1
|
Liu H, Xu K, Wang H, Lin H, Yang X, Wang X, Zhao J, Ma B, Shu Q, Lu Y, Jiao H. Effects of different forms of amino acid supplementation on the performance and intestinal barrier function of laying hens fed a low-protein diet. Poult Sci 2024; 103:104375. [PMID: 39442199 PMCID: PMC11532764 DOI: 10.1016/j.psj.2024.104375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
The aim of this study was to investigate the effects of low-protein diets and the sustained release of synthetic amino acids (AA) on the performance, intestinal barrier function and nitrogen excretion of laying hens. Two hundred eighty-eight 39-week-old Hyline brown laying hens of were randomly divided into 3 groups with 8 replicates per group. The crude protein level in the control group (CON) was 16%, the crude protein levels in the crystal AA supplement group (LCP-CAA) and microencapsulated AA group (LCP-MAA) were both 13%, and the AA levels in the LCP-CAA and LCP-MAA groups were consistent with that in the CON group. The experiment lasted 12 wk, and production performance was assessed weekly. The FCR and ADFI values were significantly greater for the LCP-CAA group than for the CON and LCP-MAA groups (P < 0.05). Two hours after feeding, His levels were significantly greater in the LCP-CAA group than in the LCP-MAA group (P < 0.05); 4 h after feeding, the contents of Met, Thr, Leu and Val were significantly greater in blood from the LCP-MAA group (P < 0.05); 6 h after feeding, Trp, Ile and Arg levels were significantly greater in the LCP-MAA group (P < 0.05). The chylase content significantly decreased in the duodenum of the LCP-CAA group (P < 0.05), and the chylase and trypsin were contents increased in the ileum of the LCP-MAA group (P < 0.05). In the LCP-MAA group, significantly increased mRNA expression levels of Occludin, ZO-1 in duodenum; Occludin, ZO-1, y+LAT1 in jejunum; and ZO-1 in ileum were detected at 8 and 12 weeks (P < 0.05). The fecal nitrogen content significantly decreased in the low protein diet group (P < 0.01). In conclusion, reducing dietary crude protein levels and supplementing with microencapsulated AAs can improve intestinal barrier function, promote digestive enzyme secretion, increase the expression of AA transporters, improve dietary protein utilization efficiency, and reduce nitrogen emission in laying hens.
Collapse
Affiliation(s)
- Hui Liu
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Taian 271018, Shandong Province, China; Animal Husbandry and Veterinary Service Center of Xintai City, Xintai 271200, Shandong Province, China
| | - Kangqi Xu
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Taian 271018, Shandong Province, China
| | - Huimin Wang
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Taian 271018, Shandong Province, China
| | - Hai Lin
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Taian 271018, Shandong Province, China
| | - Xiaoyan Yang
- Shandong Bohi Industry Co. Ltd., Binzhou 256599, Shandong Province, China
| | - Xiaojuan Wang
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Taian 271018, Shandong Province, China
| | - Jingpeng Zhao
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Taian 271018, Shandong Province, China
| | - Baishun Ma
- Shandong Xiandai Research Institute of Egg-laying Industry, Shandong Hemeihua Nongmu Co. Ltd., Jinan 250102, Shandong Province, China
| | - Quanxian Shu
- Shandong Bohi Industry Co. Ltd., Binzhou 256599, Shandong Province, China
| | - Yanbo Lu
- Shandong Bohi Industry Co. Ltd., Binzhou 256599, Shandong Province, China
| | - Hongchao Jiao
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Taian 271018, Shandong Province, China.
| |
Collapse
|
2
|
Cheng K, Niu J, Hu D, Zeng L, Zhao H, Wang J, Zhang X, Tang T, Yang M, Liu L, Zhang Y. Intestinal health of squab pigeons responded to parental dietary protein levels during breeding period. Poult Sci 2024; 103:103852. [PMID: 38861843 PMCID: PMC11215330 DOI: 10.1016/j.psj.2024.103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
The objective of this study was to determine the effects of dietary crude protein (CP) levels on intestinal antioxidant status, tight junction proteins expression, and amino acids transporters levels in squabs. A total of 180 pairs of White King parent pigeons approximately 10 mo old were randomly assigned to 5 groups with 6 replications of 6 pairs of parental pigeons each, and were fed with 14, 15, 16, 17, and 18% CP diets for 46 d, respectively. Dietary increasing CP levels increased final body weight (linear and quadratic, P < 0.05), serum urea nitrogen (linear, P<0.05) and triglyceride levels (quadratic, P < 0.05), and reduced kidney relative weight (quadratic, P < 0.05) in squabs. Final body weight of squabs in the 18% CP diet group was higher than that of the 14, 15, and 16% CP diet groups (P < 0.05) but was similar to that of the 17% CP diet group (P > 0.05). Increasing dietary CP levels reduced intestinal malondialdehyde contents (linear and quadratic, P < 0.05) and jejunal total superoxide dismutase (T-SOD) activity (linear, P < 0.05), and enhanced (linear and quadratic, P<0.05) ileal catalase and T-SOD activities in squabs, and these effects were more prominent in the 17% CP diet group. Graded CP levels up-regulated the mRNA expression of intestinal zonula occludens 1 (linear, P < 0.05), solute carrier family 7 members 9 (linear, P < 0.05) and claudin 1 (CLDN1, linear and quadratic, P < 0.05), ileal CLDN3 and solute carrier family 6 members 14 (linear, P < 0.05) but lowered jejunal solute carrier family 6 member 14 (quadratic, P<0.05) mRNA expression in squabs. The effects of dietary CP levels on intestinal tight junction proteins expression were more apparent when its supplemental levels were 18%. These results suggested that increasing parental dietary CP levels ranged from 14 to 18% during breeding period improved growth and intestinal function of squabs, with its recommended level being 17%.
Collapse
Affiliation(s)
- Kang Cheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Jingyi Niu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Daizi Hu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Linfei Zeng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Hongyue Zhao
- School of International Education, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Jinrong Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China.
| | - Xuelei Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Tianyue Tang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - MingJun Yang
- Henan Tiancheng Pigeon Industry Co., Ltd, Wugang 462500, People's Republic of China
| | - Laiting Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Yong Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
3
|
Liu G, Choppa VSR, Sharma MK, Ko H, Choi J, Kim WK. Effects of methionine supplementation in a reduced protein diet on growth performance, oxidative status, intestinal health, oocyst shedding, and methionine and folate metabolism in broilers under Eimeria challenge. J Anim Sci Biotechnol 2024; 15:84. [PMID: 38853257 PMCID: PMC11163814 DOI: 10.1186/s40104-024-01041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/28/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND This study investigated effects of different methionine (Met) supplementation levels in a reduced protein diet on growth performance, intestinal health, and different physiological parameters in broilers under Eimeria challenge. A total of 600 fourteen-day-old Cobb500 male broilers were challenged with E. maxima, E. tenella, and E. acervulina, and randomly allocated in a 2 × 5 factorial arrangement. Birds received normal protein diets (20% crude protein, NCP) or reduced protein diets (17% crude protein, LCP), containing 2.8, 4.4, 6.0, 7.6, and 9.2 g/kg of Met. RESULTS On 6 and 9 days post inoculation (DPI), increasing Met level linearly improved the growth performance (P < 0.05). Total oocyst shedding linearly increased as Met level increased (P < 0.05). Duodenal villus height (VH):crypt depth (CD) in the LCP groups were higher on 6 DPI (P < 0.01) while lower on 9 DPI (P < 0.05) compared to the NCP groups. Jejunal CD and duodenal VH:CD changed quadratically as Met level increased (P < 0.05). On 6 DPI, liver glutathione (GSH) and glutathione disulfide (GSSG) linearly increased as Met level increased (P < 0.05). On 9 DPI, GSSG quadratically increased, whereas GSH:GSSG quadratically decreased as Met levels increased (P < 0.05). The expression of amino acid transporters linearly decreased as Met level increased (P < 0.05). The expression of zonula occludens 2 and claudin-1 linearly increased on 6 DPI whereas decreased on 9 DPI as Met level increased (P < 0.05). The expressions of cytokines were lower in the LCP groups than the NCP groups (P < 0.05). Interaction effects were found for the expression of IL-10 and TNFα on 6 DPI (P < 0.05), where it only changed quadratically in the NCP group as Met level increased. The expression of Met and folate metabolism genes were lower in the LCP groups than the NCP groups on 9 DPI (P < 0.05). The expression of these genes linearly or quadratically decreased as Met level increased (P < 0.05). CONCLUSION These results revealed the regulatory roles of Met in different physiological parameters including oxidative status, intestinal health, and nutrient metabolism in birds fed reduced protein diet and challenged with Eimeria.
Collapse
Affiliation(s)
- Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | | | - Milan Kumar Sharma
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Hanseo Ko
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
4
|
Wealleans AL, Ashour RA, Abu Ishmais MA, Al-Amaireh S, Gonzalez-Sanchez D. Comparative effects of proteases on performance, carcass traits and gut structure of broilers fed diets reduced in protein and amino acids. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:457-470. [PMID: 38975585 PMCID: PMC11222113 DOI: 10.5187/jast.2023.e20] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/20/2022] [Accepted: 02/19/2023] [Indexed: 07/09/2024]
Abstract
This study aimed to evaluate the effect of supplementing different protease enzymes on growth performance, intestinal morphology, and selected carcass traits in broilers fed diets reduced 3.5% in crude protein (CP) and amino acids (AA). One thousand one-day-old Ross 308 broilers (41 g) were assigned to five dietary treatments with ten replicates of 20 birds each: a positive control (PC) diet formulated to meet Ross 308 AA requirements, a negative control (NC) diet reformulated to provide 3.5% lower CP and AA compared to PC, NC supplemented with a multi-protease (PR1) solution, containing 3 different coated proteases produced from Aspergillus niger, Bacillus subtilis and Bacillus licheniformis, NC supplemented with a serine protease (PR2) produced from Bacillus licheniformis, and NC supplemented with an alkaline protease (PR3) produced from Bacillus licheniformis. At slaughter, 40 birds per treatment were used to assess the effect of the different treatments on carcass traits. At 32 days, samples of the duodenum, jejunum, and ileum of 10 birds per treatment were collected for intestinal morphology evaluation. Birds fed PC and NC supplemented with multi-protease exhibited better (p < 0.05) feed efficiency compared to NC and NC supplemented with all the other protease enzymes. Multi-protease supplementation was linked to the highest (p < 0.05) carcass weight and yield. There were significant differences (p < 0.05) between treatments in all gut segments, with PC, PR1, PR2, and PR3 exhibiting longer villi height (VH) compared to NC. This study demonstrates that 3.5% reduction of CP and AA negatively affected for the overall period feed efficiency, carcass yield, and intestinal morphology. The supplementation of the multi-protease restored feed efficiency and improved carcass yield.
Collapse
Affiliation(s)
| | | | - Majdi A. Abu Ishmais
- Department of Animal Production, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Sadiq Al-Amaireh
- Suliman Al-Amaireh & Partners Co., Tabarbor 11731, Amman, Jordan
| | | |
Collapse
|
5
|
Fathi MA, Shen D, Luo L, Li Y, Elnesr SS, Li C. The exposure in ovo to glyphosate on the integrity of intestinal epithelial tight junctions of chicks. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:183-191. [PMID: 38400726 DOI: 10.1080/03601234.2024.2319006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Glyphosate is an ingredient widely used in various commercial formulations, including Roundup®. This study focused on tight junctions and the expression of inflammatory genes in the small intestine of chicks. On the sixth day of embryonic development, the eggs were randomly assigned to three groups: the control group (CON, n = 60), the glyphosate group (GLYP, n = 60), which received 10 mg of active glyphosate/kg egg mass, and the Roundup®-based glyphosate group also received 10 mg of glyphosate. The results indicated that the chicks exposed to glyphosate or Roundup® exhibited signs of oxidative stress. Additionally, histopathological alterations in the small intestine tissues included villi fusion, complete fusion of some intestinal villi, a reduced number of goblet cells, and necrosis of some submucosal epithelial cells in chicks. Genes related to the small intestine (ZO-1, ZO-2, Claudin-1, Claudin-3, JAM2, and Occludin), as well as the levels of pro-inflammatory cytokines (IFNγ, IL-1β, and IL-6), exhibited significant changes in the groups exposed to glyphosate or Roundup® compared to the control group. In conclusion, the toxicity of pure glyphosate or Roundup® likely disrupts the small intestine of chicks by modulating the expression of genes associated with tight junctions in the small intestine.
