1
|
Broiler responses to copper levels and sources: growth, tissue mineral content, antioxidant status and mRNA expression of genes involved in lipid and protein metabolism. BMC Vet Res 2022; 18:223. [PMID: 35698226 PMCID: PMC9195228 DOI: 10.1186/s12917-022-03286-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Five hundred 8-d old male broilers Cobb500 were randomly allotted into 10 treatments in factorial arrangement with 5 Cu levels (0, 4, 8, 12, and 16 mg/kg), and 2 sources (Cu proteinate, CuPro and Cu sulphate, CuSO4.5H2O) for a 10-d-experiment. RESULTS Feed conversion ratio (FCR) was better (P < 0.05) in CuPro fed chicks compared with CuSO4.5H2O group. Average daily feed intake (ADFI) decreased linearly (P < 0.05) as dietary Cu increased. A quadratic response (P < 0.05) to Cu levels was found for FCR, being optimized at 9.87 and 8.84 mg Cu/kg in CuPro and CuSO4.5H2O diets, respectively. Copper supplementation linearly increased liver Cu content (P < 0.05) and tended to linearly increase (P = 0.07) phosphorus (P) and copper in tibia. Manganese and zinc were higher (P < 0.05) in tibia of CuPro fed birds. Broilers fed CuPro exhibited lower liver iron (P < 0.05) content, lower activities of Cu, Zn superoxide dismutase (CuZnSOD) in breast muscle and liver, and glutathione peroxidase in liver. Glutathione peroxidase reduced linearly (P < 0.05) with CuPro levels and increased linearly (P < 0.05) with CuSO4.5H2O levels and were lower (P < 0.05) in all CuPro levels in breast muscle. Breast muscle malondialdehyde concentration tended to be higher (P = 0.08) in broilers fed CuSO4.5H2O. Copper levels linearly increased (P < 0.05) metallothionein (MT) and malate dehydrogenase (MDH) expression in liver, and six-transmembrane epithelial antigen of the prostate-1 (STEAP-1) in the intestine. Copper elicited a quadratic response (P < 0.050) in AKT-1 and mammalian target of rapamycin (mTOR) in breast muscle, CuZnSOD in liver and antioxidant 1 copper chaperone (ATOX 1) in intestine. Broilers fed CuPro exhibited higher mRNA expression of mTOR in muscle breast and lower CuZnSOD in liver and ATOX 1 in intestine. Interaction (P < 0.05) between levels and sources was found in mRNA expression for GSK-3β, MT, and CuZnSOD in breast muscle, FAS and LPL in liver and MT and CTR1 in intestine. CONCLUSIONS CuPro showed beneficial effects on feed conversion and bone mineralization. Organic and inorganic Cu requirements are 9.87 and 8.84 mg Cu/kg, respectively.
Collapse
|
2
|
Zhao X, Nie C, Zhang J, Li X, Zhu T, Guan Z, Chen Y, Wang L, Lv XZ, Yang W, Jia Y, Ning Z, Li H, Qu C, Wang H, Qu L. Identification of candidate genomic regions for chicken egg number traits based on genome-wide association study. BMC Genomics 2021; 22:610. [PMID: 34376144 PMCID: PMC8356427 DOI: 10.1186/s12864-021-07755-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Background Since the domestication of chicken, various breeds have been developed for food production, entertainment, and so on. Compared to indigenous chicken breeds which generally do not show elite production performance, commercial breeds or lines are selected intensely for meat or egg production. In the present study, in order to understand the molecular mechanisms underlying the dramatic differences of egg number between commercial egg-type chickens and indigenous chickens, we performed a genome-wide association study (GWAS) in a mixed linear model. Results We obtained 148 single nucleotide polymorphisms (SNPs) associated with egg number traits (57 significantly, 91 suggestively). Among them, 4 SNPs overlapped with previously reported quantitative trait loci (QTL), including 2 for egg production and 2 for reproductive traits. Furthermore, we identified 32 candidate genes based on the function of the screened genes. These genes were found to be mainly involved in regulating hormones, playing a role in the formation, growth, and development of follicles, and in the development of the reproductive system. Some genes such as NELL2 (neural EGFL like 2), KITLG (KIT ligand), GHRHR (Growth hormone releasing hormone receptor), NCOA1 (Nuclear receptor coactivator 1), ITPR1 (inositol 1, 4, 5-trisphosphate receptor type 1), GAMT (guanidinoacetate N-methyltransferase), and CAMK4 (calcium/calmodulin-dependent protein kinase IV) deserve our attention and further study since they have been reported to be closely related to egg production, egg number and reproductive traits. In addition, the most significant genomic region obtained in this study was located