1
|
Ijaz A, Veldhuizen EJA, Broere F, Rutten VPMG, Jansen CA. The Interplay between Salmonella and Intestinal Innate Immune Cells in Chickens. Pathogens 2021; 10:1512. [PMID: 34832668 PMCID: PMC8618210 DOI: 10.3390/pathogens10111512] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Salmonellosis is a common infection in poultry, which results in huge economic losses in the poultry industry. At the same time, Salmonella infections are a threat to public health, since contaminated poultry products can lead to zoonotic infections. Antibiotics as feed additives have proven to be an effective prophylactic option to control Salmonella infections, but due to resistance issues in humans and animals, the use of antimicrobials in food animals has been banned in Europe. Hence, there is an urgent need to look for alternative strategies that can protect poultry against Salmonella infections. One such alternative could be to strengthen the innate immune system in young chickens in order to prevent early life infections. This can be achieved by administration of immune modulating molecules that target innate immune cells, for example via feed, or by in-ovo applications. We aimed to review the innate immune system in the chicken intestine; the main site of Salmonella entrance, and its responsiveness to Salmonella infection. Identifying the most important players in the innate immune response in the intestine is a first step in designing targeted approaches for immune modulation.
Collapse
Affiliation(s)
- Adil Ijaz
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (A.I.); (E.J.A.V.); (F.B.); (V.P.M.G.R.)
| | - Edwin J. A. Veldhuizen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (A.I.); (E.J.A.V.); (F.B.); (V.P.M.G.R.)
| | - Femke Broere
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (A.I.); (E.J.A.V.); (F.B.); (V.P.M.G.R.)
| | - Victor P. M. G. Rutten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (A.I.); (E.J.A.V.); (F.B.); (V.P.M.G.R.)
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa
| | - Christine A. Jansen
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
2
|
Zerjal T, Härtle S, Gourichon D, Guillory V, Bruneau N, Laloë D, Pinard-van der Laan MH, Trapp S, Bed'hom B, Quéré P. Assessment of trade-offs between feed efficiency, growth-related traits, and immune activity in experimental lines of layer chickens. Genet Sel Evol 2021; 53:44. [PMID: 33957861 PMCID: PMC8101249 DOI: 10.1186/s12711-021-00636-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background In all organisms, life-history traits are constrained by trade-offs, which may represent physiological limitations or be related to energy resource management. To detect trade-offs within a population, one promising approach is the use of artificial selection, because intensive selection on one trait can induce unplanned changes in others. In chickens, the breeding industry has achieved remarkable genetic progress in production and feed efficiency over the last 60 years. However, this may have been accomplished at the expense of other important biological functions, such as immunity. In the present study, we used three experimental lines of layer chicken—two that have been divergently selected for feed efficiency and one that has been selected for increased antibody response to inactivated Newcastle disease virus (ND3)—to explore the impact of improved feed efficiency on animals’ immunocompetence and, vice versa, the impact of improved antibody response on animals’ growth and feed efficiency. Results There were detectable differences between the low (R+) and high (R−) feed-efficiency lines with respect to vaccine-specific antibody responses and counts of monocytes, heterophils, and/or T cell population. The ND3 line presented reduced body weight and feed intake compared to the control line. ND3 chickens also demonstrated an improved antibody response against a set of commercial viral vaccines, but lower blood leucocyte counts. Conclusions This study demonstrates the value of using experimental chicken lines that are divergently selected for RFI or for a high antibody production, to investigate the modulation of immune parameters in relation to growth and feed efficiency. Our results provide further evidence that long-term selection for the improvement of one trait may have consequences on other important biological functions. Hence, strategies to ensure optimal trade-offs among competing functions will ultimately be required in multi-trait selection programs in livestock. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00636-z.
Collapse
Affiliation(s)
- Tatiana Zerjal
- INRAE, AgroParisTech, Université Paris-Saclay, GABI, 78350, Jouy-en-Josas, France.
| | - Sonja Härtle
- Avian Immunology Group, Department for Veterinary Sciences, LMU Munich, Munich, Germany
| | | | | | - Nicolas Bruneau
- INRAE, AgroParisTech, Université Paris-Saclay, GABI, 78350, Jouy-en-Josas, France
| | - Denis Laloë
- INRAE, AgroParisTech, Université Paris-Saclay, GABI, 78350, Jouy-en-Josas, France
| | | | - Sascha Trapp
- INRAE, UMR 1282, ISP, Université de Tours, 37380, Nouzilly, France
| | - Bertrand Bed'hom
- INRAE, AgroParisTech, Université Paris-Saclay, GABI, 78350, Jouy-en-Josas, France.,ISYEB, Muséum National D'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université Des Antilles, 75005, Paris, France
| | - Pascale Quéré
- INRAE, UMR 1282, ISP, Université de Tours, 37380, Nouzilly, France
| |
Collapse
|
3
|
Lang GP, Ndongson-Dongmo B, Lajqi T, Brodhun M, Han Y, Wetzker R, Frasch MG, Bauer R. Impact of ambient temperature on inflammation-induced encephalopathy in endotoxemic mice-role of phosphoinositide 3-kinase gamma. J Neuroinflammation 2020; 17:292. [PMID: 33028343 PMCID: PMC7541275 DOI: 10.1186/s12974-020-01954-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is an early and frequent event of infection-induced systemic inflammatory response syndrome. Phosphoinositide 3-kinase γ (PI3Kγ) is linked to neuroinflammation and inflammation-related microglial activity. In homeotherms, variations in ambient temperature (Ta) outside the thermoneutral zone lead to thermoregulatory responses, mainly driven by a gradually increasing sympathetic activity, and may affect disease severity. We hypothesized that thermoregulatory response to hypothermia (reduced Ta) aggravates SAE in PI3Kγ-dependent manner. METHODS Experiments were performed in wild-type, PI3Kγ knockout, and PI3Kγ kinase-dead mice, which were kept at neutral (30 ± 0.5 °C) or moderately lowered (26 ± 0.5 °C) Ta. Mice were exposed to lipopolysaccharide (LPS, 10 μg/g, from Escherichia coli serotype 055:B5, single intraperitoneal injection)-evoked systemic inflammatory response (SIR) and monitored 24 h for thermoregulatory response and blood-brain barrier integrity. Primary microglial cells and brain tissue derived from treated mice were analyzed for inflammatory responses and related cell functions. Comparisons between groups were made with one-way or two-way analysis of variance, as appropriate. Post hoc comparisons were made with the Holm-Sidak test or t tests with Bonferroni's correction for adjustments of multiple comparisons. Data not following normal distribution was tested with Kruskal-Wallis test followed by Dunn's multiple comparisons test. RESULTS We show that a moderate reduction of ambient temperature triggers enhanced hypothermia of mice undergoing LPS-induced systemic inflammation by aggravated SAE. PI3Kγ deficiency enhances blood-brain barrier injury and upregulation of matrix metalloproteinases (MMPs) as well as an impaired microglial phagocytic activity. CONCLUSIONS Thermoregulatory adaptation in response to ambient temperatures below the thermoneutral range exacerbates LPS-induced blood-brain barrier injury and neuroinflammation. PI3Kγ serves a protective role in suppressing release of MMPs, maintaining microglial motility and reinforcing phagocytosis leading to improved brain tissue integrity. Thus, preclinical research targeting severe brain inflammation responses is seriously biased when basic physiological prerequisites of mammal species such as preferred ambient temperature are ignored.
Collapse
Affiliation(s)
- Guang-Ping Lang
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany
- Joint International Research Laboratory of Ethnomedicine and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, 563006 China
| | - Bernadin Ndongson-Dongmo
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Trim Lajqi
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany
- Department of Neonatology, University Children’s Hospital, Heidelberg, Germany
| | - Michael Brodhun
- Department of Pathology, Helios-Klinikum Erfurt, Erfurt, Germany
| | - Yingying Han
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Reinhard Wetzker
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | | | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany
| |
Collapse
|
4
|
Alvarez KLF, Poma-Acevedo A, Fernández-Díaz M. A transient increase in MHC-II low monocytes after experimental infection with Avibacterium paragallinarum (serovar B-1) in SPF chickens. Vet Res 2020; 51:123. [PMID: 32977847 PMCID: PMC7517641 DOI: 10.1186/s13567-020-00840-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Infectious coryza (IC), an upper respiratory tract disease affecting chickens, is caused by Avibacterium paragallinarum. The clinical manifestations of IC include nasal discharge, facial swelling, and lacrimation. This acute disease results in high morbidity and low mortality, while the course of the disease is prolonged and mortality rates are increased in cases with secondary infections. Studies regarding the immune response in infected chickens are scarce, and the local immune response is the focal point of investigation. However, a large body of work has demonstrated that severe infections can impact the systemic immune response. The objective of this study was to evaluate the systemic effects of Avibacterium paragallinarum (serovar B-1) infection on immune cells in specific pathogen-free (SPF) chickens. The current study revealed the presence of a transient circulating monocyte population endowed with high phagocytic ability and clear downregulation of major histocompatibility complex class II (MHC-II) surface expression. In human and mouse studies, this monocyte population (identified as tolerant monocytes) has been correlated with a dysfunctional immune response, increasing the risk of secondary infections and mortality. Consistent with this dysfunctional immune response, we demonstrate that B cells from infected chickens produced fewer antibodies than those from control chickens. Moreover, T cells isolated from the peripheral blood of infected chickens had a lower ability to proliferate in response to concanavalin A than those isolated from control chickens. These findings could be related to the severe clinical signs observed in complicated IC caused by the presence of secondary infections.
Collapse
Affiliation(s)
- Karla Lucía F Alvarez
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur No 766 Km 198.5, Ica, Peru.
| | - Astrid Poma-Acevedo
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur No 766 Km 198.5, Ica, Peru
| | - Manolo Fernández-Díaz
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur No 766 Km 198.5, Ica, Peru
| |
Collapse
|
5
|
Tatoyan MR, Izmailyan RA, Semerjyan AB, Karalyan NY, Sahakyan CT, Mkrtchyan GL, Ghazaryan HK, Arzumanyan HH, Semerjyan ZB, Karalova EM, Karalyan ZA. Patterns of alveolar macrophage activation upon attenuated and virulent African swine fever viruses in vitro. Comp Immunol Microbiol Infect Dis 2020; 72:101513. [PMID: 32569898 DOI: 10.1016/j.cimid.2020.101513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 12/01/2022]
Abstract
The pattern of porcine alveolar macrophage (AM) activation upon classical stimuli of two strains of African swine fever (ASF) viruses, an attenuated ASFV-BA71V and virulent ASFV-Georgia2007 were investigated. In an in vitro experiment ASFV-Georgia2007-infected AM showed M1 polarization pattern different from the one induced by classical stimuli. Altered morphology, appearance of binuclear cells, decreased synthesis of IFN-alpha as well as IFN-epsilon was observed compared with attenuated ASFV-BA71V, and decreased synthesis of IFN-omega compared with intact cells. However, CD68 level did not significantly differ between alveolar macrophage populations infected by ASFV-Georgia2007 and control group, while both LPS/IFN-gamma stimulation and non-pathogenic ASFV-BA71V virus increased the level of CD68 soluble receptor. AM infection with ASFV-Georgia2007 resulted in remarkable DNA proliferation whereas LPS/IFN-gamma and ASFV-BA71V induced less expressed DNA proliferation in activated cells. The higher value of nitric oxide was obvious in the cells infected with ASFV-BA71V, compared to ASFV-Georgia2007 and LPS/IFN-gamma activated cells. In conclusion, pattern of activation of alveolar macrophages induced by ASFV-Georgia2007 virus differs from the one expressed in LPS/IFN-gamma- and ASFV-BA71V-activated cells. ASFV-BA71V and LPS/IFN-gamma share similar antiviral response of porcine AM. Therefore we assume that wild type virulent ASFV can partially down regulate antiviral response of AM and conclude that evolutionary decrease of virulence in ASFV is related to alterations of control of the host cell antiviral response.
