1
|
Bhushan V, Ali SA, Parashar A, Kumar S, Mohanty AK. Mapping the proteome landscape of Indian Zebu (Sahiwal) spermatozoa using high-resolution mass spectrometry and in-silico annotation. Anim Biotechnol 2024; 35:2428402. [PMID: 39564716 DOI: 10.1080/10495398.2024.2428402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024]
Abstract
Proteomic analysis of sperm cells offers significant insights into proteins' structural, functional, and localization aspects within biological systems. Sahiwal, a native Indian cattle breed, is well known for its disease resistance, calving ease, and resilience to drought. This study addressed the gap in Sahiwal's comprehensive sperm proteome profiling data. The research involved the global in-silico quantitative high-resolution mass spectrometry-based protein profiling of Indian Zebu sperm, identifying 4651 sperm proteins. Beyond mere identification, the study characterized these proteins at a sub-organellar level to facilitate a better understanding of their functional attributes. Gene Ontology analysis of sperm proteins facilitated the segregation of proteins based on their function, localization, and mode of action. The study revealed that despite the limited number of organelles, sperm cells encapsulate a wide array of crucial proteins, compensating for the deficiency of organelles through the presence of multifunctional proteins. Most identified sperm proteins actively participate in spermatogenesis, motility, acrosome reaction, capacitation, and seminal plasma binding, directly or indirectly. Notably, the results not only present the highest number of identified bovine sperm proteins but also hold the potential to pave the way for empirical research on sperm functionality, egg-sperm interaction, sperm-sex sorting biomarkers, sperm quality, and bull fertility.
Collapse
Affiliation(s)
- Vanya Bhushan
- Proteomics and Structural Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | - Syed Azmal Ali
- Proteomics and Structural Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
- Proteomics of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Abhishek Parashar
- Proteomics and Structural Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | - Sudarshan Kumar
- Proteomics and Structural Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | - Ashok Kumar Mohanty
- Proteomics and Structural Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
- ICAR-Central Institute for Research on Cattle, Meerut, India
| |
Collapse
|
2
|
Frydrych K, Wolak D, Hrabia A. Tamoxifen-induced alterations in the expression of connexin 43 in the chicken ovary. Theriogenology 2024; 229:8-15. [PMID: 39142068 DOI: 10.1016/j.theriogenology.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Connexin 43 (Cx43) is a gap junction protein that participates in small molecule exchange between adjacent cells. It is a predominant Cx within the mammalian ovary, where is associated with proper follicle development. The expression and regulation of Cx43 in the chicken ovary is largely unknown. The aim of the present study was to examine the expression of the Cx43 gene (GJA1) and protein as well as the immunolocalization of Cx43 in the laying hen ovary in relation to follicle development, and to examine how tamoxifen (TMX; an estrogen receptor modulator) treatment affects these factors. qRT-PCR and western blotting demonstrated differences in Cx43 mRNA transcript and protein abundances in ovarian white follicles, yellowish follicles, small yellow follicles, and the largest yellow preovulatory follicles (F3-F1). In general, Cx43 was more abundant in hierarchical than prehierarchical follicles and in granulosa cells compared with theca cells. Further, the response to TMX treatment depended on the stage of follicle development and the layer of the follicular wall. Ovarian regression following TMX treatment was accompanied by an increase in Cx43 expression in most ovarian tissues, which may impact the formation and function of Cx43 hemichannels. Overall, our results showed, for the first time, the differences in Cx43 mRNA and protein levels between ovarian follicles, suggesting the potential involvement of this gap junction protein in the regulation of ovarian follicle development and function. In addition, the results indicate a possible role for estradiol in regulation of Cx43 transcription and/or translation in the chicken ovary. Understanding the contribution of Cx43 in mechanisms underlying ovarian follicle development may be of considerable importance for poultry egg production.
Collapse
Affiliation(s)
- Karolina Frydrych
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Dominika Wolak
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland.
| |
Collapse
|
3
|
In Silico Identification of lncRNAs Regulating Sperm Motility in the Turkey (Meleagris gallopavo L.). Int J Mol Sci 2022; 23:ijms23147642. [PMID: 35887003 PMCID: PMC9324027 DOI: 10.3390/ijms23147642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts not translated into proteins with a length of more than 200 bp. LncRNAs are considered an important factor in the regulation of countless biological processes, mainly through the regulation of gene expression and interactions with proteins. However, the detailed mechanism of interaction as well as functions of lncRNAs are still unclear and therefore constitute a serious research challenge. In this study, for the first time, potential mechanisms of lncRNA regulation of processes related to sperm motility in turkey were investigated and described. Customized bioinformatics analysis was used to detect and identify lncRNAs, and their correlations with differentially expressed genes and proteins were also investigated. Results revealed the expression of 863 new/unknown lncRNAs in ductus deferens, testes and epididymis of turkeys. Moreover, potential relationships of the lncRNAs with the coding mRNAs and their products were identified in turkey reproductive tissues. The results obtained from the OMICS study may be useful in describing and characterizing the way that lncRNAs regulate genes and proteins as well as signaling pathways related to sperm motility.