at 48.61–48.84 Mb on GGA5. In this region, we have repeatedly identified four genes, in which YY1 (YY1 transcription factor) and WDR25 (WD repeat domain 25) have been shown to be related to oocytes and reproductive tissues, respectively, which implies that this region may be a candidate region underlying egg number traits. Conclusion Our study utilized the genomic information from various chicken breeds or populations differed in the average annual egg number to understand the molecular genetic mechanisms involved in egg number traits. We identified a series of SNPs, candidate genes, or genomic regions that associated with egg number, which could help us in developing the egg production trait in chickens. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07755-3.
Collapse
Affiliation(s)
- Xiurong Zhao
- Department of Animal Genetics and Breeding, State Key Laboratory of Animal Nutrition, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Changsheng Nie
- Department of Animal Genetics and Breeding, State Key Laboratory of Animal Nutrition, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinxin Zhang
- Department of Animal Genetics and Breeding, State Key Laboratory of Animal Nutrition, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xinghua Li
- Department of Animal Genetics and Breeding, State Key Laboratory of Animal Nutrition, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tao Zhu
- Department of Animal Genetics and Breeding, State Key Laboratory of Animal Nutrition, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zi Guan
- Department of Animal Genetics and Breeding, State Key Laboratory of Animal Nutrition, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yu Chen
- Beijing Municipal General Station of Animal Science, Beijing, 100107, China
| | - Liang Wang
- Beijing Municipal General Station of Animal Science, Beijing, 100107, China
| | - Xue Ze Lv
- Beijing Municipal General Station of Animal Science, Beijing, 100107, China
| | - Weifang Yang
- Beijing Municipal General Station of Animal Science, Beijing, 100107, China
| | - Yaxiong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhonghua Ning
- Department of Animal Genetics and Breeding, State Key Laboratory of Animal Nutrition, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Changqing Qu
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang Normal University, Fuyang, 236037, Anhui, China
| | - Huie Wang
- College of Animal Science, Tarim University, Alar, 843300, Xingjiang, China.,Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production & amp; Construction Corps, Alar, 843300, Xingjiang, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, State Key Laboratory of Animal Nutrition, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Du Y, Liu L, He Y, Dou T, Jia J, Ge C. Endocrine and genetic factors affecting egg laying performance in chickens: a review. Br Poult Sci 2020; 61:538-549. [PMID: 32306752 DOI: 10.1080/00071668.2020.1758299] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
1. Egg-laying performance reflects the overall reproductive performance of breeding hens. The genetic traits for egg-laying performance have low or medium heritability, and, depending on the period involved, usually ranges from 0.16 to 0.64. Egg-laying in chickens is regulated by a combination of environmental, endocrine and genetic factors. 2. The main endocrine factors that regulate egg-laying are gonadotropin-releasing hormone (GnRH), prolactin (PRL), follicle-stimulating hormone (FSH) and luteinising hormone (LH). 3. In the last three decades, many studies have explored this aspect at a molecular genetic level. Recent studies identified 31 reproductive hormone-based candidate genes that were significantly associated with egg-laying performance. With the development of genome-sequencing technology, 64 new candidate genes and 108 single nucleotide polymorphisms (SNPs) related to egg-laying performance have been found using genome-wide association studies (GWAS), providing novel insights into the molecular genetic mechanisms governing egg production. At the same time, microRNAs that regulate genes responsible for egg-laying in chickens were reviewed. 4. Research on endocrinological and genetic factors affecting egg-laying performance will greatly improve the reproductive performance of chickens and promote the protection, development, and utilisation of poultry. This review summarises studies on the endocrine and genetic factors of egg-laying performance in chickens from 1972 to 2019.