Collapse
Affiliation(s)
| | - Roza A Izmailyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
| | | | | | | | | | - Hovsep K Ghazaryan
- Laboratory of Human Genomics and Immunomics, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
| | - Hranush H Arzumanyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
| | - Zara B Semerjyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia; Experimental Laboratory, Yerevan State Medical University, Yerevan, Armenia
| | - Elena M Karalova
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia; Experimental Laboratory, Yerevan State Medical University, Yerevan, Armenia
| | - Zaven A Karalyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia; Yerevan State Medical University, Yerevan, Armenia.
| |
Collapse
|
6
|
Emam M, Tabatabaei S, Sargolzaei M, Sharif S, Schenkel F, Mallard B. The effect of host genetics on in vitro performance of bovine monocyte-derived macrophages. J Dairy Sci 2019; 102:9107-9116. [PMID: 31400895 DOI: 10.3168/jds.2018-15960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/17/2019] [Indexed: 12/11/2022]
Abstract
The dynamic interaction between the host and pathogens, along with environmental factors, influences the regulation of mammalian immune responses. Therefore, comprehensive in vivo immune-phenotyping during an active response to a pathogen can be complex and prone to confounding effects. Evaluating critical fundamental aspects of the immune system at a cellular level is an alternative approach to reduce this complexity. Therefore, the objective of the current study was to examine an in vitro model for functional phenotyping of bovine monocyte-derived macrophages (MDM), cells which play a crucial role at all phases of inflammation, as well influence downstream immune responses. As indicators of MDM function, phagocytosis and nitric oxide (NO-) production were tested in MDM of 16 cows in response to 2 common bacterial pathogens of dairy cows, Escherichia coli and Staphylococcus aureus. Notable functional variations were observed among the individuals (coefficient of variation: 33% for phagocytosis and 70% in the production of NO-). The rank correlation analysis revealed a significant, positive, and strong correlation (rho = 0.92) between NO- production in response to E. coli and S. aureus, and a positive but moderate correlation (rho = 0.58) between phagocytosis of E. coli and S. aureus. To gain further insight into this trait, another 58 cows were evaluated solely for NO- response against E. coli. The pedigree of the tested animals was added to the statistical model and the heritability was estimated to be 0.776. Overall, the finding of this study showed a strong effect of host genetics on the in vitro activities of MDM and the possibility of ranking Holstein cows based on the in vitro functional variation of MDM.
Collapse
Affiliation(s)
- Mehdi Emam
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Saeid Tabatabaei
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Select Sires Inc., Plain City, OH 43064
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Flavio Schenkel
- Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Bonnie Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
7
|
He H, Arsenault RJ, Genovese KJ, Swaggerty CL, Johnson C, Nisbet DJ, Kogut MH. Inhibition of calmodulin increases intracellular survival of Salmonella in chicken macrophage cells. Vet Microbiol 2019; 232:156-161. [PMID: 30967327 DOI: 10.1016/j.vetmic.2019.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 01/05/2023]
Abstract
Calcium (Ca2+) is a pivotal intracellular second messenger and calmodulin (CaM) acts as a multifunctional Ca2+-binding protein that regulates downstream Ca2+ dependent signaling. Together they play an important role in regulating various cellular functions, including gene expression, maturation of phagolysosome, apoptosis, and immune response. Intracellular Ca2+ has been shown to play a critical role in Toll-like receptor-mediated immune response to microbial agonists in the HD11 chicken macrophage cell line. The role of that the Ca2+/CaM pathway plays in the intracellular survival of Salmonella in chicken macrophages has not been reported. In this study, kinome peptide array analysis indicated that the Ca2+/CaM pathway was significantly activated when chicken macrophage HD11 cells were infected with S. Enteritidis or S. Heidelberg. Further study demonstrated that treating cells with a pharmaceutical CaM inhibitor W-7, which disrupts the formation of Ca2+/CaM, significantly inhibited macrophages to produce nitric oxide and weaken the control of intracellular Salmonella replication. These results strongly indicate that CaM plays an important role in the innate immune response of chicken macrophages and that the Ca2+/CaM mediated signaling pathway is critically involved in the host cell response to Salmonella infection.
