1
|
Vlček J, Miláček M, Vinkler M, Štefka J. Effect of population size and selection on Toll-like receptor diversity in populations of Galápagos mockingbirds. J Evol Biol 2023; 36:109-120. [PMID: 36398499 DOI: 10.1111/jeb.14121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/25/2022] [Accepted: 09/10/2022] [Indexed: 11/19/2022]
Abstract
The interactions of evolutionary forces are difficult to analyse in free-living populations. However, when properly understood, they provide valuable insights into evolutionary biology and conservation genetics. This is particularly important for the interplay of genetic drift and natural selection in immune genes that confer resistance to disease. The Galápagos Islands are inhabited by four closely related species of mockingbirds (Mimus spp.). We used 12 different-sized populations of Galápagos mockingbirds and one population of their continental relative northern mockingbird (Mimus polyglottos) to study the effects of genetic drift on the molecular evolution of immune genes, the Toll-like receptors (TLRs: TLR1B, TLR4 and TLR15). We found that neutral genetic diversity was positively correlated with island size, indicating an important effect of genetic drift. However, for TLR1B and TLR4, there was little correlation between functional (e.g., protein) diversity and island size, and protein structural properties were largely conserved, indicating only a limited effect of genetic drift on molecular phenotype. By contrast, TLR15 was less conserved and even its putative functional polymorphism correlated with island size. The patterns observed for the three genes suggest that genetic drift does not necessarily dominate selection even in relatively small populations, but that the final outcome depends on the degree of selection constraint that is specific for each TLR locus.
Collapse
Affiliation(s)
- Jakub Vlček
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.,Department of Zoology, University of South Bohemia in České Budějovice Faculty of Science, České Budějovice, Czech Republic.,Department of Botany, Charles University Faculty of Science, Prague, Czech Republic
| | - Matěj Miláček
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.,Department of Zoology, University of South Bohemia in České Budějovice Faculty of Science, České Budějovice, Czech Republic
| | - Michal Vinkler
- Department of Zoology, Charles University Faculty of Science, Prague, Czech Republic
| | - Jan Štefka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.,Department of Zoology, University of South Bohemia in České Budějovice Faculty of Science, České Budějovice, Czech Republic
| |
Collapse
|
2
|
Rehman MSU, Rehman SU, Yousaf W, Hassan FU, Ahmad W, Liu Q, Pan H. The Potential of Toll-Like Receptors to Modulate Avian Immune System: Exploring the Effects of Genetic Variants and Phytonutrients. Front Genet 2021; 12:671235. [PMID: 34512716 PMCID: PMC8427530 DOI: 10.3389/fgene.2021.671235] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptors (TLRs) are pathogen recognition receptors, and primitive sources of innate immune response that also play key roles in the defense mechanism against infectious diseases. About 10 different TLRs have been discovered in chicken that recognize ligands and participate in TLR signaling pathways. Research findings related to TLRs revealed new approaches to understand the fundamental mechanisms of the immune system, patterns of resistance against diseases, and the role of TLR-specific pathways in nutrient metabolism in chicken. In particular, the uses of specific feed ingredients encourage molecular biologists to exploit the relationship between nutrients (including different phytochemicals) and TLRs to modulate immunity in chicken. Phytonutrients and prebiotics are noteworthy dietary components to promote immunity and the production of disease-resistant chicken. Supplementations of yeast-derived products have also been extensively studied to enhance innate immunity during the last decade. Such interventions pave the way to explore nutrigenomic approaches for healthy and profitable chicken production. Additionally, single-nucleotide polymorphisms in TLRs have shown potential association with few disease outbreaks in chickens. This review aimed to provide insights into the key roles of TLRs in the immune response and discuss the potential applications of these TLRs for genomic and nutritional interventions to improve health, and resistance against different fatal diseases in chicken.
Collapse
Affiliation(s)
- Muhammad Saif-ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Wasim Yousaf
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Faiz-ul Hassan
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Waqas Ahmad
- Department of Clinical Sciences, University College of Veterinary and Animal Sciences, Narowal, Pakistan
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Hongping Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| |
Collapse
|
3
|
Effects of In Ovo Methionine-Cysteine Injection on Embryonic Development, Antioxidant Status, IGF-I and TLR4 Gene Expression, and Jejunum Histomorphometry in Newly Hatched Broiler Chicks Exposed to Heat Stress during Incubation. Animals (Basel) 2019; 9:ani9010025. [PMID: 30642042 PMCID: PMC6356559 DOI: 10.3390/ani9010025] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 01/04/2023] Open
Abstract
Sulfur amino acids are typically the first-limiting amino acids (AA) used in protein metabolism in poultry. Therefore, we hypothesized that their utilization in the pre-hatch period would affect embryonic development, IGF-I and TLR4 gene expression, antioxidant status, serum biochemical profile, and jejunum histomorphometry of newly hatched Ross broiler chicks incubated under heat stress conditions. A total of 150 fertile broiler eggs were subjected to heat stress (39.6 °C for 6 h/d) from d10 until d18 and injected at d 17.5 of incubation with methionine and cysteine (Met-Cys) at a dose of 5.90 mg l-methionine plus 3.40 mg l-cysteine. The effects of Met-Cys administration were examined and compared with the control (Non-injected group) and 0.75% NaCl injected group. The results showed that no significant differences among all groups in serum protein profiles (total protein, albumin, globulin, and albumin/globulin ratio) and creatine kinase were observed. The level of heat shock protein-90 was decreased with Met-Cys In ovo injection. The In ovo injection of Met-Cys also improved the values of total antioxidants capacity and glutathione in examined tissues. At the same time, an increase in fold change mRNA abundance of IGF-I and TLR4 was observed after Met-Cys injection in tested tissues. Finally, an increase of 29% in villus area was found after Met-Cys injection compared to the control group. In conclusion, the In ovo injection of Met-Cys resulted in improved embryonic development, IGF-I and TLR4 gene expression, antioxidant status and jejunum histomorphometry of newly hatched broiler chicks exposed to heat stress during incubation.