Collapse
Affiliation(s)
- Y Du
- College of Animal Science and Technology, Yunnan Agricultural University , Kunming, Yunnan, The People's Republic of China
| | - L Liu
- School of Forensic Medicine, Kunming Medical University , Kunming, Yunnan, The People's Republic of China
| | - Y He
- College of Animal Science and Technology, Yunnan Agricultural University , Kunming, Yunnan, The People's Republic of China
| | - T Dou
- College of Animal Science and Technology, Yunnan Agricultural University , Kunming, Yunnan, The People's Republic of China
| | - J Jia
- College of Animal Science and Technology, Yunnan Agricultural University , Kunming, Yunnan, The People's Republic of China
| | - C Ge
- College of Animal Science and Technology, Yunnan Agricultural University , Kunming, Yunnan, The People's Republic of China
| |
Collapse
|
4
|
Tao P, Ning Z, Hao X, Lin X, Zheng Q, Li S. Comparative Analysis of Whole-Transcriptome RNA Expression in MDCK Cells Infected With the H3N2 and H5N1 Canine Influenza Viruses. Front Cell Infect Microbiol 2019; 9:76. [PMID: 30972307 PMCID: PMC6443845 DOI: 10.3389/fcimb.2019.00076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/05/2019] [Indexed: 01/07/2023] Open
Abstract
This study aimed to detect changes in the complete transcriptome of MDCK cells after infection with the H5N1 and H3N2 canine influenza viruses using high-throughput sequencing, search for differentially expressed RNAs in the transcriptome of MDCK cells infected with H5N1 and H3N2 using comparative analysis, and explain the differences in the pathogenicity of H5N1 and H3N2 at the transcriptome level. Based on the results of our comparative analysis, significantly different levels of expression were found for 2,464 mRNAs, 16 miRNAs, 181 lncRNAs, and 262 circRNAs in the H3N2 infection group and 448 mRNAs, 12 miRNAs, 77 lncRNAs, and 189 circRNAs in the H5N1 infection group. Potential functions were predicted by performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the target genes of miRNAs, lncRNAs and circRNAs, and the ncRNA-mRNA regulatory network was constructed based on differentially expressed RNAs. A greater number of pathways regulating immune metabolism were altered in the H3N2 infection group than in the H5N1 infection group, which may be one reason why the H3N2 virus is less pathogenic than is the H5N1 virus. This study provides detailed data on the production of ncRNAs during infection of MDCK cells by the canine influenza viruses H3N2 and H5N1, analyzed differences in the total transcriptomes between H3N2- and H5N1-infected MDCK cells, and explained these differences with regard to the pathogenicity of H3N2 and H5N1 at the transcriptional level.