Collapse
Affiliation(s)
- Haiqi He
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX 77845, United States.
| | - Ryan J Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, United States
| | - Kenneth J Genovese
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX 77845, United States
| | - Christina L Swaggerty
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX 77845, United States
| | - Casey Johnson
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, United States
| | - David J Nisbet
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX 77845, United States
| | - Michael H Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX 77845, United States
| |
Collapse
|
8
|
Naghizadeh M, Larsen FT, Wattrang E, Norup LR, Dalgaard TS. Rapid whole blood assay using flow cytometry for measuring phagocytic activity of chicken leukocytes. Vet Immunol Immunopathol 2018; 207:53-61. [PMID: 30593351 DOI: 10.1016/j.vetimm.2018.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/09/2018] [Accepted: 11/23/2018] [Indexed: 12/27/2022]
Abstract
Phagocytic activity of leukocytes in whole blood was assessed as a potential immune competence trait in chickens. A flow cytometry based whole blood phagocytosis (WBP) assay was set up and evaluated using blood from chickens homozygous for four different MHC haplotypes, B12, B15, B19 and B21. Fluorescent latex beads and two serotypes of fluorescently labelled heat-killed bacteria (Salmonella Infantis and Salmonella. Typhimurium) were evaluated as phagocytic targets. In addition, the opsonophagocytic potential (OPp) of individual sera from the birds was included in a phagocytosis assay using the HD11 chicken macrophage cell line. Results showed that both serotypes of bacteria but not the latex beads were effectively phagocytosed by leukocytes in the whole blood cultures. Differences were observed in the phagocytic capacity of monocytes and thrombocyte/lymphocytes, respectively between the different MHC lines. No significant differences on the OPp of serum was identified between MHC lines. In addition, for both phagocytic activity of leukocytes and OPp of serum large variations between individuals were observed within MHC haplotypes. No significant relationships were observed between the phagocytic activity of leukocytes and serum OPp or Salmonella-specific IgY levels. In conclusion, our results suggest that the WBP assay, using a no-lyse no-wash single staining method, is a rapid and convenient method to assess phagocytic functions of different leukocyte populations.
Collapse
Affiliation(s)
- Mohammed Naghizadeh
- Department of Poultry Science, Tarbiat Modares University, PO Box 14115-336, Tehran, Iran; Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830, Tjele, Denmark
| | - Frederik T Larsen
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830, Tjele, Denmark
| | - Eva Wattrang
- Department of Microbiology, National Veterinary Institute, SE-751 89, Uppsala, Sweden
| | - Liselotte R Norup
- Institute for Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Tina S Dalgaard
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830, Tjele, Denmark.
| |
Collapse
|
9
|
Chaudhari AA, Kim WH, Lillehoj HS. Interleukin-4 (IL-4) may regulate alternative activation of macrophage-like cells in chickens: A sequential study using novel and specific neutralizing monoclonal antibodies against chicken IL-4. Vet Immunol Immunopathol 2018; 205:72-82. [DOI: 10.1016/j.vetimm.2018.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022]
|
10
|
Naghizadeh M, Wattrang E, Kjærup RB, Bakke M, Shih S, Dalgaard TS. In vitro phagocytosis of opsonized latex beads by HD11 cells as a method to assess the general opsonization potential of chicken serum. Avian Pathol 2018; 47:479-488. [PMID: 29920114 DOI: 10.1080/03079457.2018.1490006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Opsonins, an important arm of the innate immune system, are various soluble proteins, which play a critical role in destruction of invading pathogens directly or via engulfment of pathogens through the intermediate of phagocytosis. The diversity of opsonin profiles is under genetic influence and may be associated with variation in disease resistance. The aim of this study was to set up an assay to determine serum opsonophagocytic potential (OPp) for chicken sera by flow cytometry and to evaluate the assay using samples from different chicken lines. Two chicken lines selected for high and low concentrations of mannose-binding lectin, a known opsonin, in serum were used to establish the method. Furthermore, the presumed "robust" Hellevad chickens and two other commercial chicken lines (Hisex and Bovans) were tested to evaluate OPp as a parameter reflecting general immune competence. The results showed that Hellevad and Bovans chickens had higher OPp than Hisex chickens. There were no correlations between concentrations of total IgY or mannose-binding lectin and OPp. However, a strong positive correlation was observed between vaccine-induced infectious bronchitis virus titres and OPp. Moreover, inverse relationships were observed between concentrations of total serum IgM as well as natural antibody levels, and OPp. In conclusion, in vitro opsonophagocytosis assessment and determination of OPp may be of relevance when addressing general innate immunocompetence. RESEARCH HIGHLIGHTS A flow cytometry method was developed to assess poultry serum opsonophagocytosis potential. This method is based on serum-opsonin-coated polystyrene beads and HD11 cell phagocytosis. Serum samples from different commercial chicken lines were compared. Opsonophagocytic potential may be included in assay panels for general immune competence of poultry.
