipocytes from different chicken tissues. BMC Genomics 2021; 22:232. [PMID: 33812382 PMCID: PMC8019497 DOI: 10.1186/s12864-021-07459-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A body distribution with high intramuscular fat and low abdominal fat is the ideal goal for broiler breeding. Preadipocytes with different origins have differences in terms of metabolism and gene expression. The transcriptome analysis performed in this study of intramuscular preadipocytes (DIMFPs) and adipose tissue-derived preadipocytes (DAFPs) aimed to explore the characteristics of lipid deposition in different chicken preadipocytes by dedifferentiation in vitro. RESULTS Compared with DAFPs, the total lipid content in DIMFPs was reduced (P < 0.05). Moreover, 72 DEGs related to lipid metabolism were screened, which were involved in adipocyte differentiation, fatty acid transport and fatty acid synthesis, lipid stabilization, and lipolysis. Among the 72 DEGs, 19 DEGs were enriched in the PPAR signaling pathway, indicating its main contribution to the regulation of the difference in lipid deposition between DAFPs and DIMFPs. Among these 19 genes, the representative APOA1, ADIPOQ, FABP3, FABP4, FABP7, HMGCS2, LPL and RXRG genes were downregulated, but the ACSL1, FABP5, PCK2, PDPK1, PPARG, SCD, SCD5, and SLC27A6 genes were upregulated (P < 0.05 or P < 0.01) in the DIMFPs. In addition, the well-known pathways affecting lipid metabolism (MAPK, TGF-beta and calcium) and the pathways related to cell communication were enriched, which may also contribute to the regulation of lipid deposition. Finally, the regulatory network for the difference in lipid deposition between chicken DAFPs and DIMFPs was proposed based on the above information. CONCLUSIONS Our data suggested a difference in lipid deposition between DIMFPs and DAFPs of chickens in vitro and proposed a molecular regulatory network for the difference in lipid deposition between chicken DAFPs and DIMFPs. The lipid content was significantly increased in DAFPs by the direct mediation of PPAR signaling pathways. These findings provide new insights into the regulation of tissue-specific fat deposition and the optimization of body fat distribution in broilers.
Collapse
Affiliation(s)
- Zheng Ma
- School of Life Science and Engineering, Foshan University; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan, 534861, China
| | - Na Luo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences; State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Lu Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences; State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Huanxian Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences; State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Jing Li
- School of Life Science and Engineering, Foshan University; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan, 534861, China
| | - Hai Xiang
- School of Life Science and Engineering, Foshan University; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan, 534861, China
| | - Huimin Kang
- School of Life Science and Engineering, Foshan University; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan, 534861, China
| | - Hua Li
- School of Life Science and Engineering, Foshan University; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan, 534861, China.
| | - Guiping Zhao
- School of Life Science and Engineering, Foshan University; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan, 534861, China. .,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences; State Key Laboratory of Animal Nutrition, Beijing, 100193, China.
| |
Collapse
|
13
|
Adipose and Muscle Cell Co-Culture System: A Novel In Vitro Tool to Mimic the In Vivo Cellular Environment. BIOLOGY 2020; 10:biology10010006. [PMID: 33374127 PMCID: PMC7823969 DOI: 10.3390/biology10010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
Abstract
A co-culture system allows researchers to investigate the complex interactions between two cell types under various environments, such as those that promote differentiation and growth as well as those that mimic healthy and diseased states, in vitro. In this paper, we review the most common co-culture systems for myocytes and adipocytes. The in vitro techniques mimic the in vivo environment and are used to investigate the causal relationships between different cell lines. Here, we briefly discuss mono-culture and co-culture cell systems and their applicability to the study of communication between two or more cell types, including adipocytes and myocytes. Also, we provide details about the different types of co-culture systems and their applicability to the study of metabolic disease, drug development, and the role of secretory factors in cell signaling cascades. Therefore, this review provides details about the co-culture systems used to study the complex interactions between adipose and muscle cells in various environments, such as those that promote cell differentiation and growth and those used for drug development.
Collapse
|
14
|
Singh A, Verma V, Kumar M, Kumar A, Sarma DK, Singh B, Jha R. Stem cells-derived in vitro meat: from petri dish to dinner plate. Crit Rev Food Sci Nutr 2020; 62:2641-2654. [PMID: 33291952 DOI: 10.1080/10408398.2020.1856036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sustainable food supply to the world is possibly the greatest challenge that human civilization has ever faced. Among animal sourced foods, meat plays a starring role in human food chain. Traditional meat production necessitates high proportion of agricultural land, energy and clean water for rearing meat-producing animals; also massive emission of greenhouse gases from the unutilized nutrients of the digestive process into the environment is a major challenge to the world. Also, conventional meat production is associated with evolution and spread of superbugs and zoonotic infections. In vitro meat has the potential to provide a healthy alternative nutritious meal and to avoid the issues associated with animal slaughtering and environmental effects. Stem cell technology may provide a fascinating approach to produce meat in an animal-free environment. Theoretically, in vitro meat can supplement the meat produced by culling the animals and satisfy the global demand. This article highlights the necessity and potential of stem cell-derived in vitro meat as an alternative source of animal protein vis-a-vis the constraints of conventional approaches of meat production.