Collapse
Affiliation(s)
- Mohamed A Fathi
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
- Animal Production Research Institute, Agricultural Research Centre, Dokki, Giza, Egypt
| | - Dan Shen
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| | - Lu Luo
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| | - Yansen Li
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| | - Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Chunmei Li
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
6
|
Horyanto D, Bajagai YS, Kayal A, von Hellens J, Chen X, Van TTH, Radovanović A, Stanley D. Bacillus amyloliquefaciens Probiotics Mix Supplementation in a Broiler Leaky Gut Model. Microorganisms 2024; 12:419. [PMID: 38399823 PMCID: PMC10892336 DOI: 10.3390/microorganisms12020419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The supplementation of antimicrobial growth promoters (AGPs) has been banned in many countries because of the emergence of antimicrobial-resistant pathogens in poultry products and the environment. Probiotics have been broadly studied and demonstrated as a promising AGP substitute. Our study is centred on the effects of a multi-strain Bacillus-based probiotic product on broiler production performance and gut microbial profile in a dexamethasone-induced leaky gut challenge. Two hundred and fifty-six broiler chicks were hatched and randomly assigned into four groups (wheat-soybean meal basal diet (BD) = non-supplemented control (C), BD supplemented with dexamethasone in week 4 (CD), BD containing a probiotic from day one (P), and BD containing a probiotic from day one and supplemented with dexamethasone during challenge week 4 (PD)). The production performance and caecal, gizzard, jejunal lumen and jejunal mucosa swab microbiota were studied by 16S rRNA gene sequencing. The Bacillus probiotic product significantly improved production performance and altered caecal gut microbiota (p ≤ 0.05), but no significant impact on microbiota was observed in other gut sections.
Collapse
Affiliation(s)
- Darwin Horyanto
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia (A.K.)
- Bioproton Pty Ltd., Acacia Ridge, QLD 4110, Australia (X.C.)
| | - Yadav S. Bajagai
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia (A.K.)
| | - Advait Kayal
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia (A.K.)
| | | | - Xiaojing Chen
- Bioproton Pty Ltd., Acacia Ridge, QLD 4110, Australia (X.C.)
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Anita Radovanović
- Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dragana Stanley
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia (A.K.)
| |
Collapse
|
7
|
Freitas LFVBD, Dorigam JCDP, Reis MDP, Nogueira BRF, Lizana RR, Sakomura NK. Responses of broilers challenged by Eimeria maxima fed with different levels of dietary balanced protein. Res Vet Sci 2023; 163:104984. [PMID: 37597504 DOI: 10.1016/j.rvsc.2023.104984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/10/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
This study aimed to evaluate the effects of different dietary balanced protein (BP) levels on the gut health, amino acid apparent ileal digestibility (AID), footpad dermatitis lesions, and litter quality in broiler chicks infected with Eimeria maxima. A total of 2400 male 14-day-old Cobb500 broilers were randomly allotted into 10 treatments with six replications containing 40 birds each in a factorial design of 5 × 2. The treatments consisted of five levels of BP (6.66%, 13.32%, 19.98%, 26.64%, and 33.3%), and broilers unchallenged (NCH) or challenged (CH). Broilers in the CH group received 1 mL of Eimeria maxima inoculum (7 × 103 sporulated oocysts/mL). Oocyst count in excreta, visual intestinal modifications score, morphology, and morphometrics of the ileum were used to determine gut health status. Additionally, amino acids and CP AID, litter quality, and footpad dermatitis were evaluated. An ANOVA and Kruskal-Wallis tests followed by post-hoc tests were performed. The oocyst count in the CH group increased with an increase in dieatary BP (P = 0.08). The incidence of intestinal modifications was higher in the CH group (P < 0.05) and increased with increasing dietary BP (P < 0.05). Morphometrics were impaired by the challenge (P < 0.05), and by the two highest BP levels (P < 0.05). Amino acids AID (methionine, methionine + cystine, arginine, and serine) were reduced by E. maxima challenge. An increase in dietary BP resulted in poor litter quality and high prevalence of of footpad dermatitis (P < 0.05). The E. maxima challenge and increased BP decreased gut health, litter quality, and cause a high incidence of footpad dermatitis.
Collapse
Affiliation(s)
- Luís Filipe Villas Boas de Freitas
- Animal Science Departament, UNESP- Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Via de acesso Professor Paulo Donato Castellene, s/n, 14884-900, Jaboticabal, São Paulo, Brazil
| | | | - Matheus de Paula Reis
- Animal Science Departament, UNESP- Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Via de acesso Professor Paulo Donato Castellene, s/n, 14884-900, Jaboticabal, São Paulo, Brazil
| | - Bernardo Rocha Franco Nogueira
- Animal Science Departament, UNESP- Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Via de acesso Professor Paulo Donato Castellene, s/n, 14884-900, Jaboticabal, São Paulo, Brazil
| | - Rony Riveiros Lizana
- Animal Science Departament, UNESP- Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Via de acesso Professor Paulo Donato Castellene, s/n, 14884-900, Jaboticabal, São Paulo, Brazil
| | - Nilva Kazue Sakomura
- Animal Science Departament, UNESP- Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Via de acesso Professor Paulo Donato Castellene, s/n, 14884-900, Jaboticabal, São Paulo, Brazil.
| |
Collapse
|
8
|
Zhao J, Zhao F, Li X, Yuan J, Zhang K, Liu H, Wang Y. Multi-omics reveals the mechanisms underlying Lactiplantibacillus plantarum P8-mediated attenuation of oxidative stress in broilers challenged with dexamethasone. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:281-302. [PMID: 37600839 PMCID: PMC10432922 DOI: 10.1016/j.aninu.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 08/22/2023]
Abstract
Oxidative stress is a common phenomenon in poultry production. Several molecules, including antioxidant genes, miRNAs, and gut microbiota metabolites, have been reported to participate in redox regulation. Lactiplantibacillus plantarum P8 (P8) was shown to improve the antioxidant capacity of chickens, but the specific molecular mechanisms remain unclear. In this study, 400 broilers were allocated to 4 treatment groups: control diet (Con group), control diet + dexamethasone injection (DEX group), control diet containing 1 × 108 CFU/g P8 (P8 group), and control diet containing 1 × 108 CFU/g P8 + DEX injection (DEX_P8 group). Integrated analysis of the microbiome, metabolomics, and miRNAomics was conducted to investigate the roles of P8 in oxidative stress in broilers. Results demonstrated that P8 supplementation significantly improved growth performance, jejunal morphology, and antioxidant function in DEX-treated broilers. Analysis of the gut microbiota revealed a higher abundance of Barnesiella (P = 0.01) and Erysipelatoclostridium (P = 0.05) in the DEX_P8 group than in the DEX group. Functional prediction indicated that certain pathways, including the phenylacetate degradation pathway, were enriched in the DEX_P8 group compared to the DEX group. Metabolites in the cecal contents were distinct between the groups. P8 supplementation increased the content of metabolites with antioxidant capacity, e.g., urobilinogen (P < 0.01), and decreased that of metabolites related to oxidative stress, e.g., genistein (P < 0.01). Functional prediction indicated that metabolites that differed between the DEX_P8 and DEX groups were enriched in pathways including "tryptophan metabolism" and "primary bile acid biosynthesis". The miRNAomics analysis further showed that, compared to the DEX group, several miRNAs in the jejunum, such as gga-miR-21-3p (P = 0.03), were increased, whereas gga-miR-455-3p (P = 0.02) was decreased in the DEX_P8 group. The PI3K-Akt, Ras, and Rap1 signaling pathways were enriched in the DEX_P8 group compared to the DEX group through KEGG analysis. Correlation analysis revealed potential interactions between growth performance, oxidation/antioxidation, jejunal morphology, gut microbiota, cecal content metabolites, and jejunal miRNAs. Overall, our results indicate that P8 supplementation may improve the growth performance, jejunal morphology and antioxidant capacity of DEX-treated broilers by regulating gut microbiota, its metabolites, and intestinal miRNAs.
Collapse
Affiliation(s)
| | | | - Xuemin Li
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Junmeng Yuan
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| |
Collapse
|
9
|
Xu H, Zhang X, Li P, Luo Y, Fu J, Gong L, Lv Z, Guo Y. Effects of Tannic Acid Supplementation on the Intestinal Health, Immunity, and Antioxidant Function of Broilers Challenged with Necrotic Enteritis. Antioxidants (Basel) 2023; 12:1476. [PMID: 37508014 PMCID: PMC10376868 DOI: 10.3390/antiox12071476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Clostridium perfringens causes necrotic enteritis (NE) after proliferation in the intestine of poultry, resulting in considerable losses to the poultry industry. This study aimed to investigate the impact of tannic acid on the antioxidant, immunity, and gut health of broilers with NE. In the experiment, 630 one-day-old Cobb500 male chicks were randomly divided into six treatment groups, with seven replicate cages and with fifteen birds in each cage. The treatment groups were as follows: control group (NC), challenged group (PC), and challenged NE chickens treated with 250, 500, 750, and 1000 mg/kg tannic acid (PTA1, PTA2, PTA3, and PTA4, respectively). To induce NE, coccidia vaccine and Clostridium perfringens were administered on day 19 and days 22-28, respectively. Indexes related to antioxidant, immune, and intestinal health were measured on days 28 and 35. During the infection period, we observed significant increases in fecal water content, D-LA, TNF-α, and malondialdehyde concentrations (p < 0.05). Conversely, significant decreases were noted in chyme pH and in T-AOC, IL-4, and IL-10 concentrations (p < 0.05). The addition of tannic acid exhibited a linear decrease in fecal water content and TNF-α concentration (p < 0.05). Furthermore, tannic acid supplementation resulted in a quadratic curve decrease in D-LA concentration and linear increases in T-AOC, IL-4, and IL-10 (p < 0.05). Cecal microbiological analysis revealed that Ruminococcaceae and Butyricimona were dominant in PTA3. In conclusion, the dietary addition of tannic acid may reduce the negative effects of NE by increasing antioxidant and anti-inflammatory capacity, improving the intestinal barrier, and regulating the intestinal flora.
Collapse
Affiliation(s)
- Huiping Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaodan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Peng Li
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yimeng Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianyang Fu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lu Gong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Dong L, Li Y, Zhang Y, Zhang Y, Ren J, Zheng J, Diao J, Ni H, Yin Y, Sun R, Liang F, Li P, Zhou C, Yang Y. Effects of organic zinc on production performance, meat quality, apparent nutrient digestibility and gut microbiota of broilers fed low-protein diets. Sci Rep 2023; 13:10803. [PMID: 37402861 DOI: 10.1038/s41598-023-37867-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/28/2023] [Indexed: 07/06/2023] Open
Abstract
The high cost of feed and nitrogen pollution caused by high-protein diets have become major challenges restricting sustainable development in China's animal husbandry sector. Properly reducing protein levels and improving protein utilization in feed are effective approaches to solving this problem. To determine the optimal dose of methionine hydroxyl analogue chelated zinc (MHA-Zn) in broiler diets with a 1.5% reduction in crude protein (CP), a total of 216 1-day-old broilers were randomly assigned into 4 groups (each group consisted of 3 replications with 18 broilers per replicate), and growth and development indexes were assessed after 42 days. The broilers in control group were fed a basic diet, whereas those in the three test groups were fed diets with a 1.5% reduction in CP. The results showed no significant difference in the edible parts of broilers between low-protein (LP) diet group (90 mg/kg MHA-Zn) and normal diet group (p > 0.05), and adding 90 mg/kg MHA-Zn to LP diet significantly improved ileum morphology and apparent total tract digestibility (ATTD) of nutrient (p < 0.01; p < 0.05). A 16S rRNA sequencing analysis indicated that supplementing the LP diet with 90 mg/kg MHA-Zn was adequate for production performance of broilers and promoted beneficial bacteria in the cecum (Lactobacillus, Butyricoccus, Oscillospira, etc.) (p < 0.01). In summary, adding an optimal dose of organic zinc (90 mg/kg MHA-Zn) in low protein diets led to enhanced production performance of broilers and optimized cecum microbiota. Additionally, the reduction of crude protein consumption in broiler production proved to be a cost-effective measure, while also mitigated nitrogen pollutant emissions in the environment.