Collapse
Affiliation(s)
- Mohammed Naghizadeh
- a Department of Poultry Science , Tarbiat Modares University , Tehran , Iran.,b Department of Animal Science , Aarhus University , Tjele , Denmark
| | - Eva Wattrang
- c Department of Microbiology , National Veterinary Institute , Uppsala , Sweden
| | - Rikke B Kjærup
- b Department of Animal Science , Aarhus University , Tjele , Denmark
| | - Maja Bakke
- b Department of Animal Science , Aarhus University , Tjele , Denmark
| | - Sandra Shih
- b Department of Animal Science , Aarhus University , Tjele , Denmark
| | - Tina S Dalgaard
- b Department of Animal Science , Aarhus University , Tjele , Denmark
| |
Collapse
|
11
|
Yuan Y, Liu S, Zhao Y, Lian L, Lian Z. Interferon-γ acts as a regulator in the trade-off between phagocytosis and production performance in dwarf chickens. J Anim Sci Biotechnol 2018; 9:40. [PMID: 29796253 PMCID: PMC5964881 DOI: 10.1186/s40104-018-0256-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/19/2018] [Indexed: 11/10/2022] Open
Abstract
Background Interferon-γ (IFN-γ) is critical for innate and adaptive immunity against viral and bacterial infections. IFN-γ reportedly affects the phagocytic ability of monocytes and macrophages as well as regulates pituitary function in humans and mice. The present study analyzed the impact of IFN-γ on monocyte and macrophage phagocytosis, production performance, and pituitary function in vivo and in vitro (in dwarf chickens). IFN-γ was injected into dwarf chickens through a vein, and then, the laying rate, average egg weight, and levels of follicle-stimulating hormone (FSH) and IFN-γ were measured in treatment and control groups. For the in vitro experiment, the pituitary tissues were supplemented with IFN-γ, and the mRNA expression levels of follicle-stimulating hormone beta subunit (FSH-β), interferon gamma receptor 1 (IFNGR1), and interferon gamma receptor 2 (IFNGR2) in the pituitary were assessed. Results Monocyte and macrophage phagocytosis product (PP) was decreased by IFN-γ treatment in a dose-dependent manner in vitro. In the in vivo experiment, the level of IFN-γ in the treatment group was higher than that in the control group at 7 d (P < 0.05), 14 d (P < 0.01), and 21 d (P < 0.01) post-injection. Compared with the control group, monocyte and macrophage PP was lower in the treatment group after injection (P < 0.01). The laying rate was higher in the treatment group than in the control group at 2 and 3 wk post-injection (P < 0.05). There was a significant difference between the treatment and control groups in the levels of FSH at 1, 3, 7, and 14 d post-injection (P < 0.01). In the in vitro experiment, increased mRNA expression levels of FSH-β, IFNGR1, and IFNGR2 were observed in the treatment group after stimulation with 100 U/mL IFN-γ for 24 h compared to those in the control group (P < 0.05). Conclusions IFN-γ inhibited the phagocytosis of monocytes and macrophages; up-regulated the mRNA expression levels of the FSH-β, IFNGR1, and IFNGR2; enhanced the secretion of FSH; and improved the laying rate. IFN-γ might be an important regulator in the trade-off between the immune effect and production performance in dwarf chickens.
Collapse
Affiliation(s)
- Yitong Yuan
- 1Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Shunqi Liu
- 2Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yue Zhao
- 2Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Ling Lian
- 1Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Zhengxing Lian
- 1Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
12
|
Yuan Y, Wang H, Wu H, Ma H, Lian L, Lian Z. Dwarf chickens with low monocytes/macrophages phagocytic activity show low antibody titers but greater performance. Anim Reprod Sci 2018; 193:79-89. [PMID: 29653827 DOI: 10.1016/j.anireprosci.2018.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/27/2022]
Abstract
Monocytes/macrophages phagocytosis has key roles in inflammatory responses. However, systematic research on the effects of monocytes/macrophages phagocytosis on production and reproductive performance in dwarf chickens is lacking. In this study, we developed the HCT-8-MTT method to detect monocytes/macrophages phagocytosis product (PP) which was accuracy, flexible, and saving time. Based on PP in 990 dwarf chickens (890 hens and 100 cocks), chickens were divided into high phagocytosis product group (HPPG) and low phagocytosis product group (LPPG). In production performance, chickens in LPPG have higher laying rate at 24 wk and 71 wk and higher average egg weight at 23 wk and 24 wk than in HPPG (P < 0.05). The levels of follicle-stimulating hormone and luteinizing hormone were higher in LPPG than in HPPG at 58 wk (P < 0.01). In the reproductive performance, the fertilization rate in LPPG was higher than that in HPPG at 45 wk, 49 wk, and 53 wk (P < 0.05). Chickens in LPPG have higher hatchability than HPPG at 45 wk and 49 wk (P < 0.05). In LPPG, the mRNA expression levels of follicle-stimulating hormone receptor and CD9 in the follicle were higher than HPPG (P < 0.05). In the immune response, chickens with higher PP levels showed higher antibody titers for the avian influenza virus H9 inactivated vaccine (P < 0.01). Therefore, monocytes/macrophages PP was positively associated with antibody titers and negatively related to production and reproductive performance, and these findings have practical applications for the optimization of production in the poultry industry.
Collapse
Affiliation(s)
- Yitong Yuan
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Hai Wang
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Hongping Wu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Hui Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Ling Lian
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China.
| | - Zhengxing Lian
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China.
| |
Collapse
|
13
|
Wei S, Wu K, Nie Y, Li X, Lian Z, Han H. Different innate immunity and clearance of Salmonella Pullorum in macrophages from White Leghorn and Tibetan Chickens. EUR J INFLAMM 2018. [DOI: 10.1177/2058739218780039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Salmonella enterica serovar Gallinarum biovar Pullorum ( S. Pullorum) is responsible for the systemic salmonellosis in different breeds of chickens. Macrophages, as host cells, play a key role in the innate immune response following infection with S. Pullorum. In this study, we first generated macrophages from two breeds of chicken (White Leghorn (WL) and Tibetan Chickens (TC)) peripheral blood monocytes in vitro. Then, we showed that the production of interleukin-1β (IL-1β), macrophage inflammatory protein-1β (MIP-1β) and interleukin-10 (IL-10) in lipopolysaccharide (LPS)-treated macrophages was significantly higher compared with the unstimulated cells in TC. LPS triggered only more expression of IL-10 in WL macrophages. Furthermore, macrophages from TC eliminated intracellular bacteria more efficiently than those from WL after S. Pullorum infection at a multiplicity of infection (MOI) 1. In addition, the variation between individuals and sex had the crucial effect on the immune response to LPS and S. Pullorum invasion.
