1
|
Suchocki T, Czech B, Dunislawska A, Slawinska A, Derebecka N, Wesoly J, Siwek M, Szyda J. SNP prioritization in targeted sequencing data associated with humoral immune responses in chicken. Poult Sci 2021; 100:101433. [PMID: 34551372 PMCID: PMC8458985 DOI: 10.1016/j.psj.2021.101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/13/2021] [Accepted: 08/15/2021] [Indexed: 11/30/2022] Open
Abstract
Our study aimed to identify single nucleotide polymorphisms (SNPs) with a significant impact on the innate immunity represented by antibody response against lipopolysaccharide (LPS) and lipoteichoid acid (LTA) and the adaptive immune response represented toward keyhole limpet hemocyanin (KLH) using the SNP prioritization method. Data set consisted of 288 F2 experimental individuals, created by crossing Green-legged Partridgelike and White Leghorn. The analyzed SNPs were located within 24 short genomic regions of GGA1, GGA2, GGA3, GGA4, GGA9, GGA10, GGA14, GGA18, and GGZ, pre-targeted based on literature references and database information. For the specific antibody response toward KLH at d 0 the most highly prioritized SNP for additive and dominance effects were located on GGA2 in the 3’UTR of MYD88. For the response at d 7, the most highly prioritized SNP pointed at the 3’UTR of MYD88, but potential causal additive variants were located within ADIPOQ and one in PROCR. The highest priority for additive and dominance effects in the antibody response toward lipoteichoic acid at d 0 was attributed to the same SNP, located on GGA2 in the 3’UTR region of MYD88. Two SNPs among the top-10 for additive effect were located in the exon of NOCT. SNPs selected for their additive effect on antibody response toward lipopolysaccharide at d 0 marked 3 genes – NOCT, MYD88, and SNX8, while SNPs selected for their dominance effect marked – NOCT, ADIPOQ, and MYD88. The top-10 variants identified in our study were located in different functional parts of the genome. In the context of causality three groups can be distinguished: variants located in exons of protein coding genes (ADIPOQ, NOCT, PROCR, SNX8), variants within exons of non-coding transcripts, and variants located in genes’ UTR regions. Variants from the first group influence protein structure and variants from both latter groups’ exhibit regulatory roles on DNA (UTR) or RNA (lncRNA).
Collapse
Affiliation(s)
- Tomasz Suchocki
- Biostatistics Group, Department of Genetics, Wrocław University of Environmental and Life Sciences, Wrocław, Poland; National Research Institute of Animal Production, Balice, Poland
| | - Bartosz Czech
- Biostatistics Group, Department of Genetics, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Bydgoszcz 85-084, Poland
| | - Anna Slawinska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Bydgoszcz 85-084, Poland
| | - Natalia Derebecka
- Laboratory of High Throughput Technologies, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Bydgoszcz 85-084, Poland.
| | - Joanna Szyda
- Biostatistics Group, Department of Genetics, Wrocław University of Environmental and Life Sciences, Wrocław, Poland; National Research Institute of Animal Production, Balice, Poland
| |
Collapse
|
2
|
Szczerba A, Kuwana T, Bednarczyk M. Concentration and total number of circulating primordial germ cells in Green-legged Partridgelike chicken embryos. Poult Sci 2021; 100:319-324. [PMID: 33357696 PMCID: PMC7772670 DOI: 10.1016/j.psj.2020.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/14/2020] [Accepted: 08/10/2020] [Indexed: 02/01/2023] Open
Abstract
The Green-legged Partridgelike fowl is an old Polish indigenous breed of chicken. Primordial germ cells (PGCs) are one of the best sources of precursor cells that can be used for the conservation and proliferation of the endangered breeds of bird. Initially, the chicken PGCs colonize at the anterior extraembryonic region called "germinal crescent," and after the establishment of blood vascular circulation, they temporally circulate via the embryonic blood vascular system along with embryonic blood cells. They further colonize at the microcapillary networks of both right and left future gonadal regions. Subsequently, they migrate interstitially to reach gonadal anlages, where they begin to differentiate and eventually develop into the future ova or sperm. The basic knowledge regarding the concentration and the total number of circulating PGCs (cPGCs) throughout their circulating phase in the early embryonic stages is crucial for providing an insight into the mechanisms by which they circulate and colonize at the capillary networks of left and right future gonadal regions in each developmental stage. The present study aims to determine the most efficient developmental stage that is suitable to collect cPGCs. The concentration of cPGCs was directly measured, and total volume of embryonic blood was calculated based on the concentration of PKH26-stained embryonic blood cells which were injected 10 min before the blood sampling process in the same embryo during each stage of embryonic development from stage 13 Hamburger and Hamilton (HH; Hamburger and Hamilton, 1951) to 16 HH. Analysis of whole embryonic bloodstream revealed that at stage 14 HH of embryonic development, peak total number of cPGCs (386.3 cells/μL) and peak concentration of cPGCs (18.6 cells/μL) were observed. Later, there was a decrease in concentration, suggesting that the cPGCs might be trapped gradually by the capillary networks at the future gonadal regions after stage 15 HH.