Collapse
Affiliation(s)
- Pan Tao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiangqi Hao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Xi Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Qingxu Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| |
Collapse
|
5
|
Zheng Y, Fu X, Wang L, Zhang W, Zhou P, Zhang X, Zeng W, Chen J, Cao Z, Jia K, Li S. Comparative analysis of MicroRNA expression in dog lungs infected with the H3N2 and H5N1 canine influenza viruses. Microb Pathog 2018; 121:252-261. [PMID: 29772263 DOI: 10.1016/j.micpath.2018.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 11/16/2022]
Abstract
MicroRNAs, a class of noncoding RNAs 18 to 23 nucleotides (nt) in length, play critical roles in a wide variety of biological processes. The objective of this study was to examine differences in microRNA expression profiles derived from the lungs of beagle dogs infected with the avian-origin H3N2 canine influenza virus (CIV) or the highly pathogenic avian influenza (HPAI) H5N1 virus (canine-origin isolation strain). After dogs were infected with H3N2 or H5N1, microRNA expression in the lungs was assessed using a deep-sequencing approach. To identify the roles of microRNAs in viral pathogenicity and the host immune response, microRNA target genes were predicted, and their functions were analyzed using bioinformatics software. A total of 229 microRNAs were upregulated in the H5N1 infection group compared with those in the H3N2 infection group, and 166 microRNAs were downregulated. MicroRNA target genes in the H5N1 group were more significantly involved in metabolic pathways, such as glycerolipid metabolism and glycerophospholipid metabolism, than those in the H3N2 group. The inhibition of metabolic pathways may lead to appetite loss, weight loss and weakened immunity. Moreover, miR-485, miR-144, miR-133b, miR-4859-5p, miR-6902-3p, miR-7638, miR-1307-3p and miR-1346 were significantly altered microRNAs that potentially led to the inhibition of innate immune pathways and the heightened pathogenicity of H5N1 compared with that of H3N2 in dogs. This study deepens our understanding of the complex relationships among microRNAs, the influenza virus-mediated immune response and immune injury in dogs.
Collapse
Affiliation(s)
- Yun Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Xinliang Fu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Lifang Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Wenyan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Xin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Weijie Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Jidang Chen
- School of Life Science and Engineering, Foshan University, Guangzhou, People's Republic of China
| | - Zongxi Cao
- Hainan Academy of Agricultural Science, Hainan, People's Republic of China
| | - Kun Jia
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China.
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China.
| |
Collapse
|
6
|
Graczyk M, Reyer H, Wimmers K, Szwaczkowski T. Detection of the important chromosomal regions determining production traits in meat-type chicken using entropy analysis. Br Poult Sci 2017; 58:358-365. [DOI: 10.1080/00071668.2017.1324944] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- M. Graczyk
- Departament of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| | - H. Reyer
- Institute of Genome Biology, Leibniz Institute of Farm Animal Biology, Dummerstorf, Germany
| | - K. Wimmers
- Institute of Genome Biology, Leibniz Institute of Farm Animal Biology, Dummerstorf, Germany
| | - T. Szwaczkowski
- Departament of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
7
|
Truong AD, Rengaraj D, Hong Y, Hoang CT, Hong YH, Lillehoj HS. Differentially expressed JAK-STAT signaling pathway genes and target microRNAs in the spleen of necrotic enteritis-afflicted chicken lines. Res Vet Sci 2017; 115:235-243. [PMID: 28525837 DOI: 10.1016/j.rvsc.2017.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 12/14/2022]
Abstract