Collapse
Affiliation(s)
- Shao Wei
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Keliang Wu
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yijuan Nie
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiang Li
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongbing Han
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Ma H, Lian Z, Liu W, Han H, Yuan Y, Ning Z. Salmonella Pullorum resistance in dwarf chickens selected for high macrophage phagocytosis. J APPL POULTRY RES 2017. [DOI: 10.3382/japr/pfx013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Schneble N, Müller J, Kliche S, Bauer R, Wetzker R, Böhmer FD, Wang ZQ, Müller JP. The protein-tyrosine phosphatase DEP-1 promotes migration and phagocytic activity of microglial cells in part through negative regulation of fyn tyrosine kinase. Glia 2016; 65:416-428. [DOI: 10.1002/glia.23100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Nadine Schneble
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital; Hans-Knöll-Straße 2 Jena Germany
- Leibniz Institute on Aging; Beutenberstraße 11 Jena Germany
| | - Julia Müller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital; Hans-Knöll-Straße 2 Jena Germany
| | - Stefanie Kliche
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke-University; Leipziger Str. 44 Magdeburg Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital; Hans-Knöll-Straße 2 Jena Germany
| | - Reinhard Wetzker
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital; Hans-Knöll-Straße 2 Jena Germany
| | - Frank-D. Böhmer
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital; Hans-Knöll-Straße 2 Jena Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging; Beutenberstraße 11 Jena Germany
| | - Jörg P. Müller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital; Hans-Knöll-Straße 2 Jena Germany
| |
Collapse
|
16
|
Kresinsky A, Schneble N, Schmidt C, Frister A, Bauer R, Wetzker R, Müller JP. Phagocytosis of bone marrow derived macrophages is controlled by phosphoinositide 3-kinase γ. Immunol Lett 2016; 180:9-16. [PMID: 27720677 DOI: 10.1016/j.imlet.2016.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/22/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
Abstract
Due to their ability to phagocytise invading microbes macrophages play a key role in the innate and acquired immune system. In this article the role of phosphoinositide 3-kinase gamma (PI3Kγ) for phagocytosis was studied in bone marrow derived macrophages (BMDM). By using genetic and pharmacological approaches our data clearly demonstrate PI3Kγ is acting as a mediator of macrophage phagocytosis. Phagocytosis of LPS activated BMDM was reduced in PI3Kγ depleted primary BMDM or macrophage cell line J774. Depletion of other class I phosphoinositide 3-kinases did not alter phagocytic activity. Partial reduction of the phagocytic index of BMDM expressing kinase inactive PI3Kγ indicate a lipid-kinase independent role of the PI3Kγ protein. Since inhibition of PI3Kγ interaction partner phosphodiesterase PDE3B reduced BMDM phagocytosis and PI3Kγ knock out super stimulated cAMP level, our data reveal that PI3Kγ protein mediated suppression of cAMP signalling is a critical for efficient phagocytosis of macrophages.
Collapse
Affiliation(s)
- Anne Kresinsky
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Straße 2, Jena, Germany
| | - Nadine Schneble
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Straße 2, Jena, Germany
| | - Caroline Schmidt
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Straße 2, Jena, Germany
| | - Adrian Frister
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Straße 2, Jena, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Straße 2, Jena, Germany
| | - Reinhard Wetzker
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Straße 2, Jena, Germany
| | - Jörg P Müller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Straße 2, Jena, Germany.
| |
Collapse
|
17
|
Van Goor A, Slawinska A, Schmidt CJ, Lamont SJ. Distinct functional responses to stressors of bone marrow derived dendritic cells from diverse inbred chicken lines. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 63:96-110. [PMID: 27238770 DOI: 10.1016/j.dci.2016.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 05/19/2023]
Abstract
Differences in responses of chicken bone marrow derived dendritic cells (BMDC) to in vitro treatment with lipopolysaccharide (LPS), heat, and LPS + heat were identified. The Fayoumi is more disease resistant and heat tolerant than the Leghorn line. Nitric Oxide (NO) production, phagocytic ability, MHC II surface expression and mRNA expression were measured. NO was induced in BMDC from both lines in response to LPS and LPS + heat stimulation; Fayoumi produced more NO with LPS treatment. Fayoumi had higher phagocytic ability and MHC II surface expression. Gene expression for the heat-related genes BAG3, HSP25, HSPA2, and HSPH1 was strongly induced with heat and few differences existed between lines. Expression for the immune-related genes CCL4, CCL5, CD40, GM-CSF, IFN-γ, IL-10, IL-12β, IL-1β, IL-6, IL-8, and iNOS was highly induced in response to LPS and different between lines. This research contributes to the sparse knowledge of genetic differences in chicken BMDC biology and function.
Collapse
Affiliation(s)
| | - Anna Slawinska
- Department of Animal Science, Iowa State University, Ames, IA, USA; Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, Bydgoszcz, Poland
| | - Carl J Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| |
Collapse
|
18
|
Han D, Wang S, Hu Y, Zhang Y, Dong X, Yang Z, Wang J, Li J, Deng X. Hyperpigmentation Results in Aberrant Immune Development in Silky Fowl (Gallus gallus domesticus Brisson). PLoS One 2015; 10:e0125686. [PMID: 26047316 PMCID: PMC4457905 DOI: 10.1371/journal.pone.0125686] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 03/23/2015] [Indexed: 12/20/2022] Open
Abstract
The Silky Fowl (SF) is known for its special phenotypes and atypical distribution of melanocytes among internal organs. Although the genes associated with melanocyte migration have been investigated substantially, there is little information on the postnatal distribution of melanocytes in inner organs and the effect of hyperpigmentation on the development of SF. Here, we analyzed melanocyte distribution in 26 tissues or organs on postnatal day 1 and weeks 2, 3, 4, 6, 10, and 23. Except for the liver, pancreas, pituitary gland, and adrenal gland, melanocytes were distributed throughout the body, primarily around blood vessels. Interaction between melanocytes and the tissue cells was observed, and melanin was transported by filopodia delivery through engulfed and internalized membrane-encapsulated melanosomes. SFs less than 10 weeks old have lower indices of spleen, thymus, and bursa of Fabricius than White Leghorns (WLs). The expression levels of interferon-γ and interlukin-4 genes in the spleen, and serum antibody levels against H5N1 and infectious bursal disease virus were lower in SF than in WL. We also found immune organ developmental difference between Black-boned and non-Black- boned chickens from SFs and WLs hybrid F2 population. However, degeneration of the thymus and bursa of Fabricius occurred later in SF than in WL after sexual maturity. Analysis of apoptotic cells and apoptosis-associated Bax and Bcl-2 proteins indicated that apoptosis is involved in degeneration of the thymus and bursa of Fabricius. Therefore, these results suggest that hyperpigmentation in SF may have a close relationship with immune development in SF, which can provide an important animal model to investigate the roles of melanocyte.