Collapse
Affiliation(s)
- Liping Dong
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Yumei Li
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Yonghong Zhang
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Yan Zhang
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Jilin, 132109, China
| | - Jing Ren
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Jinlei Zheng
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Jizhe Diao
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Hongyu Ni
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Yijing Yin
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Ruihong Sun
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Fangfang Liang
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Peng Li
- International Trading (Shanghai) Co., Ltd., Shanghai, 200080, China
| | - Changhai Zhou
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China.
| | - Yuwei Yang
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China.
| |
Collapse
|
11
|
Liu G, Ajao AM, Shanmugasundaram R, Taylor J, Ball E, Applegate TJ, Selvaraj R, Kyriazakis I, Olukosi OA, Kim WK. The effects of arginine and branched-chain amino acid supplementation to reduced-protein diet on intestinal health, cecal short-chain fatty acid profiles, and immune response in broiler chickens challenged with Eimeria spp. Poult Sci 2023; 102:102773. [PMID: 37236037 DOI: 10.1016/j.psj.2023.102773] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
We investigated the effects of supplementing arginine (Arg) and branched-chain amino acids (BCAA) in broilers fed reduced-protein diets and challenged with Eimeria spp. All birds were fed the same starter diet meeting Cobb 500 nutrient specifications from d 1 to 9. Four grower diets: positive control (PC) with 20.0% crude protein (CP); reduced-protein negative control (NC) with 17.5% CP; or NC supplemented with Arg or BCAA at 50% above recommendations (ARG or BCAA) were fed to the birds from d 9 to 28. Birds were allocated in a 2 × 4 factorial arrangement (4 diets, each with or without challenge), with 8 replicates per treatment. On d 14, the challenge groups were orally gavaged with mixed Eimeria spp. Intestinal permeability was higher (P < 0.05) in NC than PC, whereas the permeability of ARG and BCAA groups did not differ significantly from PC. On d 28, a significant interaction (P < 0.01) was observed in CD8+: CD4+ ratios in cecal tonsils (CT), Eimeria challenge increased the ratios in all groups except for the ARG group. On d 21, a significant interaction was found for CD4+CD25+ percentages in CT (P < 0.01) that Eimeria challenge increased the percentages only in PC and NC groups. On d 21 and 28, significant interactions (P < 0.01) were found for macrophage nitric oxide (NO) production. In nonchallenged birds, NO was higher in the ARG group than other groups, but in challenged birds, NO was higher in both ARG and BCAA groups. On d 21, a significant interaction was found for bile anticoccidial IgA concentrations (P < 0.05) that Eimeria challenge increased IgA only in NC and ARG groups. The results suggest that a reduced-protein diet exacerbates the impact of the Eimeria challenge on intestinal integrity, but this could be mitigated by Arg and BCAA supplementations. Arginine and BCAA supplementations in reduced-protein diets could be beneficial for broilers against Eimeria infection by enhancing the immune responses. The beneficial effects of Arg supplementation tended to be more pronounced compared to BCAA supplementation.
Collapse
Affiliation(s)
- Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Adeleye M Ajao
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - James Taylor
- Agri-Food & Biosciences Institute (AFBI), Belfast, BT9 5PX, United Kingdom
| | - Elizabeth Ball
- Institute for Global Food Security, Queen's University, Belfast, BT9 5DL, United Kingdom
| | - Todd J Applegate
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Ramesh Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Ilias Kyriazakis
- Agri-Food & Biosciences Institute (AFBI), Belfast, BT9 5PX, United Kingdom.; Institute for Global Food Security, Queen's University, Belfast, BT9 5DL, United Kingdom
| | - Oluyinka A Olukosi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
12
|
Wong E, Kinstler S. Research Note: Junctional adhesion molecule A is expressed in epithelial cells of the crypt and villi whereas Junctional adhesion molecule 2 is expressed in vascular cells. Poult Sci 2023; 102:102693. [PMID: 37120869 PMCID: PMC10172695 DOI: 10.1016/j.psj.2023.102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023] Open
Abstract
A functional intestinal barrier is essential for a healthy intestine. This barrier includes an apical tight junctional complex between adjacent intestinal epithelial cells. The tight junctions (TJ) are multiprotein junctional complexes that consist of a number of members of the occludin, claudin, zona occludens, and junctional adhesion molecule families. The mRNA expression of junctional adhesin molecule A (JAMA) and junctional adhesion molecule 2 (JAM2) are 2 TJ mRNAs that are often used to assess intestinal barrier integrity. The objective of this study was to use in situ hybridization to identify cells that express JAMA and JAM2 mRNA in the small intestine of chickens. In the jejunum of a 21 d old broiler, JAMA mRNA was highly expressed in the epithelial cells of the villi and crypt. By contrast, JAM2 mRNA was located in the vascular system in the center of the villi and in the lamina propria. These results demonstrate that JAMA and not JAM2 is the appropriate gene to use when assessing TJ between intestinal epithelial cells.
Collapse
|
13
|
Intestinal permeability, microbiota composition and expression of genes related to intestinal barrier function of broiler chickens fed different methionine sources supplemented at varying concentrations. Poult Sci 2023; 102:102656. [PMID: 37043958 PMCID: PMC10140141 DOI: 10.1016/j.psj.2023.102656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Intestinal health of broiler chickens is influenced by the concentration of dietary amino acids but data are limited on the role of dietary methionine (Met). Two experiments were conducted to investigate the implications of different Met sources for performance, gut barrier function, and intestinal microbiota in broilers. In the first experiment, Ross 308 off-sex birds (n = 900) were assigned to 10 dietary treatments each replicated 9 times in a 35-day study. Three sources of Met included DL-Met, L-Met, or Met hydroxy analog free acid (MHA-FA), each supplemented at suboptimal (SUB) at 80%, adequate (ADE) at 100% and over-requirement (OVR) at 120% of the specifications against a deficient (DEF) diet with no added Met. The second experiment used 96 Ross 308 broilers in a 2 × 4 factorial arrangement. Four diets included 3 sources of Met supplemented at ADE level plus the DEF treatment. On d 17, 19, and 23, half of the birds in each dietary treatment were injected with dexamethasone (DEX) to induce leaky gut. In the first experiment, without an interaction, from d 0 to 35, birds fed DL-Met and L-Met performed similarly for BWG, feed intake, and FCR but birds fed MHA-FA had less feed intake and BWG (P < 0.05). At d 23, mRNA expression of selected tight junction proteins was not affected except for claudin 2. Ileal microbiota of DEF treatment was different from DL-MET or L-MET supplemented birds (P < 0.05). However, microbiota of MHA-FA treatments was only different at OVR from the DEF group. The abundance of Peptostreptococcus increased in DEF treatment whereas Lactobacillus decreased. In the second experiment, DEX independently increased (P < 0.001) intestinal permeability assayed by fluorescein isothiocyanate dextran, but diet had no effect. DL-Met and L-Met fed birds had a higher level of claudin 3 only in DEX-injected birds (P < 0.05). In conclusion, unlike the level of supplementation, DL-Met, L-Met, and MHA-FA were largely similar in their limited impacts on intestinal barrier function and gut microbiota in broilers.
Collapse
|
14
|
Barekatain R, Chrystal PV, Nowland T, Moss AF, Howarth GS, Hao Van TT, Moore RJ. Negative consequences of reduced protein diets supplemented with synthetic amino acids for performance, intestinal barrier function, and caecal microbiota composition of broiler chickens. ANIMAL NUTRITION 2023. [DOI: 10.1016/j.aninu.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
15
|
Palamidi I, Paraskeuas VV, Mountzouris KC. Dietary and phytogenic inclusion effects on the broiler chicken cecal ecosystem. FRONTIERS IN ANIMAL SCIENCE 2023. [DOI: 10.3389/fanim.2022.1094314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Dietary modulation in broilers is crucial for the establishment of beneficial microbiota and, subsequently, the promotion of intestinal health. In this trial, a 2 × 2 factorial design was used with two different specifications with respect to dietary metabolizable energy (ME) and crude protein (CP) levels (i.e., 95% and 100% of recommendations) and phytogenic levels (0 and 150 mg/kg). Levels of total bacteria, Bacteroides spp., Lactobacillus spp., and Clostridium cluster XIVa attached to the cecal mucosa and in the cecal digesta were lower in broilers fed the 95% ME and CP specification diets, as was the molar ratio of butyric acid. In addition, the relative activity of autoinducers-2 (AI-2) and the expression levels of TLR4 and AvBD6 were increased. Phytogenic supplementation reduced cecal digesta levels of Escherichia coli and Clostridium cluster I levels, and increased Clostridium cluster IV levels. Moreover, the butyric acid molar ratio and the relative activity of AI-2 were increased, whereas the concentration of branched VFAs and the expression of AvBD6 and LEAP2 were reduced by phytogenic administration. Dietary specifications and phytogenic interactions were shown for the cecal-attached microbiota composition, metabolic activity of digesta microbiota, relative expression of autoinducers-2, and relative expression of toll-like signaling molecules and host antimicrobial peptides. In conclusion, it has been shown that ME and CP dietary specifications, combined or not with phytogenics, modulate multilevel gut biomarkers ranging from microbiota composition and metabolic activity to microbial communications and host signaling, inflammation, and defense.
Collapse
|
16
|
Low-protein diets for broilers: Current knowledge and potential strategies to improve performance and health, and to reduce environmental impact. Anim Feed Sci Technol 2023. [DOI: 10.1016/j.anifeedsci.2023.115574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Supplementation of guanidinoacetic acid in feed with different levels of protein on intestinal histomorphology, serum biochemistry, and meat quality of broiler. JOURNAL OF THE INDONESIAN TROPICAL ANIMAL AGRICULTURE 2022. [DOI: 10.14710/jitaa.47.4.265-276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
This study aimed to investigate the effect of guanidinoacetic acid (GAA) with different protein levels in feed on intestinal histomorphology, serum biochemistry, and meat quality of broiler chicken. GAA is the only direct precursor of creatine and is involved in the synthesis of bioenergy cellular. This research used 1.176 day-old chicks of the Lohmann Indian River strain that were reared for 35 days. The supplementation effect was investigated using six treatments, i.e., two levels of feed protein and three levels of GAA, with seven replications. Broiler chickens were fed with 23% and 21% crude pro-tein during the pre-starter phase, 21% and 19% during the starter phase, and 19% and 17% during the finisher phase, with a GAA addition of 0 g/ton, 600 g/ton, and 1200 g/ton, respectively. The result showed GAA supplementation with different protein levels reduced triglyceride (P<0,05), cholesterol levels in serum (P<0,05), increased surface area of the microvilli (P<0,05), pH of breast meat (P<0,05), but did not affect the chemical quality of breast meat (P>0,05). In conclusion, GAA supplementation in different level protein diets increased the surface area of the microvilli, pH of breast meat, reduce se-rum cholesterol and triglycerides, without affecting the chemical quality of broiler meat.