Collapse
|
4
|
Hrabia A, Wolak D, Kowalik K, Sechman A. Alterations in connexin 43 gene and protein expression in the chicken oviduct following tamoxifen treatment. Theriogenology 2022; 188:125-134. [DOI: 10.1016/j.theriogenology.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
|
5
|
Gumułka M, Hrabia A, Rozenboim I. Annual changes in cell proliferation and apoptosis and expression of connexin 43 in the testes of domestic seasonal breeding ganders. Theriogenology 2022; 186:27-39. [DOI: 10.1016/j.theriogenology.2022.03.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/15/2022]
|
6
|
Słowińska M, Paukszto Ł, Pardyak L, Jastrzębski JP, Liszewska E, Wiśniewska J, Kozłowski K, Jankowski J, Bilińska B, Ciereszko A. Transcriptome and Proteome Analysis Revealed Key Pathways Regulating Final Stage of Oocyte Maturation of the Turkey ( Meleagris gallopavo). Int J Mol Sci 2021; 22:ijms221910589. [PMID: 34638931 PMCID: PMC8508634 DOI: 10.3390/ijms221910589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022] Open
Abstract
In birds, the zona pellucida (ZP) matrix that surrounds the ovulated oocyte—called the inner perivitelline layer—is involved in sperm–zona interaction and successful fertilization. To identify the important genes and proteins connected with the final step of egg development, next-generation sequencing and two-dimensional electrophoresis, combined with mass spectrometry, were used for the analysis of mature oocytes at the F1 developmental stage. A total of 8161 genes and 228 proteins were annotated. Six subfamilies of genes, with codes ZP, ZP1–4, ZPD, and ZPAX, were identified, with the dominant expression of ZPD. The main expression site for ZP1 was the liver; however, granulosa cells may also participate in local ZP1 secretion. A ubiquitination system was identified in mature oocytes, where ZP1 was found to be the main ubiquitinated protein. Analysis of transcripts classified in estrogen receptor (ESR) signaling indicated the presence of ESR1 and ESR2, as well as a set of estrogen-dependent genes involved in both genomic and nongenomic mechanisms for the regulation of gene expression by estrogen. Oxidative phosphorylation was found to be a possible source of adenosine triphosphate, and the nuclear factor erythroid 2-related factor 2 signaling pathway could be involved in the response against oxidative stress. Oocyte–granulosa cell communication by tight, adherens, and gap junctions seems to be essential for the final step of oocyte maturation.
Collapse
Affiliation(s)
- Mariola Słowińska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland; (E.L.); (A.C.)
- Correspondence: ; Tel.: +48-89-539-3173
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (Ł.P.); (J.P.J.)
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, 30-248 Kraków, Poland;
| | - Jan P. Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (Ł.P.); (J.P.J.)
| | - Ewa Liszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland; (E.L.); (A.C.)
| | - Joanna Wiśniewska
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland;
| | - Krzysztof Kozłowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.K.); (J.J.)
| | - Jan Jankowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.K.); (J.J.)
| | - Barbara Bilińska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, 30-387 Kraków, Poland;
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland; (E.L.); (A.C.)
| |
Collapse
|
7
|
Słowińska M, Pardyak L, Liszewska E, Judycka S, Bukowska J, Dietrich MA, Paukszto Ł, Jastrzębski J, Kozłowski K, Kowalczyk A, Jankowski J, Bilińska B, Ciereszko A. Characterization and biological role of cysteine-rich venom protein belonging to CRISPs from turkey seminal plasma†. Biol Reprod 2021; 104:1302-1321. [PMID: 33675663 DOI: 10.1093/biolre/ioab032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/26/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Turkey semen contains cysteine-rich secretory proteins (CRISPs) that belong to the dominant seminal plasma proteins. We aimed to isolate and characterize CRISP from turkey seminal plasma and evaluate its possible involvement in yellow semen syndrome (YSS). YSS, which is well characterized, causes reduced fertility and hatchability. The protein was purified using hydrophobic interaction, gel filtration, and reverse phase chromatography. It then was subjected to identification by mass spectrometry, analysis of physicochemical properties, and specific antibody production. The biological function of the isolated protein was tested and included its effects on sperm motility and migration and sperm-egg interactions. Sperm motility was measured with the CASA system using Hobson Sperm Tracker. The reproductive tract of turkey toms was analyzed for gene expression; immunohistochemistry was used for protein localization in the male reproductive tract, spermatozoa, and inner perivitelline layer. The isolated protein was identified as cysteine-rich venom protein-like isoform X2 (CRVP X2; XP_010706464.1) and contained feature motifs of CRISP family proteins. Turkey CRVP X2 was present in both spermatozoa and seminal plasma. The extensive secretion of CRVP X2 by the epithelial cells of the epididymis and ductus deferens suggests its involvement in post-testicular sperm maturation. The internally localized CRVP X2 in the proximal part of the sperm tail might be responsible for stimulation of sperm motility. CRVP X2 on the sperm head might be involved in several events prior to fusion and may also participate in gamete fusion itself. Although the mechanisms by which CRVP X2 mediates fertilization are still unknown, the involvement of complementary sites cannot be excluded. The disturbance of CRVP X2 expression can serve as an etiologic factor of YSS in the turkey. This study expands the understanding of the detailed mechanism of fertilization in birds by clarifying the specific role of CRVP X2.
Collapse
Affiliation(s)
- Mariola Słowińska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Kraków, Kraków, Poland
| | - Ewa Liszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Sylwia Judycka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Joanna Bukowska
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Mariola Aleksandra Dietrich
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics, and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jan Jastrzębski
- Department of Plant Physiology, Genetics, and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Krzysztof Kozłowski
- Department of Poultry Science and Apiculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Artur Kowalczyk
- Division of Poultry Breeding, Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jan Jankowski
- Department of Poultry Science and Apiculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Barbara Bilińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| |
Collapse
|