Collapse
Affiliation(s)
- Deping Han
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Shuxiang Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Yanxin Hu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yuanyuan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Xianggui Dong
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Zu Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Jiankui Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Xuemei Deng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
- * E-mail:
| |
Collapse
|
19
|
Ruan W, An J, Wu Y. Polymorphisms of chicken TLR3 and 7 in different breeds. PLoS One 2015; 10:e0119967. [PMID: 25781886 PMCID: PMC4364021 DOI: 10.1371/journal.pone.0119967] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/18/2015] [Indexed: 11/19/2022] Open
Abstract
Toll-like receptors (TLRs) mediate immune responses via the recognition of pathogen-associated molecular patterns (PAMPs), thus playing important roles in host defense. Among the chicken (Ch) TLR family, ChTLR3 and 7 have been shown to recognize viral RNA. In our earlier studies, we have reported polymorphisms of TLR1, 2, 4, 5, 15 and 21. In the present study, we amplified TLR3 and 7 genes from different chicken breeds and analyzed their sequences. We identified 7 amino acid polymorphism sites in ChTLR3 with 6 outer part sites and 1 inner part site, and 4 amino acid polymorphism sites in ChTLR7 with 3 outer part sites and 1 inner part site. These results demonstrate that ChTLR genes are polymorphic among different chicken breeds, suggesting a varied resistance across numerous chicken breeds. This information might help improve chicken health by breeding and vaccination.
Collapse
Affiliation(s)
- Wenke Ruan
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- * E-mail: (WR); (YW)
| | - Jian An
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yanhua Wu
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- * E-mail: (WR); (YW)
| |
Collapse
|
20
|
Ulrich-Lynge SL, Dalgaard TS, Norup LR, Song X, Sørensen P, Juul-Madsen HR. Chicken mannose-binding lectin function in relation to antibacterial activity towards Salmonella enterica. Immunobiology 2015; 220:555-63. [PMID: 25623031 DOI: 10.1016/j.imbio.2014.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 12/27/2022]
Abstract
Mannose-binding lectin (MBL) is a C-type serum lectin of importance in innate immunity. Low serum concentrations of MBL have been associated with greater susceptibility to infections. In this study, binding of purified chicken MBL (cMBL) to Salmonella enterica subsp. enterica (S. enterica) serotypes B, C1 and D was investigated by flow cytometry, and Staphylococcus aureus (S. aureus) was used for comparison. For S. enterica the C1 serotypes were the only group to exhibit binding to cMBL. Furthermore, functional studies of the role of cMBL in phagocytosis and complement activation were performed. Spiking with cMBL had a dose-dependent effect on the HD11 phagocytic activity of S. enterica subsp. enterica serovar Montevideo, and a more pronounced effect in a carbohydrate competitive assay. This cMBL dose dependency of opsonophagocytic activity by HD11 cells was not observed for S. aureus. No difference in complement-dependent bactericidal activity in serum with high or low cMBL concentrations was found for S. Montevideo. On the other hand, serum with high concentrations of cMBL exhibited a greater bactericidal activity to S. aureus than serum with low concentrations of cMBL. The results presented here emphasise that chicken cMBL exhibits functional similarities with its mammalian counterparts, i.e. playing a role in opsonophagocytosis and complement activation.
Collapse
Affiliation(s)
- Sofie L Ulrich-Lynge
- Department of Animal Science, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark
| | - Tina S Dalgaard
- Department of Animal Science, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark
| | - Liselotte R Norup
- Department of Animal Science, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu Province, PR China
| | - Poul Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark
| | - Helle R Juul-Madsen
- Department of Animal Science, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark.
| |
Collapse
|
21
|
He H, Genovese KJ, Swaggerty CL, Nisbet DJ, Kogut MH. A comparative study on invasion, survival, modulation of oxidative burst, and nitric oxide responses of macrophages (HD11), and systemic infection in chickens by prevalent poultry Salmonella serovars. Foodborne Pathog Dis 2012; 9:1104-10. [PMID: 23067396 DOI: 10.1089/fpd.2012.1233] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Poultry is a major reservoir for foodborne Salmonella serovars. Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Heidelberg, Salmonella Kentucky, and Salmonella Senftenberg are the most prevalent serovars in U.S. poultry. Information concerning the interactions between different Salmonella species and host cells in poultry is lacking. In the present study, the above mentioned Salmonella serovars were examined for invasion, intracellular survival, and their ability to modulate oxidative burst and nitric oxide (NO) responses in chicken macrophage HD11 cells. All Salmonella serovars demonstrated similar capacity to invade HD11 cells. At 24 h post-infection, a 36-43% reduction of intracellular bacteria, in log(10)(CFU), was observed for Salmonella Typhimurium, Salmonella Heidelberg, Salmonella Kentucky, and Salmonella Senftenberg, whereas a significantly lower reduction (16%) was observed for Salmonella Enteritidis, indicating its higher resistance to the killing by HD11 cells. Production of NO was completely diminished in HD11 cells infected with Salmonella Typhimurium and Salmonella Enteritidis, but remained intact when infected with Salmonella Heidelberg, Salmonella Kentucky, and Salmonella Senftenberg. Phorbol myristate acetate-stimulated oxidative burst in HD11 cells was greatly impaired after infection by each of the five serovars. When newly hatched chickens were challenged orally, a high rate (86-98%) of systemic infection (Salmonella positive in liver/spleen) was observed in birds challenged with Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Heidelberg, and Salmonella Kentucky, while only 14% of the birds were Salmonella Senftenberg positive. However, there was no direct correlation between systemic infection and in vitro differential intracellular survival and modulation of NO response among the tested serovars.