Collapse
|
18
|
Lambert W, Chalvon-Demersay T, Bouvet R, Grandmaison JLC, Fontaine S. Reducing dietary crude protein in broiler diets does not compromise performance and reduces environmental impacts, independently from the amino acid density of the diet. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
19
|
Konieczka P, Tykałowski B, Ognik K, Kinsner M, Szkopek D, Wójcik M, Mikulski D, Jankowski J. Increased arginine, lysine, and methionine levels can improve the performance, gut integrity and immune status of turkeys but the effect is interactive and depends on challenge conditions. Vet Res 2022; 53:59. [PMID: 35883183 PMCID: PMC9327309 DOI: 10.1186/s13567-022-01080-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Arginine (Arg), lysine (Lys), and methionine (Met) can be used to support the health status of turkeys. The present study investigated selected performance, gut integrity, and immunological parameters in turkeys reared in optimal or challenge conditions. The experiment lasted for 28 days, and it had a completely randomized 2 × 3 factorial design with two levels of dietary Arg, Lys and Met (high or low) and challenge with Clostridium perfringens (C. perfringens), Escherichia coli lipopolysaccharide (LPS) or no challenge (placebo). Increased dietary levels of Arg, Lys and Met had a beneficial effect on turkey performance and immunological parameters, and it improved selected indicators responsible for maintaining gut integrity in different challenge conditions. Under optimal conditions (with no challenge), high ArgLysMet diets did not compromise bird performance and they improved selected performance parameters in challenged birds. The immune system of turkeys was not excessively stimulated by high ArgLysMet diets, which did not disrupt the redox balance and had no negative effect on gut integrity. High ArgLysMet diets increased the expression levels of selected genes encoding nutrient transporters and tight junction proteins. However, the influence exerted by different dietary inclusion levels of Arg, Lys and Met on gut integrity was largely determined by the stressor (C. perfringens vs. LPS). Further studies are required to investigate the role of Arg, Lys and Met levels in the diet on the immune response, gut function and performance of turkeys in different challenge conditions.
Collapse
Affiliation(s)
- Paweł Konieczka
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland. .,Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland.
| | - Bartłomiej Tykałowski
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10‑719, Olsztyn, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, University of Life Sciences, 20-950, Lublin, Poland
| | - Misza Kinsner
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Dominika Szkopek
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Maciej Wójcik
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Dariusz Mikulski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Jan Jankowski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| |
Collapse
|
20
|
Abascal-Ponciano GA, Leiva SF, Flees JJ, Avila LP, Starkey JD, Starkey CW. Dietary 25-Hydroxyvitamin D3 Supplementation Modulates Intestinal Cytokines in Young Broiler Chickens. Front Vet Sci 2022; 9:947276. [PMID: 35898543 PMCID: PMC9309538 DOI: 10.3389/fvets.2022.947276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
Vitamin D signaling is important for intestinal homeostasis. An increase in vitamin D receptors in immune cells can modulate cell phenotype and cytokine secretion. Cytokines regulate both pro- (interleukin 17; IL-17) and anti-inflammatory (IL-10) responses triggered by external stimuli. Inflammation in intestinal tissues can disrupt the structure and the remodeling of epithelial tight junction complexes, thus, compromising the protective barrier. The objective of the study was to determine the impact of dietary supplementation with 25-hydroxycholecalciferol (25OHD3), a hydroxylated metabolite of vitamin D, on intestinal cytokine abundance and epithelial barrier integrity over time in broilers. A randomized complete block design experiment was conducted to evaluate the effect of dietary 25OHD3 inclusion on relative protein expression of the cytokines, IL-17 and IL-10, and tight junction proteins, Zona Occludens 1 (ZO-1), and Claudin-1 (CLD-1), in broiler chicken duodenum and ileum from 3 to 21 days post-hatch. On day 0, male chicks (n = 168) were randomly assigned to raised floor pens. Experimental corn–soybean meal-based treatments were as follows: (1) a common starter diet containing 5,000 IU of D3 per kg of feed (VITD3) and (2) a common starter diet containing 2,240 IU of D3 + 2,760 IU of 25OHD3 per kg of feed (25OHD3) fed from days 0 to 21. On days 3, 6, 9, 12, 15, 18, and 21, 12 birds per treatment were euthanized to collect tissue samples for quantitative, multiplex, and fluorescent Western blot analysis. Target proteins were quantified using Image Quant TL 8.1 and expressed relative to total protein. Feeding 25OHD3 post-hatch decreased ileal IL-10 (anti-inflammatory) protein expression in 21-day-old broilers compared with VITD3 only (P = 0.0190). Broilers fed only VITD3 post-hatch had greater IL-17 (pro-inflammatory) protein expression in the ileum at 18 and 21 days-of-age (P = 0.0412) than those that fed 25OHD3. Dietary inclusion of 25OHD3 lowered the abundance of key inflammatory cytokines in the ileum of young broilers.
Collapse
|
21
|
Lisnahan CV, Nahak OR, Welsiliana W, Pardosi L. Effect of L-arginine and L-Lysine HCl ratio on growth performance and ileum morphology of native chickens aged 2-14 weeks. Vet World 2022; 15:1365-1372. [PMID: 35765480 PMCID: PMC9210845 DOI: 10.14202/vetworld.2022.1365-1372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022] Open
Abstract
Background and Aim: Micronutrients such as essential amino acids in chicken feed must be balanced to promote optimal development. The balance of the amino acids arginine and lysine in chicken feed is particularly important. This study aimed to examine the effect of the ratio of L-arginine to L-Lysine HCl on growth performance and ileum morphology of native chickens aged 2-14 weeks-old. Materials and Methods: One hundred and eighty 2-week-old native chickens which initial weight 78.10±4.97 g were classified into six treatments and five repetitions using a completely randomized design. Treatments were based on the ratio of arginine to lysine in the feed: T1 (0.50% L-arginine: 0.85% L-lysine HCl); T2 (0.75% L-arginine: 0.85% L-lysine HCl); T3 (1.00% L-arginine: 0.85% L-lysine HCl); T4 (0.50% L-arginine: 1.00% L-lysine HCl); T5 (0.75% L-arginine: 1.00% L-lysine HCl); and T6 (1.00% L-arginine: 1.00% L-lysine HCl). Results: Groups T3 and T6 had the highest feed consumption (42.06±0.29 and 42.78±0.72 g/bird/day, respectively), while Group T6 had the highest body weight and body weight gain rate (1505.60±103.20 kg/bird and 16.99±1.24 g/bird/day, respectively). Groups T3 and T6 also had the highest carcass weight (916.16±46.99 and 947.18±62.32 g/bird, respectively). The best feed conversion was seen for Groups T3, T5, and T6 (2.55±0.14, 2.50±0.20, and 2.53±0.19, respectively). For ileum morphometry, the highest villus height occurred in Groups T2, T3, T5, and T6 (962.80±23.31, 982.80±10.03, 972.80±18.99, and 989.80±10.69 μm, respectively); and Group T6 had the highest crypt depth and villus width (340.80±11.52 and 302.00±4.00 μm, respectively). Statistical analysis indicated significant differences among the treatment groups for all variables examined (p<0.05). Conclusion: The highest ratio of arginine-lysine was associated with the largest increase in native chicken feed consumption, body weight gain, feed conversion, and carcass weight, as well as villus height and width, and crypt depth in the ileum. Overall, an arginine-lysine ratio of 0.8-1.20 promoted optimal growth of native chickens aged 2-14 weeks. In the future, it is important to increase the arginine-lysine ratio with low feed protein levels in native chickens.
Collapse
Affiliation(s)
- Charles Venirius Lisnahan
- Department of Animal Husbandry, Faculty of Agriculture, University of Timor, East Nusa Tenggara 85613, Indonesia
| | - Oktovianus R. Nahak
- Department of Animal Husbandry, Faculty of Agriculture, University of Timor, East Nusa Tenggara 85613, Indonesia
| | - Welsiliana Welsiliana
- Department of Biology, Faculty of Agriculture, University of Timor, East Nusa Tenggara 85613, Indonesia
| | - Lukas Pardosi
- Department of Biology, Faculty of Agriculture, University of Timor, East Nusa Tenggara 85613, Indonesia
| |
Collapse
|
22
|
Kumar A, Toghyani M, Kheravii SK, Pineda L, Han Y, Swick RA, Wu SB. Organic acid blends improve intestinal integrity, modulate short-chain fatty acids profiles and alter microbiota of broilers under necrotic enteritis challenge. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:82-90. [PMID: 34977378 PMCID: PMC8669248 DOI: 10.1016/j.aninu.2021.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 12/14/2022]
Abstract
Controlling enteric diseases of broilers is crucial. Among many additives, organic acids (OA) and their blends are gaining attention to combat diseases in the post-antibiotic era. The current study evaluated the potentials of short-chain fatty acids (SCFA) and medium-chain fatty acids (MCFA) blends and/or phenolic compounds on intestinal integrity, intestinal pH, caecal microbiota, and caecal SCFA profiles of broilers under necrotic enteritis (NE) challenge. The additives used were: (A) a blend of SCFA, MCFA, and a phenolic compound (SMP), (B) a blend of free and buffered SCFA with MCFA (SMF), and (C) a blend of free and buffered SCFA with a high concentration of MCFA (SHM). A total of 1,404 male parental chicks of Ross 308 broilers were randomly allocated to 78 floor pens on hatching day with 6 treatments replicated 13 times with 18 birds per pen. The treatments were: UCC, unchallenged control; CHC, challenged control; BAC, challenged group plus zinc bacitracin; SMP, challenged group plus additive SMP; SMF, challenged group plus additive SMF; SHM, challenged group plus additive SHM. Birds were challenged with field-strain Eimeria spp. on d 9 and Clostridium perfringens on d 14. Birds challenged with NE increased fluorescein isothiocyanate dextran (FITC-d) concentration in serum, reduced acetate and butyrate concentrations, and increased Bacteroides and C. perfringens load in the caeca (P < 0.05). Birds fed additives decreased FITC-d from gut to serum, reduced Bacteroides (d 16, P < 0.05) and numerically reduced C. perfringens load compared to CHC group. Birds fed additive SHM had higher concentrations of acetate and butyrate (d 21, P < 0.05) than CHC group but were not different from SMP and SMF groups. All the additives exhibited similar intestinal protection against NE compared to the BAC group indicated by FITC-d concentration in serum, acetate, propionate and butyrate concentrations in the caeca, and caecal bacterial loads except for the C. perfringens (P > 0.05). The SMP group had a higher load compared to BAC (P < 0.05). These findings suggest the promising effects of OA blends as alternatives to BAC to ameliorate the impact of NE challenge of broilers as indicated by improved intestinal health.
Collapse
Affiliation(s)
- Alip Kumar
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Mehdi Toghyani
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Sarbast K. Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Lane Pineda
- Trouw Nutrition R & D, Stationsstraat 77, 3811, MH, Amersfoort, the Netherlands
| | - Yanming Han
- Trouw Nutrition R & D, Stationsstraat 77, 3811, MH, Amersfoort, the Netherlands
| | - Robert A. Swick
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
- Corresponding author.
| |
Collapse
|
23
|
Dao HT, Sharma NK, Kheravii SK, Bradbury EJ, Wu SB, Swick RA. Supplementation of reduced protein diets with l-arginine and l-citrulline for broilers challenged with subclinical necrotic enteritis. 3. Immunological parameters and gene expression. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Dang DX, Yun KS, Kim IH. Achyranthes Japonica Nakai root extract supplementation improves apparent nutrient digestibility, caecum microbiota, and excreta gas emission in broiler chicks. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effects of supplementing Achyranthes Japonica Nakai (AJN) root extract to the diet of broiler chicks on growth performance, nutrient digestibility, caecum microbiota, excreta gas emission, and relative weight of organs. A total of 270 1-day-old Ross 308 broiler chicks (42.11 ± 0.18 g) were randomly allotted into 3 dietary treatments according to the initial body weight. Each treatment had 5 replicate cages with 18 birds per cage. The experimental period was 35 days (starter, days 1-7; grower, days 8-21; finisher, days 22-35). Dietary treatments were corn-soybean meal-based basal diet supplemented with 0.000, 0.015, or 0.030 % AJN root extract. The apparent total tract digestibility of nitrogen (P = 0.025) increased linearly with the increase of the dosage of AJN root extract, while the counts of E. coli in caecum (P = 0.038) and excreta ammonia emission (P = 0.003) decreased linearly. However, the growth performance (P > 0.05) and the relative weight of organs (P > 0.05) did not differ among the dietary groups. In conclusion, AJN root extract could increase the nutrient digestibility and reduce the noxious gas emission by reducing the caecum harmful microbiota in a dose-dependent manner.