Collapse
Affiliation(s)
- Agata Szczerba
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, University of Science and Technology in Bydgoszcz, 85-084 Bydgoszcz, Poland.
| | - Takashi Kuwana
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, University of Science and Technology in Bydgoszcz, 85-084 Bydgoszcz, Poland
| | - Marek Bednarczyk
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, University of Science and Technology in Bydgoszcz, 85-084 Bydgoszcz, Poland
| |
Collapse
|
3
|
Wolc A, Arango J, Settar P, Fulton J, O’Sullivan N, Dekkers J. Genome wide association study for heat stress induced mortality in a white egg layer line. Poult Sci 2019; 98:92-96. [DOI: 10.3382/ps/pey403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/08/2018] [Indexed: 11/20/2022] Open
|
4
|
Knaga S, Siwek M, Tavaniello S, Maiorano G, Witkowski A, Jezewska-Witkowska G, Bednarczyk M, Zieba G. Identification of quantitative trait loci affecting production and biochemical traits in a unique Japanese quail resource population. Poult Sci 2018; 97:2267-2277. [PMID: 29672744 DOI: 10.3382/ps/pey110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/10/2018] [Indexed: 11/20/2022] Open
Abstract
The objective of the current study was to identify QTL associated with body weight, growth rate, egg quality traits, concentration of selected blood plasma, and yolk lipids as well as concentration of selected macro- and microelements, color, pH, basic chemical composition, and drip loss of breast muscle of Japanese quail (Coturnix japonica). Twenty-two meat-type males (line F33) were crossed with twenty-two laying-type females (line S22) to produce a generation of F1 hybrids. The F2 generation was created by mating 44 randomly chosen F1 hybrids, which were full siblings. The birds were individually weighed from the first to eighth week of age. At the age of 19 wk, 2 to 4 eggs were individually collected from each female and an analysis of the egg quality traits was performed. At slaughter, blood and breast muscles were collected from 324 individuals of the resource population. The basic chemical composition, concentration of chosen macro- and microelements, color, pH, and drip loss were determined in the muscle samples. The concentration of chosen lipids was determined in egg yolk and blood plasma. In total, 30 microsatellite markers located on chromosome 1 and 2 were genotyped. QTL mapping including additive and dominance genetic effects revealed 6 loci on chromosome 1 of the Japanese quail affecting the egg number, egg production rate, egg weight, specific gravity, egg shell weight, concentration of Na in breast muscle. In turn, there were 9 loci on chromosome 2 affecting the body weight in the first, fourth, and sixth week of age, growth rate in the second and seventh week of age, specific gravity, concentration of K and Cu in breast muscle, and the levels of triacylglycerols in blood plasma. In this study, QTL with a potential effect on the Na, K, and Cu content in breast muscles in poultry and on specific gravity in the Japanese quail were mapped for the first time.
Collapse
Affiliation(s)
- S Knaga
- Institute of Biological Bases of Animal Production, University of Life Sciences, Akademicka 13,20-950 Lublin, Poland
| | - M Siwek
- Department of Animal Biochemistry and Biotechnology, UTP University of Sciences and Technology, Bydgoszcz 85-064, Poland
| | - S Tavaniello
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso 86100, Italy
| | - G Maiorano
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso 86100, Italy
| | - A Witkowski
- Institute of Biological Bases of Animal Production, University of Life Sciences, Akademicka 13,20-950 Lublin, Poland
| | - G Jezewska-Witkowska
- Institute of Biological Bases of Animal Production, University of Life Sciences, Akademicka 13,20-950 Lublin, Poland
| | - M Bednarczyk
- Department of Animal Biochemistry and Biotechnology, UTP University of Sciences and Technology, Bydgoszcz 85-064, Poland
| | - G Zieba
- Institute of Biological Bases of Animal Production, University of Life Sciences, Akademicka 13,20-950 Lublin, Poland
| |
Collapse
|
5
|
The identification of loci for immune traits in chickens using a genome-wide association study. PLoS One 2015; 10:e0117269. [PMID: 25822738 PMCID: PMC4378930 DOI: 10.1371/journal.pone.0117269] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 12/22/2014] [Indexed: 12/26/2022] Open
Abstract