Collapse
Affiliation(s)
- Haiqi He
- Southern Plains Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, College Station, Texas 77845, USA.
| | | | | | | | | |
Collapse
|
22
|
Ligation of Fc gamma receptor IIB inhibits antibody-dependent enhancement of dengue virus infection. Proc Natl Acad Sci U S A 2011; 108:12479-84. [PMID: 21746897 DOI: 10.1073/pnas.1106568108] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The interaction of antibodies, dengue virus (DENV), and monocytes can result in either immunity or enhanced virus infection. These opposing outcomes of dengue antibodies have hampered dengue vaccine development. Recent studies have shown that antibodies neutralize DENV by either preventing virus attachment to cellular receptors or inhibiting viral fusion intracellularly. However, whether the antibody blocks attachment or fusion, the resulting immune complexes are expected to be phagocytosed by Fc gamma receptor (FcγR)-bearing cells and cleared from circulation. This suggests that only antibodies that are able to block fusion intracellularly would be able to neutralize DENV upon FcγR-mediated uptake by monocytes whereas other antibodies would have resulted in enhancement of DENV replication. Using convalescent sera from dengue patients, we observed that neutralization of the homologous serotypes occurred despite FcγR-mediated uptake. However, FcγR-mediated uptake appeared to be inhibited when neutralized heterologous DENV serotypes were used instead. We demonstrate that this inhibition occurred through the formation of viral aggregates by antibodies in a concentration-dependent manner. Aggregation of viruses enabled antibodies to cross-link the inhibitory FcγRIIB, which is expressed at low levels but which inhibits FcγR-mediated phagocytosis and hence prevents antibody-dependent enhancement of DENV infection in monocytes.
Collapse
|
23
|
Guimarães MCC, Guillermo LVC, Matta MFDR, Soares SG, DaMatta RA. Macrophages from chickens selected for high antibody response produced more nitric oxide and have greater phagocytic capacity. Vet Immunol Immunopathol 2011; 140:317-22. [DOI: 10.1016/j.vetimm.2011.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 12/17/2010] [Accepted: 01/05/2011] [Indexed: 11/30/2022]
|
24
|
He H, Genovese KJ, Kogut MH. Modulation of chicken macrophage effector function by T(H)1/T(H)2 cytokines. Cytokine 2011; 53:363-9. [PMID: 21208811 DOI: 10.1016/j.cyto.2010.12.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 10/18/2010] [Accepted: 12/06/2010] [Indexed: 12/20/2022]
Abstract
Regulation of macrophage activity by T(H)1/2 cytokines is important to maintain the balance of immunity to provide adequate protective immunity while avoiding excessive inflammation. IFN-γ and IL-4 are the hallmark T(H)1 and T(H)2 cytokines, respectively. In avian species, information concerning regulation of macrophage activity by T(H)1/2 cytokines is limited. Here, we investigated the regulatory function of chicken T(H)1 cytokines IFN-γ, IL-18 and T(H)2 cytokines IL-4, IL-10 on the HD11 macrophage cell line. Chicken IFN-γ stimulated nitric oxide (NO) synthesis in HD11 cells and primed the cells to produce significantly greater amounts of NO when exposed to microbial agonists, lipopolysaccharide, lipoteichoic acid, peptidoglycan, CpG-ODN, and poly I:C. In contrast, chicken IL-4 exhibited bi-directional immune regulatory activity: it activated macrophage NO synthesis in the absence of inflammatory agonists, but inhibited NO production by macrophages in response to microbial agonists. Both IFN-γ and IL-4, however, enhanced oxidative burst activity of the HD11 cells when exposed to Salmonella enteritidis. IL-18 and IL-10 did not affect NO production nor oxidative burst in HD11 cells. Phagocytosis and bacterial killing by the HD11 cells were not affected by the treatments of these cytokines. Infection of HD11 cells with S.enteritidis was shown to completely abolish NO production regardless of IFN-γ treatment. This study has demonstrated that IFN-γ and IL-4 are important T(H)1 and T(H)2 cytokines that regulate macrophage function in chickens.
Collapse
Affiliation(s)
- Haiqi He
- Southern Plain Agricultural Research Center, USDA-ARS, 2881 F&B Road, College Station, TX 77845, United States.
| | | | | |
Collapse
|
25
|
Leung HY, Ma CW, Tang QT, Ko KM. Long-Term Treatment with a Compound Polysaccharide-Based Health Product (Infinitus Polysac Plus) Enhances Innate and Adaptive Immunity in Mice. Chin Med 2011. [DOI: 10.4236/cm.2011.24028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
26
|
Ma H, Ning Z, Lu Y, Han H, Wang S, Mu J, Li J, Lian Z, Li N. Monocytes-macrophages phagocytosis as a potential marker for disease resistance in generation 1 of dwarf chickens. Poult Sci 2010; 89:2022-9. [DOI: 10.3382/ps.2010-00824] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|