Collapse
Affiliation(s)
- De Xin Dang
- Dankook University - Cheonan Campus, 65383, Cheonan, Chungnam, Korea (the Republic of)
| | - Kwan Sik Yun
- Weve The State Apt, Synergen Inc, Bucheon-si, Gyeonggi-do, Korea (the Republic of)
| | - In Ho Kim
- Dankook University Department of Animal Resources Science, 477893, Department of Animal Resource, and Science, Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam, 31116, South Korea, Cheonan, Korea (the Republic of), 31116
| |
Collapse
|
25
|
Gilani S, Chrystal PV, Barekatain R. Current experimental models, assessment and dietary modulations of intestinal permeability in broiler chickens. ACTA ACUST UNITED AC 2021; 7:801-811. [PMID: 34466684 PMCID: PMC8384772 DOI: 10.1016/j.aninu.2021.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Maintaining and optimising the intestinal barrier (IB) function in poultry has important implications for the health and performance of the birds. As a key aspect of the IB, intestinal permeability (IP) is mainly controlled by complex junctional proteins called tight junction proteins (TJ) that link enterocytes together. The disruption of TJ is associated with increased gut leakage with possible subsequent implications for bacterial translocation, intestinal inflammation, compromised health and performance of the birds. Despite considerable data being available for other species, research on IP in broiler chickens and in general avian species is still an understudied topic. This paper reviews the available literature with a specific focus on IP in broiler chickens with consideration given to practical factors affecting the IP, current assessment methods, markers and nutritional modulation of IP. Several experimental models to induce gut leakage are discussed including pathogens, rye-based diets, feed deprivation and stress-inducing agents such as exogenous glucocorticoids and heat stress. Although various markers including fluorescein isothiocyanate dextran, expression of TJ and bacterial translocation have been widely utilized to study IP, recent studies have identified a number of excreta biomarkers to evaluate intestinal integrity, in particular non-invasive IP. Although the research on various nutrients and feed additives to potentially modulate IP is still at an early stage, the most promising outcomes are anticipated for probiotics, prebiotics, amino acids and those feed ingredients, nutrients and additives with anti-inflammatory properties. Considerable research gaps are identified for the mechanistic mode of action of various nutrients to influence IP under different experimental models. The modulation of IP through various strategies (i.e. nutritional manipulation of diet) may be regarded as a new frontier for disease prevention and improving the health and performance of poultry particularly in an antibiotic-free production system.
Collapse
Affiliation(s)
- Saad Gilani
- Danisco Animal Nutrition (IFF), Oegstgeest, the Netherlands
| | | | - Reza Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA, Australia
- Corresponding author. South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia.
| |
Collapse
|
26
|
Amer SA, Beheiry RR, Abdel Fattah DM, Roushdy EM, Hassan FAM, Ismail TA, Zaitoun NMA, Abo-Elmaaty AMA, Metwally AE. Effects of different feeding regimens with protease supplementation on growth, amino acid digestibility, economic efficiency, blood biochemical parameters, and intestinal histology in broiler chickens. BMC Vet Res 2021; 17:283. [PMID: 34433469 PMCID: PMC8390192 DOI: 10.1186/s12917-021-02946-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Background This study was conducted to estimate the impacts of using varied feeding regimens with or without protease supplementation on the growth performance, apparent amino acid ileal digestibility (AID%), economic efficiency, intestinal histology, and blood biochemical parameters of broiler chickens. Three hundred one-day-old chicks (Ross 308 broiler) were randomly allotted to a 3 × 2 factorial design. The experimental design consisted of three feeding regimens; FR1: a recommended protein SBM diet, FR2: a low-protein SBM diet, and FR3: a low-protein diet with the inclusion of 5% DDGS and 5% SFM, with or without protease supplementation (250 mg/kg). Results Increased feed intake and feed conversion ratio were observed in the FR3 treatment during the starter stage and decreased body weight and body weight gain during the grower stage. However, there was no significant effect of the different feeding regimens, protease supplementation, or interaction on the overall performance. The economic value of diets also remained unaffected by the different feeding regimens, protease supplementation, or interaction. Protease supplementation resulted in lowering the AID% of tryptophan and leucine. Reduced AID% of methionine was evident in the FR2 + VE and FR3 − VE treatments. Histological findings substantiated the FR3 treatment mediated a decrease in the duodenal and jejunal villous height (VH), jejunal villous width (VW), and ileal VW, whereas, increase in the ileal crypt depth (CD). The FR2 + VE treatment reduced the VH:CD ratio in the duodenum. The duodenal CD and the jejunal goblet cell count were reduced as a consequence of protease supplementation. The FR3 + VE treatment documented a rise in duodenal CD, while an increase in the jejunal goblet cell count was observed in the FR3 − VE treatment. The FR3 treatment enhanced the IgM serum levels compared to the FR1 and FR2 treatments. IgM serum levels were also elevated following protease supplementation. FR3 + VE treatment increased IgM serum levels. The highest serum ALP was found in the FR3 treatment, whereas the lowest level was obtained in the FR2 treatment. Conclusion Low-protein SBM-based diets could be used without affecting the birds’ growth. Altered morphometric measures of the intestine and increased IgM and ALP levels indicated the low-protein SBM/DDGS-SFM diet-induced damage of the intestinal histoarchitecture and immune system of birds. These different diets and protease supplementation failed to affect economic efficiency positively.
Collapse
Affiliation(s)
- Shimaa A Amer
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Rasha R Beheiry
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Doaa M Abdel Fattah
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Elshimaa M Roushdy
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Fardos A M Hassan
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Noha M A Zaitoun
- Department of Economics, Faculty of Commerce, Zagazig University, Zagazig, 44511, Egypt
| | - Azza M A Abo-Elmaaty
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Abdallah E Metwally
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
27
|
Barekatain R, Chalvon-Demersay T, McLaughlan C, Lambert W. Intestinal Barrier Function and Performance of Broiler Chickens Fed Additional Arginine, Combination of Arginine and Glutamine or an Amino Acid-Based Solution. Animals (Basel) 2021; 11:2416. [PMID: 34438873 PMCID: PMC8388668 DOI: 10.3390/ani11082416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 01/01/2023] Open
Abstract
Two experiments were conducted to investigate the effect of arginine (Arg); the combination of Arg and glutamine (Gln); as well as an amino acid-based solution (MIX) containing Arg, Gln, threonine (Thr), and grape extract, on performance, intestinal permeability, and expression of selected mechanistic genes. Using 240 male Ross 308 off-sex broiler chickens, four experimental treatments were replicated six times with 10 birds per replicate. The experimental treatments included 5 g/kg Arg, 2.5 g/kg Arg and 2.5 g/kg Gln, and 1 g/kg MIX added to a basal diet as control. In the second study, the four dietary treatments were then given to 24 birds with or without a synthetic glucocorticoid, dexamethasone (DEX), as a gut dysfunction model. Feed conversion ratio was improved by all the supplemented treatments from day 7 to 35 of age (p < 0.001). DEX injections increased (p < 0.001) the intestinal permeability in all treatments, which tended to be reversed by Arg or MIX. Additional Arg, Arg-Gln, and MIX suppressed (p < 0.05) the overexpression of IL-1β generated by DEX. Feeding birds with MIX treatment increased (p < 0.05) expression of SGLT-1 and glutathione synthetase. In conclusion, tested amino acid supplements were effective in improving feed efficiency and restraining intestinal inflammation caused by DEX through IL-1β pathway.
Collapse
Affiliation(s)
- Reza Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia;
| | | | - Clive McLaughlan
- South Australian Research and Development Institute, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia;
| | - William Lambert
- METEX NOOVISTAGO, 32 Rue Guersant, 75017 Paris, France; (T.C.-D.); (W.L.)
| |
Collapse
|
28
|
Alhotan RA, Al-Sagan AA, Al-Abdullatif AA, Hussein EOS, Saadeldin IM, Azzam MM, Swelum AA. Interactive effects of dietary amino acid density and environmental temperature on growth performance and expression of selected amino acid transporters, water channels, and stress-related transcripts. Poult Sci 2021; 100:101333. [PMID: 34274571 PMCID: PMC8318993 DOI: 10.1016/j.psj.2021.101333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/04/2021] [Accepted: 06/10/2021] [Indexed: 02/03/2023] Open
Abstract
Exposure to heat stress (HS) is one of the challenges facing the broiler industry worldwide. Various nutritional strategies have been suggested, such as altering dietary concentrations of some nutrients. Thus, we evaluated feeding different amino acid (AA) densities on live performance, Pectoralis (P.) muscles, and expression of selected AA transporters, water channels, and stress-related transcripts in a fast-growing broiler strain. Ross 308 chicks (n = 576) were randomly assigned to 4 dietary treatments (24 reps, 6 chicks per rep), differing in AA density (110, 100, 90, and 80% of a breeder's AA specifications). During 24 to 36 days of age, half of the birds were kept at a thermoneutral (TN) temperature of 20°C, whereas the other half were subjected to HS at 32° C for 8 h daily, making the treatment design a 4 × 2. The results revealed no interaction between housing temperature and AA density on growth performance or P. muscles weights. Feeding 80% AAs depressed BWG, FCR, and P. muscles at 36 d (P < 0.001). There was an interaction (P < 0.001) between AA density and temperature on the expression of all examined genes. Reducing the AA density beyond 100% upregulated the expression of AA transporter (CAT1, B0AT, b0,+AT, SNAT1, LAT1), HSP70, HSP90, glucocorticoid receptor (GR), and AQP3 in the TN birds’ jejunum. Whereas in the HS birds, inconsistent expressions were observed in the jejunum, of which CAT1, B0AT, and LAT1 were markedly downregulated as AA density was reduced. In P. major of TN birds, reducing AA density resulted in upregulating the expression of all AA transporters, HSP70, GR, and AQP1, while downregulating HSP90 and AQP9. In contrast, AA reduction markedly downregulated CAT1, B0AT, and LAT1 in the P. major of HS birds. These findings indicate that the dietary AA level alters the expression of various genes involved in AA uptake, protein folding, and water transport. The magnitude of alteration is also dependent on the housing temperature. Furthermore, the results highlight the importance of adequate AA nutrition for fast-growing chickens under HS.
Collapse
Affiliation(s)
- R A Alhotan
- Department of Animal Production, King Saud University, King Abdullah Road, Riyadh 11451, Saudi Arabia.
| | - A A Al-Sagan
- King Abdulaziz City for Science & Technology, Riyadh 11442, Saudi Arabia
| | - A A Al-Abdullatif
- Department of Animal Production, King Saud University, King Abdullah Road, Riyadh 11451, Saudi Arabia
| | - E O S Hussein
- Department of Animal Production, King Saud University, King Abdullah Road, Riyadh 11451, Saudi Arabia
| | - I M Saadeldin
- Department of Animal Production, King Saud University, King Abdullah Road, Riyadh 11451, Saudi Arabia
| | - M M Azzam
- Department of Animal Production, King Saud University, King Abdullah Road, Riyadh 11451, Saudi Arabia; Department of Poultry Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - A A Swelum
- Department of Animal Production, King Saud University, King Abdullah Road, Riyadh 11451, Saudi Arabia
| |
Collapse
|
29
|
Kumar A, Kheravii SK, Li L, Wu SB. Monoglyceride Blend Reduces Mortality, Improves Nutrient Digestibility, and Intestinal Health in Broilers Subjected to Clinical Necrotic Enteritis Challenge. Animals (Basel) 2021; 11:1432. [PMID: 34067698 PMCID: PMC8156546 DOI: 10.3390/ani11051432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022] Open
Abstract
This study evaluated the potential of monoglyceride blend (MG) and buffered formic acid (FA) as alternatives to antibiotics in the performance and intestinal health of broilers under clinical necrotic enteritis (NE) challenge. A total of 544 as-hatched Ross 308 broiler chicks were randomly distributed to 32-floor pens housing 17 birds per pen. The four treatments were: NC-non-additive control; ZBS-antibiotic group supplemented with zinc bacitracin and salinomycin; MG-additive MG supplementation in the starter phase only; and MGFA-additive MG in starter phase and FA in grower and finisher phases. All birds were challenged with Eimeria spp. and Clostridium perfringens. Results showed that the NC group had lower BWG and higher FCR than the ZBS group in the grower and overall period (p < 0.05). The NC group had higher NE-caused mortality (days 14 to 17) than the ZBS group (p < 0.05). Birds fed MG had lower NE-caused mortality than the NC group (p < 0.05). Birds fed MG had upregulated jejunal tight junction protein1 (TJP1) and immunoglobulin (IgG) on day 16 and improved gross energy digestibility on day 24 than the NC group (p < 0.05). These findings suggest that supplementation of MG may improve intestinal health and protect birds from clinical NE occurrence.