The genetic improvement of disease resistance in poultry continues to be a challenge. To identify candidate genes and loci responsible for these traits, genome-wide association studies using the chicken 60k high density single nucleotide polymorphism (SNP) array for six immune traits, total serum immunoglobulin Y (IgY) level, numbers of, and the ratio of heterophils and lymphocytes, and antibody responses against Avian Influenza Virus (AIV) and Sheep Red Blood Cell (SRBC), were performed. RT-qPCR was used to quantify the relative expression of the identified candidate genes. Nine significantly associated SNPs (P < 2.81E-06) and 30 SNPs reaching the suggestively significant level (P < 5.62E-05) were identified. Five of the 10 SNPs that were suggestively associated with the antibody response to SRBC were located within or close to previously reported QTL regions. Fifteen SNPs reached a suggestive significance level for AIV antibody titer and seven were found on the sex chromosome Z. Seven suggestive markers involving five different SNPs were identified for the numbers of heterophils and lymphocytes, and the heterophil/lymphocyte ratio. Nine significant SNPs, all on chromosome 16, were significantly associated with serum total IgY concentration, and the five most significant were located within a narrow region spanning 6.4kb to 253.4kb (P = 1.20E-14 to 5.33E-08). After testing expression of five candidate genes (IL4I1, CD1b, GNB2L1, TRIM27 and ZNF692) located in this region, changes in IL4I1, CD1b transcripts were consistent with the concentrations of IgY, while abundances of TRIM27 and ZNF692 showed reciprocal changes to those of IgY concentrations. This study has revealed 39 SNPs associated with six immune traits (total serum IgY level, numbers of, and the ratio of heterophils and lymphocytes, and antibody responses against AIV and SRBC) in Beijing-You chickens. The narrow region spanning 247kb on chromosome 16 is an important QTL for serum total IgY concentration. Five candidate genes related to IgY level validated here are novel and may play critical roles in the modulation of immune responses. Potentially useful candidate SNPs for marker-assisted selection for disease resistance are identified. It is highly likely that these candidate genes play roles in various aspects of the immune response in chickens.
Collapse
|
6
|
Siwek M, Slawinska A, Rydzanicz M, Wesoly J, Fraszczak M, Suchocki T, Skiba J, Skiba K, Szyda J. Identification of candidate genes and mutations in QTL regions for immune responses in chicken. Anim Genet 2015; 46:247-54. [PMID: 25752210 PMCID: PMC4964923 DOI: 10.1111/age.12280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2015] [Indexed: 01/11/2023]
Abstract
There are two categories of immune responses – innate and adaptive immunity – both having polygenic backgrounds and a significant environmental component. In our study, adaptive immunity was represented by the specific antibody response toward keyhole limpet hemocyanin (KLH); innate immunity was represented by natural antibodies toward lipopolysaccharide (LPS) and lipoteichoic acid (LTA). Defining genetic bases of immune responses leads from defining quantitative trait loci (QTL) toward a single mutation responsible for variation in the phenotypic trait. The goal of the reported study was to define candidate genes and mutations for the immune traits of interest in chicken by performing an association study of SNPs located in candidate genes defined in QTL regions. Candidate genes and SNPs in QTL regions were selected in silico. SNP association was based on a custom SNP panel, GoldenGate genotyping assay (Illumina) and two statistical models: random mixed model and CAR score. The most significant SNP for immune response toward KLH was located in the JMJD6 gene located on GGA18. Four SNPs in candidate genes FOXJ1 (GGA18), EPHB1 (GGA9), PTGER4 (GGAZ) and PRKCB (GGA14) showed association with natural antibodies for LPS. A single SNP in ITGB4 (GGA18) was associated with natural antibodies for LTA. All associated SNPs mentioned above showed additive effects.
Collapse
Affiliation(s)
- M Siwek
- Animal Biotechnology Department, University of Technology and Life Sciences, Mazowiecka 28, 84-085, Bydgoszcz, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
A genome-wide association study identifies major loci affecting the immune response against infectious bronchitis virus in chicken. INFECTION GENETICS AND EVOLUTION 2013; 21:351-8. [PMID: 24333371 PMCID: PMC7106259 DOI: 10.1016/j.meegid.2013.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/06/2013] [Accepted: 12/03/2013] [Indexed: 02/07/2023]
Abstract
The genetic basis of host responses to infectious bronchitis virus is unclear. We detected 20 significant markers for the antibody response to infectious bronchitis virus in chicken. Loci on chromosomes 1 and 5 explained 12% and 13% of phenotypic variation. The host immune response cluster had 13 beta-defensin and interleukin-17F genes. Our results will contribute to the control of outbreaks of infectious bronchitis.