The JAK signal transducer and STAT signaling pathway is an important regulator of cell proliferation, differentiation, survival, motility, apoptosis, immune response, and development. In this study, we used RNA-Sequencing, qRT-PCR, and bioinformatics tools to investigate the differential expression of JAK-STAT pathway genes, their interactions, and regulators in the spleen of two genetically disparate chicken lines (Marek's disease-resistant line 6.3 and MD-susceptible line 7.2) induced necrotic enteritis (NE) disease by co-infection with Eimeria maxima and Clostridium perfringens. Using RNA-Seq analysis, we identified a total of 116 JAK-STAT pathway genes that were differentially expressed in the spleen of these chickens. All of the identified genes were analyzed through clustering, mapping to the KEGG chicken JAK-STAT pathway, and the Pathway Studio program. Of the 116 JAK-STAT pathway genes, 20 were further verified by qRT-PCR. According to the RNA-Seq results, several key genes, including STAT1-6, JAK1-3, TYK2, AKT1, AKT3, SOCS1-5, PIAS1, PIAS2, PIAS4, SHP1, SHP2, and PIK3, showed marked differential expression in the two lines, relative to their respective controls. Moreover, the RNA-Seq results of many key genes were highly correlated with the qRT-PCR results. Finally, we predicted 63 mature miRNAs that variably target JAK-STAT pathway genes and are differentially expressed in the spleen of chickens of both lines. To the best of our knowledge, this study is the first to analyze most of the genes, interactions, and regulators of the JAK-STAT pathway in the innate immune response to NE disease in chickens.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Deivendran Rengaraj
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Cong Thanh Hoang
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD 20705, USA
| |
Collapse
|
8
|
Niu X, Tyasi TL, Qin N, Liu D, Zhu H, Chen X, Zhang F, Yuan S, Xu R. Sequence variations in estrogen receptor 1 and 2 genes and their association with egg production traits in Chinese Dagu chickens. J Vet Med Sci 2017; 79:927-934. [PMID: 28420808 PMCID: PMC5447984 DOI: 10.1292/jvms.17-0014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Estrogen receptors α (ESR1) and β (ESR2) play central roles in folliculogenesis and therefore in reproductive biology. In the present study, two single nucleotide polymorphisms (SNPs) were
identified in the ESR1 and ESR2 genes using PCR-single strand conformation polymorphism (PCR-SSCP) and DNA sequencing. One of the identified SNPs, a T1101C transition located within exon 4 of the
ESR1 gene, was significantly associated with hen-housed egg production (HHEP) at 30, 43, 57 and 66 weeks of age (P<0.05), and egg weight (EW) at 30 weeks (P<0.05). Another
SNP, a G1755A transition leading to a non-synonymous substitution (valine 459-to-isoleucine) located within exon 8 of the ESR2 gene, was also markedly correlated with the HHEP at 30, 43, 57 and 66 weeks of age
(P<0.05), and EW at 30 weeks (P<0.05). A greater proportion of the additive variance was explained by the SNPs for most of the associated egg production traits (>1%). Furthermore, the
results of the combined genotype-based association analysis supported the finding that the two SNPs were associated with the traits under a study. Taken together, our findings suggest that the two sequence variations in the
ESR1 and ESR2 genes may provide promising genetic markers for the early selection and prediction of advantageous phenotypes in chicken breeding.
Collapse
Affiliation(s)
- Xiaotian Niu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Thobela Louis Tyasi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Ning Qin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Dehui Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Hongyan Zhu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Xiaoxia Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Fengwei Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Shuguo Yuan
- Jilin Grain Group Agriculture and Livestock Co., Ltd., Changchun 130062, Jilin, China
| | - Rifu Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| |
Collapse
|
9
|
Jing Y, Shan X, Mu F, Qin N, Zhu H, Liu D, Yuan S, Xu R. Associations of the Novel Polymorphisms of Periostin and Platelet-Derived Growth Factor Receptor-Like Genes with Egg Production Traits in Local Chinese Dagu Hens. Anim Biotechnol 2016; 27:208-16. [DOI: 10.1080/10495398.2016.1169191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yang Jing
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Xuesong Shan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Fang Mu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Ning Qin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - HongYan Zhu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Dehui Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Shuguo Yuan
- Jilin Grain Group Agriculture and Livestock Co., Ltd., Changchun, Jilin, China
| | - Rifu Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
10
|
Mu F, Jing Y, Qin N, Zhu HY, Liu DH, Yuan SG, Xu RF. Novel Polymorphisms of Adrenergic, Alpha-1B-, Receptor and Peroxisome Proliferator-activated Receptor Gamma, Coactivator 1 Beta Genes and Their Association with Egg Production Traits in Local Chinese Dagu Hens. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 29:1256-64. [PMID: 26954135 PMCID: PMC5003985 DOI: 10.5713/ajas.15.0794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/22/2015] [Accepted: 11/24/2015] [Indexed: 12/17/2022]