Collapse
Affiliation(s)
- Alip Kumar
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia; (A.K.); (S.K.K.)
| | - Sarbast K. Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia; (A.K.); (S.K.K.)
| | - Lily Li
- BASF Animal Nutrition, Asia Pacific, 7 Temasek Boulevard, Singapore 038987, Singapore;
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia; (A.K.); (S.K.K.)
| |
Collapse
|
30
|
Mullenix GJ, Greene ES, Emami NK, Tellez-Isaias G, Bottje WG, Erf GF, Kidd MT, Dridi S. Spirulina platensis Inclusion Reverses Circulating Pro-inflammatory (Chemo)cytokine Profiles in Broilers Fed Low-Protein Diets. Front Vet Sci 2021; 8:640968. [PMID: 34041289 PMCID: PMC8141556 DOI: 10.3389/fvets.2021.640968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Proteins are considered the most expensive nutrients in commercial modern broiler production, and their dietary inclusion at low levels is pivotal to minimize feed costs and reduce nitrogen waste. The quest for an environmentally friendly source of proteins that favor the formulation of low protein diets without compromising broiler health, welfare, and growth performance has become a hotspot in nutrition research. Due to its high protein content, the naturally growing Spirulina microalgae is considered a promising nutrient source. The purpose of the present study was, therefore, to determine the effects of Spirulina supplementation on liver bacterial translocation, hematological profile, and circulating inflammatory and redox markers in broilers fed a low-protein diet. One-day-old Ross 708 male broilers (n = 180) were randomly assigned into one of three experimental treatments: standard diet as a control, low protein diet, and low protein diet supplemented with 100 g/kg of Spirulina. Target molecular markers were measured in the peripheral blood circulation using real-time quantitative PCR. Reducing dietary proteins increased bacterial translocation and systemic inflammation as indicated by proportions of basophils among blood leukocytes. The expression levels of circulating pro-inflammatory cytokines [interleukin (IL)-3, IL-6, IL-4, IL-18, and tumor necrosis factor-α], chemokines (CCL-20), and NOD-like receptor family pyrin domain containing 3 inflammasome were significantly upregulated in birds fed the low protein diet compared with the control. The inclusion of Spirulina reversed these effects, which indicates that Spirulina reduces systemic inflammation- and bacterial translocation-induced by a low protein diet and could be a promising alternative protein source in poultry diets.
Collapse
Affiliation(s)
- Garrett J Mullenix
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Elizabeth S Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Nima K Emami
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Guillermo Tellez-Isaias
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Walter G Bottje
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Gisela F Erf
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Michael T Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
31
|
Assay considerations for fluorescein isothiocyanate-dextran (FITC-d): an indicator of intestinal permeability in broiler chickens. Poult Sci 2021; 100:101202. [PMID: 34111612 PMCID: PMC8192867 DOI: 10.1016/j.psj.2021.101202] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/12/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
Fluorescein isothiocyanate-dextran (FITC-d) is being used as an indicator of intestinal paracellular permeability in poultry research. Especially with the industry moving toward antibiotic-free production, intestinal function and integrity issues have been a research focus. An increasing number of scientific conference abstracts and peer-reviewed journal publications have shown that 4-kDa FITC-d is an efficient marker candidate for measurement of intestinal permeability and can be applied in broiler research. However, experimental protocols vary by personnel, instruments used, and research institution, and potential concerns related to this assay have yet to receive the same amount of attention. Understanding protocol consistency within and across laboratories is vital for obtaining accurate, consistent, and comparable experimental results. This review is aimed to 1) summarize different FITC-d assays in broiler research from peer-reviewed publications during the past 6 yr and 2) discuss factors that can potentially affect intestinal permeability results when conducting the FITC-d assay. In summary, it is essential to pay attention to details, including gavage dose, fasting period, sample handling and lab analysis details when conducting the assay in broiler research. Differences in birds (breed/strain, age, and gender) and experimental design (diet, health status/challenge model, and sampling age) need to be considered when comparing serum FITC-d concentration results between different in vivo animal trials.
Collapse
|
32
|
Kidd MT, Maynard CW, Mullenix GJ. Progress of amino acid nutrition for diet protein reduction in poultry. J Anim Sci Biotechnol 2021; 12:45. [PMID: 33814010 PMCID: PMC8020538 DOI: 10.1186/s40104-021-00568-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/07/2021] [Indexed: 12/23/2022] Open
Abstract
There is growing interest among nutritionists in feeding reduced protein diets to broiler chickens. Although nearly a century of research has been conducted providing biochemical insights on the impact of reduced protein diets for broilers, practical limitation still exists. The present review was written to provide insights on further reducing dietary protein in broilers. To construct this review, eighty-nine peer reviewed manuscripts in the area of amino acid nutrition in poultry were critiqued. Hence, nutritional research areas of low protein diets, threonine, glycine, valine, isoleucine, leucine, phenylalanine, histidine, and glutamine have been assessed and combined in this text, thus providing concepts into reduced protein diets for broilers. In addition, linkages between the cited work and least cost formation ingredient and nutrient matrix considerations are provided. In conclusion, practical applications in feeding reduced protein diets to broilers are advancing, but more work is warranted.
Collapse
Affiliation(s)
- M T Kidd
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas System, Fayetteville, AR, 72701, USA.
| | - C W Maynard
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas System, Fayetteville, AR, 72701, USA
| | - G J Mullenix
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas System, Fayetteville, AR, 72701, USA
| |
Collapse
|
33
|
von Buchholz JS, Bilic I, Aschenbach JR, Hess M, Mitra T, Awad WA. Establishment of a novel probe-based RT-qPCR approach for detection and quantification of tight junctions reveals age-related changes in the gut barriers of broiler chickens. PLoS One 2021; 16:e0248165. [PMID: 33667266 PMCID: PMC7935255 DOI: 10.1371/journal.pone.0248165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/20/2021] [Indexed: 12/22/2022] Open
Abstract
Tight junctions (TJs) play a dominant role in gut barrier formation, therefore, resolving the structures of TJs in any animal species is crucial but of major importance in fast growing broilers. They are regulated in molecular composition, ultrastructure and function by intracellular proteins and the cytoskeleton. TJ proteins are classified according to their function into barrier-forming, scaffolding and pore-forming types with deductible consequences for permeability. In spite of their importance for gut health and its integrity limited studies have investigated the TJs in chickens, including the comprehensive evaluation of TJs molecular composition and function in the chicken gut. In the actual study sequence-specific probes to target different TJ genes (claudin 1, 3, 5, 7, 10, 19, zonula occludens 1 (ZO1), occludin (OCLN) and tricellulin (MD2)) were designed and probe-based RT-qPCRs were newly developed. Claudin (CLDN) 1, 5, ZO1 and CLDN 3, 7, MD2 were engulfed in multiplex RT-qPCRs, minimizing the number of separate reactions and enabling robust testing of many samples. All RT-qPCRs were standardized for chicken jejunum and caecum samples, which enabled specific detection and quantification of the gene expression. Furthermore, the newly established protocols were used to investigate the age developmental changes in the TJs of broiler chickens from 1-35 days of age in the same organ samples. Results revealed a significant increase in mRNA expression between 14 and 21days of age of all tested TJs in jejunum. However, in caecum, mRNA expression of some TJs decreased after 1 day of age whereas some TJs mRNA remained constant till 35 days of age. Taken together, determining the segment-specific changes in the expression of TJ- proteins by RT-qPCR provides a deeper understanding of the molecular mechanisms underpinning pathophysiological changes in the gut of broiler chickens with various etiologies.
Collapse
Affiliation(s)
- J. Sophia von Buchholz
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Ivana Bilic
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Jörg R. Aschenbach
- Department of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
| | - Michael Hess
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Taniya Mitra
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Wageha A. Awad
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
34
|
Gharib-Naseri K, Dorigam JCP, Doranalli K, Morgan N, Swick RA, Choct M, Wu SB. Bacillus amyloliquefaciens CECT 5940 improves performance and gut function in broilers fed different levels of protein and/or under necrotic enteritis challenge. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:185-197. [PMID: 33997347 PMCID: PMC8110864 DOI: 10.1016/j.aninu.2020.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 11/24/2022]
Abstract
Two studies were conducted to investigate the effect of Bacillus amyloliquefaciens CECT 5940 (BA) as a probiotic on growth performance, amino acid digestibility and bacteria population in broiler chickens under a subclinical necrotic enteritis (NE) challenge and/or fed diets with different levels of crude protein (CP). Both studies consisted of a 2 × 2 factorial arrangement of treatments with 480 Ross 308 mix-sexed broiler chickens. In study 1, treatments included 1) NE challenge (+/-), and 2) BA (1.0 × 106 CFU/g of feed) supplementation (+/-). In study 2, all birds were under NE challenge, and treatments were 1) CP level (Standard/Reduced [2% less than standard]) and 2) BA (1.0 × 106 CFU/g of feed) supplementation (+/-). After inducing NE infection, blood samples were taken on d 16 for uric acid evaluation, and cecal samples were collected for bacterial enumeration. In both studies, ileal digesta was collected on d 35 for nutrient digestibility evaluation. In study 1, the NE challenge reduced body weight gain (BWG), supressed feed conversion ratio (FCR) and serum uric acid levels (P < 0.001). Supplementation of BA increased BWG (P < 0.001) and reduced FCR (P = 0.043) across dietary treatments, regardless of challenge. Bacillus (P = 0.030) and Ruminococcus (P = 0.029) genomic DNA copy numbers and concentration of butyrate (P = 0.017) were higher in birds fed the diets supplemented with BA. In study 2, reduced protein (RCP) diets decreased BWG (P = 0.010) and uric acid levels in serum (P < 0.001). Supplementation of BA improved BWG (P = 0.001) and FCR (P = 0.005) and increased Ruminococcus numbers (P = 0.018) and butyrate concentration (P = 0.033) in the ceca, regardless of dietary CP level. Further, addition of BA reduced Clostridium perfringens numbers only in birds fed with RCP diets (P = 0.039). At d 35, BA supplemented diets showed higher apparent ileal digestibility of cystine (P = 0.013), valine (P = 0.020), and lysine (P = 0.014). In conclusion, this study suggests positive effects of BA supplementation in broiler diets via modulating gut microflora and improving nutrient uptake.