Coronaviruses are a hot research topic because they can cause severe diseases in humans and animals. Infectious bronchitis virus (IBV), belonging to gamma-coronaviruses, causes a highly infectious respiratory viral disease and can result in catastrophic economic losses to the poultry industry worldwide. Unfortunately, the genetic basis of the host immune responses against IBV is poorly understood. In the present study, the antibody levels against IBV post-immunization were measured by an enzyme-linked immunosorbent assay in the serum of 511 individuals from a commercial chicken (Gallus gallus) population. A genome-wide association study using 43,211 single nucleotide polymorphism markers was performed to identify the major loci affecting the immune response against IBV. This study detected 20 significant (P < 1.16 × 10−6) effect single nucleotide polymorphisms for the antibody level against IBV. These single nucleotide polymorphisms were distributed on five chicken chromosomes (GGA), involving GGA1, GGA3, GGA5, GGA8, and GGA9. The genes in the 1-Mb windows surrounding each single nucleotide polymorphism with significant effect for the antibody level against IBV were associated with many biological processes or pathways related to immunity, such as the defense response and mTOR signaling pathway. A genomic region containing a cluster of 13 beta-defensin (GAL1–13) and interleukin-17F genes on GGA3 probably plays an important role in the immune response against IBV. In addition, the major loci significantly associated with the antibody level against IBV on GGA1 and GGA5 could explain about 12% and 13% of the phenotypic variation, respectively. This study suggested that the chicken genome has several important loci affecting the immune response against IBV, and increases our knowledge of how to control outbreaks of infectious bronchitis.
Collapse
|
8
|
Slawinska A, Siwek M. Meta - and combined - QTL analysis of different experiments on immune traits in chickens. J Appl Genet 2013; 54:483-7. [PMID: 24114202 PMCID: PMC3825546 DOI: 10.1007/s13353-013-0177-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/09/2013] [Accepted: 09/19/2013] [Indexed: 12/04/2022]
Abstract
Meta and/or combined QTL analysis from multiple studies can improve quantitative trait loci (QTL) position estimates compared to the individual experiments. Hereby we present results of a meta-analysis of QTL on chicken chromosome 9, 14 and 18 using data from three separate experiments and joint QTL analysis for chromosome 14 and 18. Meta QTL analysis uses information from multiple QTLs studies. Joint QTL analysis is based on combining raw data from different QTL experimental populations. QTLs under the study were related to specific antibody response to keyhole lymphet hemocyanin (KLH), and natural antibodies to environmental antigens, lipopolisaccharide (LPS) and lipoteichoic acid (LTA). Meta QTL analysis resulted in narrowing down the confidence interval for two QTLs on GGA14. The first one for natural antibodies against LTA and the second one for specific antibody response toward KLH. Also, a confidence interval of a QTL for natural antibodies against LPS located on GGA18 was narrowed down. Combined QTL analysis was successful for two QTLs: for specific antibody response toward KLH on GGA14, and for natural antibodies against LPS on GGA18. The greatest statistical power for QTL detection in joint analysis was achieved when raw data from segregating half–sib families from different populations under the study was used.
Collapse
Affiliation(s)
- Anna Slawinska
- Department of Animal Biotechnology and Histology, University of Technology and Life Sciences, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| | | |
Collapse
|
9
|
Siwek M, Wragg D, Sławińska A, Malek M, Hanotte O, Mwacharo JM. Insights into the genetic history of Green-legged Partridgelike fowl: mtDNA and genome-wide SNP analysis. Anim Genet 2013; 44:522-32. [PMID: 23611337 PMCID: PMC3793231 DOI: 10.1111/age.12046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2013] [Indexed: 11/27/2022]
Abstract
The Green-legged Partridgelike (GP) fowl, an old native Polish breed, is characterised by reseda green-coloured shanks rather than yellow, white, slate or black commonly observed across most domestic breeds of chicken. Here, we investigate the origin, genetic relationships and structure of the GP fowl using mtDNA D-loop sequencing and genome-wide SNP analysis. Genome-wide association analysis between breeds enables us to verify the genetic control of the reseda green shank phenotype, a defining trait for the breed. Two mtDNA D-loop haplogroups and three autosomal genetic backgrounds are revealed. Significant associations of SNPs on chromosomes GGA24 and GGAZ indicate that the reseda green leg phenotype is associated with recessive alleles linked to the W and Id loci. Our results provide new insights into the genetic history of European chicken, indicating an admixd origin of East European traditional breeds of chicken on the continent, as supported by the presence of the reseda green phenotype and the knowledge that the GP fowl as a breed was developed before the advent of commercial stocks.
Collapse
Affiliation(s)
- M Siwek
- Department of Animal Biotechnology, University of Technology and Life Sciences, Mazowiecka 28, Bydgoszcz, Poland.
| | | | | | | | | | | |
Collapse
|