Abstract
Adrenergic, alpha-1B-, receptor (ADRA1B) and peroxisome proliferator-activated receptor gamma, coactivator 1 beta (PPARGC1B) genes are involved in regulation of hen ovarian development. In this study, these two genes were investigated as possible molecular markers associated with hen-housed egg production, egg weight (EW) and body weight in Chinese Dagu hens. Samples were analyzed using the polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) technique, followed by sequencing analysis. Two novel single nucleotide polymorphisms (SNPs) were identified within the candidate genes. Among them, an A/G transition at base position 1915 in exon 2 of ADRA1B gene and a T/C mutation at base position 6146 in the 3′-untranslated region (UTR) of PPARGC1B gene were found to be polymorphic and named SNP A1915G and T6146C, respectively. The SNP A1915G (ADRA1B) leads to a non-synonymous substitution (aspartic acid 489-to-glycine). The 360 birds from the Dagu population were divided into genotypes AA and AG, allele A was found to be present at a higher frequency. Furthermore, the AG genotype correlated with significantly higher hen-housed egg production (HHEP) at 30, 43, 57, and 66 wks of age and with a higher EW at 30 and 43 wks (p<0.05). For the SNP T6146C (PPARGC1B), the hens were typed into TT and TC genotypes, with the T allele shown to be dominant. The TC genotype was also markedly correlated with higher HHEP at 57 and 66 wks of age and EW at 30 and 43 wks (p<0.05). Moreover, four haplotypes were reconstructed based on these two SNPs, with the AGTC haplotype found to be associated with the highest HHEP at 30 to 66 wks of age and with higher EW at 30 and 43 wks (p<0.05). Collectively, the two SNPs identified in this study might be used as potential genetic molecular markers favorable in the improvement of egg productivity in chicken breeding.
Collapse
Affiliation(s)
- F Mu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Y Jing
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - N Qin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - H Y Zhu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - D H Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - S G Yuan
- Jilin Grain Group Agriculture and Livestock Co., Ltd., Changchun 130062, Jilin, China
| | - R F Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
11
|
Qin N, Liu Q, Zhang YY, Fan XC, Xu XX, Lv ZC, Wei ML, Jing Y, Mu F, Xu RF. Association of novel polymorphisms of forkhead box L2 and growth differentiation factor-9 genes with egg production traits in local Chinese Dagu hens. Poult Sci 2015; 94:88-95. [PMID: 25577797 DOI: 10.3382/ps/peu023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription factor forkhead box L2 (FOXL2) and growth differentiation factor-9 (GDF9) genes have critical roles in the regulation of hen ovarian development. In the present study, these genes were explored as possible molecular markers associated with BW, hen-housed egg production, and egg weight in Chinese Dagu hens. Samples were analyzed using the PCR-single strand conformation polymorphism (PCR-SSCP) technique followed by sequencing analysis, and two novel single nucleotide polymorphisms (SNPs) were identified within these candidate genes. Among them, an A/G transition at base position 238 in the coding region of the FOXL2 gene and a G/T transversion at base position 1609 in exon 2 of the GDF9 gene were found to be polymorphic and named SNPs A238G and G1609T, respectively. The SNP A238G (FOXL2) leads to a nonsynonymous substitution (isoleucine77-to-valine), and when the 360 Dagu hen samples were divided into genotypes AA and AB, allele A was found to be present at a higher frequency. Furthermore, the AA genotype correlated with significantly higher hen-housed egg production at 30, 43, 57, and 66 wk of age and with a higher egg weight at 43 wk (P<0.05). For the SNP G1609T (GDF9), the hens were typed into TT and TC genotypes, with the T allele shown to be dominant. The TC genotype was also markedly correlated with higher hen-housed egg production and a higher egg weight (P<0.05). Moreover, four haplotypes were reconstructed based on these two SNPs, with the AATC haplotype found to be correlated with the highest hen-housed egg production at 30 to 66 wk of age and with higher egg weights at 43 wk (P<0.05). Collectively, the two SNPs identified in this study might be used as possible genetic molecular markers to aid in the improvement of egg production traits in chicken breeding.