Collapse
Affiliation(s)
- Kosar Gharib-Naseri
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Juliano C P Dorigam
- Evonik Nutrition & Care GmbH, Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang, Germany
| | - Kiran Doranalli
- Evonik Nutrition & Care GmbH, Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang, Germany
| | - Natalie Morgan
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Robert A Swick
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Mingan Choct
- University of New England, Armidale 2351, Australia
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
35
|
Hong J, Ndou SP, Adams S, Scaria J, Woyengo TA. Canola meal in nursery pig diets: growth performance and gut health. J Anim Sci 2020; 98:skaa338. [PMID: 33098648 PMCID: PMC8060915 DOI: 10.1093/jas/skaa338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
An experiment was conducted to determine the effects of including canola meal (CM) in nursery pig diets on growth performance, immune response, fecal microbial composition, and gut integrity. A total of 200 nursery pigs (initial body weight = 7.00 kg) were obtained in two batches of 100 pigs each. Pigs in each batch were housed in 25 pens (four pigs per pen) and fed five diets in a randomized complete block design. The five diets were corn-soybean meal (SBM)-based basal diets with 0%, 10%, 20%, 30%, or 40% of CM. The diets were fed in three phases: phase 1: day 0 to 7, phase 2: day 7 to 21, and phase 3: day 21 to 42. Diets in each phase were formulated to similar net energy, Ca, and digestible P and amino acid contents. Feed intake and body weight were measured by phase. Immune response and gut integrity parameters were measured at the end of phases 1 and 2. Fecal microbial composition for diets with 0% or 20% CM was determined at the end of phase 2. Overall average daily gain (ADG) responded quadratically (P < 0.05) to increasing dietary level of CM such that ADG was increased by 17% due to an increase in the dietary level of CM from 0% to 20% and was reduced by 16% due to an increase in the dietary level of CM from 20% to 40%. Pigs fed diets with 0% or 40% CM did not differ in overall ADG. Dietary CM tended to quadratically decrease (P = 0.09) serum immunoglobulin A (IgA) level at the end of phase 2 such that serum IgA level tended to reduce with an increase in dietary CM from 0% to 20% and to increase with an increase in dietary CM from 20% to 40%. Dietary CM at 20% decreased (P < 0.05) the relative abundance of Bacteroidetes phylum and tended to increase (P = 0.07) the relative abundance of Firmicutes phylum. Dietary CM linearly increased (P < 0.05) the lactulose to mannitol ratio in the urine by 47% and 49% at the end of phases 1 and 2, respectively, and tended to linearly decrease (P < 0.10) ileal transepithelial electrical resistance at the end of phase 1 by 64%. In conclusion, CM fed in the current study could be included in corn-SBM-based diets for nursery pigs 20% to improve the growth performance and gut microbial composition and reduce immune response. Also, the CM used in the current study could be included in corn-SBM-based diets for nursery pigs at 30% or 40% without compromising growth performance. Dietary CM increased gut permeability, implying that dietary CM at 20% improves the growth performance of weaned pigs through mechanisms other than reducing gut permeability.
Collapse
Affiliation(s)
- Jinsu Hong
- Department of Animal Science, South Dakota State University, Brookings, SD
| | | | - Seidu Adams
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD
| | - Joy Scaria
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD
| | - Tofuko Awori Woyengo
- Department of Animal Science, South Dakota State University, Brookings, SD
- Department of Animal Science, Aarhus University, Tjele, Denmark
| |
Collapse
|
36
|
Wang QD, Li S, Zhang KY, Zhang Y, Bai SP, Ding XM, Wang JP, Peng HW, Tian G, Xuan Y, Su ZW, Zeng QF. Protease supplementation attenuates the intestinal health damage caused by low-protein diets in Pekin ducks. Poult Sci 2020; 99:6630-6642. [PMID: 33248578 PMCID: PMC7705030 DOI: 10.1016/j.psj.2020.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to investigate the effects of low-protein diets with low digestibility of feed ingredients on intestinal damage and to explore whether the protease supplementation can alleviate the damage in Pekin ducks. A total of 576 Pekin ducklings (6 replicate pens, 16 ducks/pen) were randomly assigned to 6 dietary treatments (3 × 2 factorial arrangement) in a randomized complete block design. Factors were CP levels (13.5%, 15.5%, and 17.5%) and protease (0 or 20,000U/kg). Compared with the diets containing 17.5% CP, low-protein diets (13.5% CP) showed suppressed (P < 0.05) growth performance and feed intake (FI); reduced (P < 0.05) serum-free arginine, isoleucine, leucine, methionine, phenylalanine, valine, and proline as well as the cecal acetate and propionate concentration; increased (P < 0.05) plasma and ileal mucosal tumor necrosis factor-α (TNF-α) concentration; and downregulated (P < 0.05) mRNA expression of TNF-α, nuclear transcription factor-κb, interferon gamma, and Occludin in ileal mucosa. Irrespective of the dietary CP levels, protease supplementation significantly increased (P < 0.05) the serum-free glutamic acid concentration while decreasing (P < 0.05) the plasma endotoxin, IL-6, and the cecal isovalerate concentration. A significant interactive effect was observed between low-protein diets and protease supplementation (P < 0.05) on serum-free arginine concentration, the ratio of ileal villus height to crypt depth, and the IL-6 concentration in ileal mucosa. These results indicated that low-protein diets could damage intestinal integrity to induce systemic inflammation response and at last to suppress growth performance. Protease supplementation could partly attenuate the negative effects on gut health caused by low-protein diets in Pekin ducks.
Collapse
Affiliation(s)
- Q D Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, 611130 China
| | - S Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, 611130 China
| | - K Y Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, 611130 China
| | - Y Zhang
- Mianyang Habio Bioengineering Co., Ltd., Mianyang 610000, China
| | - S P Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, 611130 China
| | - X M Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, 611130 China
| | - J P Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, 611130 China
| | - H W Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, 611130 China
| | - G Tian
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, 611130 China
| | - Y Xuan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, 611130 China
| | - Z W Su
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, 611130 China
| | - Q F Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, 611130 China.
| |
Collapse
|
37
|
Proszkowiec-Weglarz M, Schreier LL, Kahl S, Miska KB, Russell B, Elsasser TH. Effect of delayed feeding post-hatch on expression of tight junction- and gut barrier-related genes in the small intestine of broiler chickens during neonatal development. Poult Sci 2020; 99:4714-4729. [PMID: 32988506 PMCID: PMC7598124 DOI: 10.1016/j.psj.2020.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/03/2020] [Accepted: 06/16/2020] [Indexed: 01/04/2023] Open
Abstract
The gut not only plays a key role in digestion and absorption of nutrients but also forms a physical barrier and first line of defense between the host and the luminal environment. A functional gut barrier (mucus and epithelial cells with tight junctions [TJ]) is essential for optimal health and efficient production in poultry. In current broiler system, chicks are deprived of food and water up to 72 h due to uneven hatching, hatchery procedures, and transportation. Post-hatch feed delay results in lower BW, higher FCR and mortality, and delayed post-hatch gut development. Little is known about the effects of early neonatal development and delayed feeding immediately post-hatch on gut barrier function in chickens. Therefore, the aim of the present study was to characterize the expression pattern of gut barrier-related and TJ-related genes in the small intestine of broiler chickens during early development and delay in access to feed. Newly hatched chicks received feed and water immediately after hatch or were subjected to 48 h delayed access to feed to mimic commercial hatchery setting and operations. Birds were sampled (n = 6) at -48, 0, 4, 24, 48, 72, 96, 144, 192, 240, 288, and 336 h post-hatch. Jejunum and ileum were collected, cleaned of digesta, and snap-frozen in liquid nitrogen or fixed in paraformaldehyde. The relative mRNA levels of gut barrier- and TJ-related protein genes were measured by quantitative PCR and analyzed by 2-way ANOVA. In both tissues, changes (P < 0.05) in gene expression pattern of gut barrier-related and TJ-related genes were detected due to delayed access to feed post-hatch and/or development. In general, expression of TJ-related genes was downregulated while mRNA levels of gut barrier-related genes were upregulated during development. Histological differences and changes in mucin staining due to age and treatment were observed. These results suggest that delayed access to feed post-hatch may affect TJ structure and/or function and therefore gut barrier function and overall health of the chicken small intestine.
Collapse
Affiliation(s)
- Monika Proszkowiec-Weglarz
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA.
| | - Lori L Schreier
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Stanislaw Kahl
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Katarzyna B Miska
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Beverly Russell
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Theodore H Elsasser
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
38
|
Barekatain R, Howarth GS, Willson NL, Cadogan D, Wilkinson S. Excreta biomarkers in response to different gut barrier dysfunction models and probiotic supplementation in broiler chickens. PLoS One 2020; 15:e0237505. [PMID: 32790727 PMCID: PMC7425878 DOI: 10.1371/journal.pone.0237505] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Increased intestinal permeability (IP) and inflammation are both linked with functionality of the intestinal barrier and in particular enterocytes. Currently, almost all assessment methods of the intestinal barrier function are invasive. The present study aimed to quantify selected proteins as novel biomarkers in excreta of broiler chickens to facilitate non-invasive assessment of gut barrier function using enzyme-linked immunosorbent assays (ELISA). It was further hypothesised that probiotics as feed additives may counteract gut barrier dysfunction. A 3 × 2 factorial arrangement of treatments was used with the main factors being gut barrier dysfunction models (control, rye-based diet, and dexamethasone-DEX) with and without probiotic supplementation (a three-strain Bacillus) using 72 male Ross 308 day-old chickens. Each of the 6 experimental treatments was replicated 12 times. On d 21 of age, fluorescein isothiocyanate dextran (FITC-d) uptake into serum was examined to test IP. Fresh excreta samples were collected on d 20. The biomarkers included alpha-1 antitrypsin (A1AT), intestinal fatty acid binding protein (I-FABP), lipocalin-2 (LCN2), fibronectin (FN), intestinal alkaline phosphatase (IAP), ovotransferrin (OVT) and superoxide dismutase [Cu-Zn] (SOD1). Only DEX increased (P<0.001) FITC-d passage to the blood on d 21 of age, indicating a greater IP. The excreta concentrations of A1AT, I-FABP and SOD1 were unaltered by the experimental treatments. DEX increased (P<0.05) FN concentration in excreta compared with control birds. Conversely, inclusion of rye in the diet reduced (P<0.05) FN but increased (P<0.001) OVT in excreta. Independently, DEX decreased IAP (P<0.05) in excreta compared with control and rye-fed birds. The excreta concentration of LCN2 tended (P = 0.086) to increase in birds injected by DEX. There was no demonstrable effect of probiotic addition on any of the studied parameters. Among the tested biomarkers, FN, IAP, and LCN2 revealed promise as biomarkers of intestinal barrier function quantified by ELISA kits.
Collapse
Affiliation(s)
- Reza Barekatain
- South Australian Research and Development Institute, Roseworthy, SA, Australia
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Gordon S. Howarth
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Nicky-Lee Willson
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | | | | |
Collapse
|
39
|
Barekatain R, Chrystal PV, Gilani S, McLaughlan CJ. Expression of selected genes encoding mechanistic pathways, nutrient and amino acid transporters in jejunum and ileum of broiler chickens fed a reduced protein diet supplemented with arginine, glutamine and glycine under stress stimulated by dexamethasone. J Anim Physiol Anim Nutr (Berl) 2020; 105:90-98. [PMID: 32654243 DOI: 10.1111/jpn.13416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022]
Abstract
Reducing crude protein and supplementation with synthetic amino acids in poultry nutrition is a recent trend to avoid wastage of protein and ammonia in production systems. Stress has been shown to impair intestinal barrier and increase inflammatory response. This study was performed on intestinal tissues of broiler chickens to understand the mechanism of stress induced by a synthetic glucocorticoid, dexamethasone (DEX) and the effect of supplementation of arginine, glutamine and glycine in reduced protein diets. Intestinal tissue samples from a previous study were utilized. Male Ross 308 chickens received a basal diet for the first seven days and then fed with crude protein that was reduced to 194 g/kg in grower experimental diets supplemented with glutamine, glycine and additional arginine at 10, 10 and 5 g/kg respectively. Half of the 96 individual birds were injected with DEX (0.5 mg/kg body weight) or saline on days 14, 16, 18 and 20 of age. mRNA expression for jejunum and ileum for amino acid transporters (y+LAT-1, Bo,+ AT, EAAT-3 and CAT-1), mechanistic genes (SGLT-1, mTOR, IAP and FABP-2) and pro-inflammatory genes (MUC-2, NF-κB, iNOS, IL-8 and IL-1β) were analysed using real-time PCR. The results showed that DEX decreased y+ LAT1 in jejunum, Bo ,+ AT and EAAT-3 in ileum. Arginine increased CAT-1 in the jejunum and ileum under DEX treatment. Through an interaction, DEX reduced IAP in jejunum of glycine and arginine supplemented group and reduced mTOR in jejunum independently. DEX reduced MUC-2 and iNOS in jejunum and increased iNOS and IL8 in the ileum. Amino acid supplementation did not appear to ameliorate these effects; however, there were some positive effects of glycine on NF-κB and arginine through increased CAT-1. Mechanistic understanding of amino acid supplementation in broiler diets warrants further research particularly when dietary protein is reduced below the level tested in the present study.