Collapse
Affiliation(s)
- Anshuman Singh
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Ashok Kumar
- Department of Zoology, MLK Post Graduate College, Balrampur, India
| | | | - Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Rajneesh Jha
- Curi Bio, University of Washington, Seattle, Washington, USA
| |
Collapse
|
15
|
A novel long noncoding RNA, ENSGALG00000021686, regulates the intracellular transport of fatty acids by targeting the FABP3 gene in chicken. Biochem Biophys Res Commun 2020; 528:706-712. [PMID: 32507601 DOI: 10.1016/j.bbrc.2020.05.133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022]
Abstract
Fatty acids (FAs) are essential for the vital movement of humans and animals. Their metabolism is, in part, regulated by FABP3. In our previous study, a novel lncRNA (ENSGALG00000021686, L21686) was identified, and FABP3 was predicted as its target gene. Here, using chicken myocytes, lymphocytes, and different tissues, L21686 target on the FABP3 gene, FABP3 mRNA expression, and their effect on FA metabolism are explored. The results show that the highest expression of L21686 is in muscle tissue, a significant energy-consuming tissue. L21686 expression is consistent with FABP3 mRNA expression. We also show that under the different treatments, the levels of FABP3 mRNA and protein in myocytes and lymphocytes change in tandem with L21686 expression. Moreover, the dual-luciferase reporter assay provided direct evidence that L21686 targets the FABP3 gene. Finally, it was found that the content of free FAs increases along with the up-regulation of L21686 and the FABP3 gene. Malonyl CoA content does not change under the different treatments, suggesting that L21686 regulates the intake of extracellular FAs in chicken. Further, the changes in lipoprotein lipase (LPL), sterol-regulatory element binding protein 1 (SREBP-1), fatty acid synthase (FASN), and acetyl-CoA carboxylase (ACC) mRNA levels support this view. In summary, our data show that the new lncRNA (L21686) regulates the intake of extracellular FAs in chicken cells in vitro by targeting the expression of the FABP3 gene. Our findings will help to establish the groundwork and provide a new clue for deciphering the regulation of FAs metabolism in chicken.
Collapse
|
16
|
Ben-Arye T, Levenberg S. Tissue Engineering for Clean Meat Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00046] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
17
|
Guo L, Cui H, Zhao G, Liu R, Li Q, Zheng M, Guo Y, Wen J. Intramuscular preadipocytes impede differentiation and promote lipid deposition of muscle satellite cells in chickens. BMC Genomics 2018; 19:838. [PMID: 30477424 PMCID: PMC6258484 DOI: 10.1186/s12864-018-5209-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022] Open
Abstract
Background Skeletal muscle satellite cells (MSC) are crucial for postnatal growth and regeneration of skeletal muscle. An interaction exists between MSC and intramuscular preadipocytes (IMPA). This study is the first to investigate the effects of IMPA on MSC in chickens and unveil the molecular mechanisms by transcriptome analysis. Results Primary MSC and IMPA were isolated from the pectoralis major muscle of 7-day-old chickens. After both cell types reached confluence, MSC were cultured alone or co-cultured with IMPA for 2 or 4 d. MSC treated for 2 d were subjected to RNA-seq. A total of 1653 known differentially expressed genes (DEG) were identified between co-cultured and mono-cultured MSC (|log2 FC| ≥ 1, FDR < 0.01). Based on Gene Ontology analysis, 48 DEG related to muscle development were screened, including the key genes MYOD1, MYOG, PAX7, and TMEM8C. The 44 DEG related to lipid deposition included the key genes CD36, FABP4, ACSBG2, CYP7A1 and PLIN2. Most of the DEG related to muscle development were downregulated in co-cultured MSC, and DEG related to lipid deposition were upregulated. Immunofluorescence of MHC supported IMPA impeding differentiation of MSC, and Oil Red O staining showed concurrent promotion of lipid deposition. Pathway analysis found that several key genes were enriched in JNK/MAPK and PPAR signaling, which may be the key pathways regulating differentiation and lipid deposition in MSC. Additionally, pathways related to cell junctions may also contribute to the effect of IMPA on MSC. Conclusions The present study showed that IMPA impeded differentiation of MSC while promoting their lipid deposition. Pathway analysis indicated that IMPA might inhibit differentiation via the JNK/MAPK pathway, and promote lipid deposition via the PPAR pathway. This study supplies insights into the effect of IMPA on MSC, providing new clues on exposing the molecular mechanisms underlying the interplay between skeletal muscle and intramuscular fat in chickens. Electronic supplementary material The online version of this article (10.1186/s12864-018-5209-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liping Guo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Huanxian Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Ranran Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Qinghe Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Yuming Guo
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China. .,State Key Laboratory of Animal Nutrition, Beijing, 100193, China.
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,State Key Laboratory of Animal Nutrition, Beijing, 100193, China.
| |
Collapse
|