Collapse
Affiliation(s)
- N Qin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Q Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Y Y Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - X C Fan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - X X Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 130118, Hubei, China
| | - Z C Lv
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - M L Wei
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Y Jing
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - F Mu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - R F Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| |
Collapse
|
12
|
Liu W, Yu Y, Li G, Tang S, Zhang Y, Wang Y, Zhang S, Zhang Y. Single-nucleotide polymorphisms in the promoter of the growth hormone-releasing hormone receptor gene are associated with growth and reproduction traits in chickens. Anim Genet 2012; 43:564-9. [PMID: 22497307 DOI: 10.1111/j.1365-2052.2011.02306.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2011] [Indexed: 11/28/2022]
Abstract
Growth hormone-releasing hormone receptor (GHRHR) plays a critical role in growth hormone (GH) synthesis, release and regulation in animals. The objective of this study was to investigate variations of the chicken GHRHR gene and their associations with growth and reproduction traits in 768 Beijing You chickens. Results revealed three single nucleotide polymorphisms (SNPs) in the promoter region of the gene (g.-1654A>G, g.-1411A>G and g.-142T>C). Association analysis revealed that the novel SNP g.-1654A>G had significant effects on chicken body weight at 7, 9, 11, 13, 17 weeks of age and the age of first egg as well as egg number at 32, 36 and 40 weeks. Significant association was also observed between g.-1411A>G and g.-142T>C with EN24. Moreover, the age of first egg was distinctly related with g.-142T>C (P < 0.05). Although significant statistical difference was not detected in GHRHR mRNA levels among genotypes of the SNPs (P > 0.05), strong expression variations of the gene were found between the ages 17 and 20 weeks in the population (P < 0.05). These results suggest that the three SNPs in the GHRHR promoter could be used as potential genetic markers to improve the growth and reproductive traits in chickens.
Collapse
Affiliation(s)
- W Liu
- Key Laboratory of Agricultural Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Li G, Sun D, Yu Y, Liu W, Tang S, Zhang Y, Wang Y, Zhang S, Zhang Y. Genetic effect of the follicle-stimulating hormone receptor gene on reproductive traits in Beijing You chickens. Poult Sci 2011; 90:2487-92. [DOI: 10.3382/ps.2010-01327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Xu H, Zeng H, Luo C, Zhang D, Wang Q, Sun L, Yang L, Zhou M, Nie Q, Zhang X. Genetic effects of polymorphisms in candidate genes and the QTL region on chicken age at first egg. BMC Genet 2011; 12:33. [PMID: 21492484 PMCID: PMC3096585 DOI: 10.1186/1471-2156-12-33] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 04/15/2011] [Indexed: 12/30/2022] Open
Abstract
Background The age at first egg (AFE), an important indicator for sexual maturation in female chickens, is controlled by polygenes. Based on our knowledge of reproductive physiology, 6 genes including gonadotrophin releasing hormone-I (GnRH-I), neuropeptide Y (NPY), dopamine D2 receptor (DRD2), vasoactive intestinal polypeptide (VIP), VIP receptor-1 (VIPR-1), and prolactin (PRL), were selected as candidates for influencing AFE. Additionally, the region between ADL0201 and MCW0241 of chromosome Z was chosen as the candidate QTL region according to some QTL databases. The objective of the present study was to investigate the effects of mutations in candidate genes and the QTL region on chicken AFE. Results Marker-trait association analysis of 8 mutations in those 6 genes in a Chinese native population found a highly significant association (P < 0.01) between G840327C of the GnRH-I gene with AFE, and it remained significant even with Bonferroni correction. Based on the results of the 2-tailed χ2 test, mutations T32742394C, T32742468C, G32742603A, and C33379782T in the candidate QTL region of chromosome Z were selected for marker-trait association analysis. The haplotypes of T32742394C and T32742468C were significantly associated (P < 0.05) with AFE. Bioinformatics analysis indicated that T32742394C and T32742468C were located in the intron region of the SH3-domain GRB2-like 2 (SH3GL2) gene, which appeared to be associated in the endocytosis and development of the oocyte. Conclusion This study found that G840327C of the GnRH-I gene and the haplotypes of T32742394C-T32742468C of the SH3GL2 gene were associated with the chicken AFE.
Collapse
Affiliation(s)
- Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|