Collapse
Affiliation(s)
- Reza Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia.,School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | | | - Saad Gilani
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Clive J McLaughlan
- South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia
| |
Collapse
|
40
|
Hilliar M, Keerqin C, Girish CK, Barekatain R, Wu SB, Swick RA. Reducing protein and supplementing crystalline amino acids, to alter dietary amino acid profiles in birds challenged for subclinical necrotic enteritis. Poult Sci 2020; 99:2048-2060. [PMID: 32241490 PMCID: PMC7587694 DOI: 10.1016/j.psj.2019.11.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 02/05/2023] Open
Abstract
Necrotic enteritis (NE) is an infection of the gastrointestinal tract and is estimated to cost the global poultry industry billions of dollars annually. A study was conducted to examine whether reducing the crude protein might offset the severity of NE in broilers experimentally challenged with Eimeria spp. on day 9 and Clostridium perfringens on days 14 and 15. Furthermore, increasing the dietary amino acid (AA) density of the diet was also examined owing to identified benefits of improving performance compromised from low protein (LP) diets or NE. A 2 × 2 × 3 factorial arrangement of treatments at 6 replicates per treatment was used with 972 Ross 308 cockerels fed wheat-sorghum-soy-based diets to 35 D. Factors were NE challenge: no or yes; protein: standard (SP) or LP; and AA density: 100% AA, 115% with only essential AA (115% EAA) increased, and 115% AA with both essential and nonessential AA (115% AA) increased. The performance was measured in grower (days 7–21), finisher (days 21–35), and overall (day 7–35) periods. In addition, on day 16, intestinal lesion score and cecal short-chain fatty acids were measured. Only in nonchallenged birds fed LP diets, 115% AA increased grower feed intake (P < 0.01) and body weight gain (P < 0.05) compared to 115% EAA treatments. Challenge increased jejunal lesions (P < 0.001) with no difference between dietary treatments. Finisher body weight gain was greater in nonchallenged birds fed the 115% AA diets than in challenged birds (P < 0.05). Feeding diets with higher nonessential AA encouraged faster recovery from NE challenge. When fed the SP diets, NE challenge increased cecal butyric acid (P < 0.01) and total short-chain fatty acids (P < 0.05). The nutrient matrix used in LP diets does not favor beneficial butyric acid–producing bacteria. Using LP diets to mitigate NE severity does not offset the predisposing effect of E. spp. when attacking the gastrointestinal tract, and NE recovery is favored when feeding SP diets or additional AA.
Collapse
Affiliation(s)
- M Hilliar
- School of Environmental and Rural Science, University of New England, Armidale, 2351 NSW, Australia
| | - C Keerqin
- School of Environmental and Rural Science, University of New England, Armidale, 2351 NSW, Australia
| | - C K Girish
- Nutrition and Care, Animal Nutrition, Evonik (SEA) Pte. Ltd., 609927 Singapore
| | - R Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, University of Adelaide, Roseworthy, 5371 SA, Australia
| | - S-B Wu
- School of Environmental and Rural Science, University of New England, Armidale, 2351 NSW, Australia
| | - R A Swick
- School of Environmental and Rural Science, University of New England, Armidale, 2351 NSW, Australia.
| |
Collapse
|
41
|
Hilliar M, Hargreave G, Girish CK, Barekatain R, Wu SB, Swick RA. Using crystalline amino acids to supplement broiler chicken requirements in reduced protein diets. Poult Sci 2020; 99:1551-1563. [PMID: 32111322 PMCID: PMC7587716 DOI: 10.1016/j.psj.2019.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Reducing dietary CP can reduce N pollution. Much research has been reported in corn-based diets; however, the amino acid (AA) profiles of wheat-based diets differ. Poor performance as a result of reduced protein (RP) has been overcome in corn-based diets with essential AA and glycine (Gly) supplementation. The current study examined RP levels and Gly in wheat-based diets. An industry standard protein (SP) diet plus 3 RP diets with and without Gly supplementation, to match the SP treatment at 0.713 and 0.648% digestible Gly for the grower and finisher periods respectively, were fed to male broilers from day 10 of age. Grower CP included 22.5, 20.6, 18.3, and 17.7% (days 10–21) and finisher CP included 19.7, 17.8, 16.2, and 15.5% (days 21–35). Performance, meat yield, N efficiency, water intake, and apparent ileal digestibility of N and AA were measured. No difference in body weight gain (BWG), feed intake, or feed conversion ratio (FCR) were observed at 20% CP compared to the SP treatment. However, further reducing protein reduced BWG (P < 0.001), feed intake (P < 0.001), and increased FCR (P < 0.001). Supplementation of 0.713% Gly in the grower period increased BWG (P < 0.001) and reduced FCR (P < 0.001). Relative meat yield was not affected by dietary protein, however reducing CP increased relative fat pad weight (P < 0.001). Nitrogen efficiency increased with decreased CP in both grower (R2 = 0.69) and finisher (R2 = 0.80) treatments. Water intake decreased (R2 = 0.83) with decreasing CP intake. Apparent ileal digestibility of AA and N were higher in RP diets (P < 0.05). The benefits of reduced water intake and increased N efficiency and the disadvantages of poor performance and increased body fat in RP corn-based diets have been identified in RP wheat-based diets. Furthermore, at 18.5% CP the supplementation of crystalline AA and Gly can maintain BWG and FCR observed in SP diets.
Collapse
Affiliation(s)
- M Hilliar
- School of Environmental and Rural Science, University of New England, Armidale, 2351 NSW, Australia.
| | - G Hargreave
- Baiada Poultry Pty Limited, Pendle Hill, 2145 NSW, Australia
| | - C K Girish
- Nutrition and Care, Animal Nutrition, Evonik (SEA) Pte. Ltd, 609927 Singapore
| | - R Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, University of Adelaide, Roseworthy, 5371 SA, Australia
| | - S-B Wu
- School of Environmental and Rural Science, University of New England, Armidale, 2351 NSW, Australia
| | - R A Swick
- School of Environmental and Rural Science, University of New England, Armidale, 2351 NSW, Australia
| |
Collapse
|
42
|
Broilers fed a low protein diet supplemented with synthetic amino acids maintained growth performance and retained intestinal integrity while reducing nitrogen excretion when raised under poor sanitary conditions. Poult Sci 2019; 99:949-958. [PMID: 32036986 PMCID: PMC7587901 DOI: 10.1016/j.psj.2019.10.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/13/2019] [Accepted: 10/13/2019] [Indexed: 01/21/2023] Open
Abstract
The present study investigated the effects of supplementing a low protein (LP) diet supplemented with key essential amino acids (AA) to broilers on growth performance, intestinal tract function, blood metabolites, and nitrogen excretion when the animals were maintained under various sanitary conditions for 35 D after hatching. Three hundred eighty-four one-day-old male broilers (Ross 308) were randomly allotted to groups that received one of 6 dietary treatments in a 2 × 3 factorial arrangement (i.e., 2 environmental conditions and 3 dietary treatments) to give 8 replicates per treatment. Broilers were challenged with 2 environmental conditions (sanitary vs. poor sanitary). The dietary treatments were (1) high protein (HP) diet, (2) LP diet, and (3) LP diet with synthetic key essential AA (LPA): the LP diet was supplemented with synthetic AA up to the required levels for broilers. On day 14, birds consumed the LP diet impaired growth performance compared with those fed the HP diet, while the average daily weight gain-to-feed conversion ratio of birds fed the LPA diet improved to the level of birds fed the HP diet under poor sanitary conditions (P < 0.05). Broilers raised under poor sanitary conditions and fed the LP diet displayed higher (P < 0.05) zonula occludens (ZO-1) expression on day 14 than broilers fed either the HP or LPA diet. Under sanitary conditions, birds fed HP and LPA diets showed higher villus height and crypt depth compared with those of broilers fed the LP diet on day 35. Moreover, broilers raised in the poor sanitary environment had higher (P < 0.05) serum endotoxins than those raised in the sanitary environment. Broilers fed the LPA diet showed reduced (P < 0.05) nitrogen excretion on days 14 and 35 compared with those fed the LP and HP diets independent of the environment. In conclusion, the LPA diet did not impair growth performance under poor sanitary conditions for 14 D after hatch while resulting in lower nitrogen excretion in any environment conditions throughout the experiment.
Collapse
|
43
|
Barekatain R, Chrystal PV, Howarth GS, McLaughlan CJ, Gilani S, Nattrass GS. Performance, intestinal permeability, and gene expression of selected tight junction proteins in broiler chickens fed reduced protein diets supplemented with arginine, glutamine, and glycine subjected to a leaky gut model. Poult Sci 2019; 98:6761-6771. [PMID: 31328774 PMCID: PMC6869755 DOI: 10.3382/ps/pez393] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/13/2019] [Indexed: 01/05/2023] Open
Abstract
Changing dietary protein and amino acids may impact intestinal barrier function. Experiments were conducted in broiler chickens to evaluate supplementation of L-glutamine, glycine, and L-arginine in a reduced protein (RP) diet. Experiment 1 examined the growth performance of broilers fed 5 dietary treatments: 1) a standard diet; 2) an RP diet (193.9 g/kg CP in grower and 176.9 g/kg CP in finisher); 3) RP diet supplemented with 10 g/kg L-Gln; 4) RP diet supplemented with 10 g/kg Gly; 5) RP diet supplemented with 5 g/kg L-Arg. Each experimental diet was replicated 6 times with 10 birds per replicate. In a subset of 96 birds, experiment 2 tested the 4 RP diets with and without dexamethasone (DEX) to induce leaky gut. Each diet was replicated 24 times. Fluorescein isothiocyanate dextran (FITC-d) was used to test intestinal permeability (IP). Gene expression of selected tight junction proteins in ileal and jejunal tissues was assayed by quantitative PCR. From day 7 to 35, the RP diet increased feed intake (FI) (P < 0.05) and body weight gain (BWG) compared with the standard diet while Gln reduced FI and BWG (P < 0.05) compared with RP. Gly had no effect on BWG or FCR. Supplementation of Arg improved FCR from day 21 to 35 and day 7 to 35. In experiment 2, Arg tended to lower FITC-d (P = 0.086). DEX increased passage of FITC-d into the serum (P < 0.001). The villi surface area was increased in birds fed higher Arg (P < 0.05). DEX and diet interacted (P < 0.01) for jejunal claudin-3 mRNA level where DEX upregulated claudin-3 for all diets except the Arg diet. In summary, with a moderate reduction of protein, satisfactory performance can be obtained. Although Gln and Gly had no demonstrable positive effect on IP and performance of broilers, increasing the dietary Arg by approximately 140% improved FCR and showed indications of improved intestinal barrier function of birds fed an RP diet under a stress model.
Collapse
Affiliation(s)
- R Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia
- School of Animal and Veterinary Science, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia
| | - P V Chrystal
- Baiada Poultry, Pendle Hill, NSW 2145, Australia
| | - G S Howarth
- School of Animal and Veterinary Science, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia
| | - C J McLaughlan
- South Australian Research and Development Institute, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia
| | - S Gilani
- School of Animal and Veterinary Science, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia
| | - G S Nattrass
- South Australian Research and Development Institute, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia
| |
Collapse
|