1
|
Tanaka YK, Usuzawa H, Yoshida M, Kumagai K, Kobayashi K, Matsuyama S, Inoue T, Matsunaga A, Shimura M, Ruiz Encinar J, Costa-Fernández JM, Fukumoto Y, Suzuki N, Ogra Y. Formation Mechanism and Toxicological Significance of Biogenic Mercury Selenide Nanoparticles in Human Hepatoma HepG2 Cells. Chem Res Toxicol 2021; 34:2471-2484. [PMID: 34841876 DOI: 10.1021/acs.chemrestox.1c00231] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is widely recognized that the toxicity of mercury (Hg) is attenuated by the simultaneous administration of selenium (Se) compounds in various organisms. In this study, we revealed the mechanisms underlying the antagonistic effect of sodium selenite (Na2SeO3) on inorganic Hg (Hg2+) toxicity in human hepatoma HepG2 cells. Observations by transmission electron microscopy indicated that HgSe (tiemannite) granules of up to 100 nm in diameter were accumulated in lysosomal-like structures in the cells. The HgSe granules were composed of a number of HgSe nanoparticles, each measuring less than 10 nm in diameter. No accumulation of HgSe nanoparticles in lysosomes was observed in the cells exposed to chemically synthesized HgSe nanoparticles. This suggests that intracellular HgSe nanoparticles were biologically generated from Na2SeO3 and Hg2+ ions transported into the cells and were not derived from HgSe nanoparticles formed in the extracellular fluid. Approximately 85% of biogenic HgSe remained in the cells at 72 h post culturing, indicating that biogenic HgSe was hardly excreted from the cells. Moreover, the cytotoxicity of Hg2+ was ameliorated by the simultaneous exposure to Na2SeO3 even before the formation of insoluble HgSe nanoparticles. Our data confirmed for the first time that HepG2 cells can circumvent the toxicity of Hg2+ through the direct interaction of Hg2+ with a reduced form of Se (selenide) to form HgSe nanoparticles via a Hg-Se soluble complex in the cells. Biogenic HgSe nanoparticles are considered the ultimate metabolite in the Hg detoxification process.
Collapse
Affiliation(s)
- Yu-Ki Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Hana Usuzawa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Miyu Yoshida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Kazuhiro Kumagai
- Research Institute for Material and Chemical Measurement, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Keita Kobayashi
- Research Institute for Material and Chemical Measurement, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Satoshi Matsuyama
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takato Inoue
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akihiro Matsunaga
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.,Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
| | - Mari Shimura
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.,Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Avenida Julian Clavería 8, 33003 Oviedo, Spain
| | - José M Costa-Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Avenida Julian Clavería 8, 33003 Oviedo, Spain
| | - Yasunori Fukumoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Noriyuki Suzuki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| |
Collapse
|
2
|
Hoffman DJ, Moore JM. Teratogenic effects of external egg applications of methyl mercury in the mallard, Anas platyrhynchos. TERATOLOGY 1979; 20:453-61. [PMID: 542897 DOI: 10.1002/tera.1420200315] [Citation(s) in RCA: 41] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The embryotoxic potential of external applications of methyl mercury on mallard eggs was investigated to assess the possible impact of mercury transferred from the plumage of effluent-contaminated aquatic birds to their eggs. Eggs were treated on day 3 of development with microliter applications of methyl mercury that was dissolved with ethyl acetate into an aliphatic hydrocarbon vehicle. Mercury analysis by atomic absorption indicated that almost half of the mercury applied entered the eggs past the shell membranes within several days of treatment. Most mortality occurred within this period at doses of 9 microgram of mercury per egg or higher. Decreased embryonic growth resulted with similar doses. A significant incidence of malformations occurred at a dose of 1 microgram per egg. These malformations were mainly minor skeletal aberrations and incomplete ossification. With higher doses of mercury, defects included gross external ones such as micromella, gastroschisis, and eye and brain defects. Application of the aliphatic hydrocarbon vehicle did not result in any of these defects.
Collapse
|
3
|
Sukra Y, Sastrohadinoto S, Budiarso IT. Effect of selenium and mercury on gross morphology and histopathology of chick embryos. Poult Sci 1976; 55:2424-33. [PMID: 1019093 DOI: 10.3382/ps.0552424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gross lesions of selenium toxicity in chick embryos included webbed, fused, and curled toes; cracked, crooked, and shortened beaks and gastroschisis. Mercury injection on day 3 of incubation caused leg defects but older embryos were much less susceptible. Histopathological studies showed that injection of selenium as selenite caused dissociation of hepatic cells, particularly around the central veins. Glomeruli of affected kidneys were enlarged, and in each glomerulus the lumen of the capillary tuft was dilated and the space of Bowman widened. Epithelial cells of the proximal convoluted tubules were detached from the basement membranes. Injection of mercury as chloride resulted in liver pathology in the late dead embryos which included dilated central veins and sinusoids. The cytoplasm of many hepatic cells was vacuolated. Foci of hemorrhages were observed in all liver lobes. In the kidneys, the renal corpuscles showed either shrinkage or enlargement. They seemed to be in the process of degeneration and disintegration. Sclerotic glomeruli were characterized by disappearance of Bowman's space and clumping of the glomerular tuft. Combined treatment with selenium and mercury resulted in liver pathology similar to that observed in mercury toxicity. The hepatic cell dissociation seen in selenium treated embryos was not observed following the combined treatment. In the kidneys the combined treatment resulted in typical lesions of both selenium and mercury toxicity.
Collapse
|