Collapse
|
4
|
Świderská Z, Šmídová A, Buchtová L, Bryjová A, Fabiánová A, Munclinger P, Vinkler M. Avian Toll-like receptor allelic diversity far exceeds human polymorphism: an insight from domestic chicken breeds. Sci Rep 2018; 8:17878. [PMID: 30552359 PMCID: PMC6294777 DOI: 10.1038/s41598-018-36226-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023] Open
Abstract
Immune genes show remarkable levels of adaptive variation shaped by pathogen-mediated selection. Compared to humans, however, population polymorphism in animals has been understudied. To provide an insight into immunogenetic diversity in birds, we sequenced complete protein-coding regions of all Toll-like receptor (TLR) genes with direct orthology between mammals and birds (TLR3, TLR4, TLR5 and TLR7) in 110 domestic chickens from 25 breeds and compared their variability with a corresponding human dataset. Chicken TLRs (chTLRs) exhibit on average nine-times higher nucleotide diversity than human TLRs (hTLRs). Increased potentially functional non-synonymous variability is found in chTLR ligand-binding ectodomains. While we identified seven sites in chTLRs under positive selection and found evidence for convergence between alleles, no selection or convergence was detected in hTLRs. Up to six-times more alleles were identified in fowl (70 chTLR4 alleles vs. 11 hTLR4 alleles). In chTLRs, high numbers of alleles are shared between the breeds and the allelic frequencies are more equal than in hTLRs. These differences may have an important impact on infectious disease resistance and host-parasite co-evolution. Though adaptation through high genetic variation is typical for acquired immunity (e.g. MHC), our results show striking levels of intraspecific polymorphism also in poultry innate immune receptors.
Collapse
Grants
- 504214 Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)
- 504214 Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)
- 204069 Univerzita Karlova v Praze (Charles University)
- 204069 Univerzita Karlova v Praze (Charles University)
- PRIMUS/17/SCI/12 Univerzita Karlova v Praze (Charles University)
- SVV 260434/2018 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- INTER-COST LTC18060 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- SVV 260434/2018 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- P502/12/P179 Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
- Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)
- Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
Collapse
Affiliation(s)
- Zuzana Świderská
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, Prague, 12843, Czech Republic
- Charles University, Faculty of Science, Department of Cell Biology, Viničná 7, Prague, 12843, Czech Republic
| | - Adéla Šmídová
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, Prague, 12843, Czech Republic
| | - Lucie Buchtová
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, Prague, 12843, Czech Republic
| | - Anna Bryjová
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, Prague, 12843, Czech Republic
- The Czech Academy of Sciences, Institute of Vertebrate Biology, v.v.i., Květná 8, Brno, 60365, Czech Republic
| | - Anežka Fabiánová
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, Prague, 12843, Czech Republic
| | - Pavel Munclinger
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, Prague, 12843, Czech Republic
| | - Michal Vinkler
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, Prague, 12843, Czech Republic.
| |
Collapse
|
5
|
Li P, Wang H, Zhao X, Gou Z, Liu R, Song Y, Li Q, Zheng M, Cui H, Everaert N, Zhao G, Wen J. Allelic variation in TLR4 is linked to resistance to Salmonella Enteritidis infection in chickens. Poult Sci 2018; 96:2040-2048. [PMID: 28339850 DOI: 10.3382/ps/pex010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/21/2016] [Indexed: 12/19/2022] Open
Abstract
Salmonella Enteritidis (SE) is a foodborne pathogen that negatively affects both animal and human health. Polymorphisms of the TLR4 gene may affect recognition by Toll-like receptor 4 (TLR4) of bacterial lipopolysaccharide (LPS), leading to differences in host resistance to pathogenic infections. The present study has investigated polymorphic loci of chicken TLR4 (ChTLR4) in ten chicken breeds, electrostatic potentials of mutant structures of TLR4, and a linkage analysis between allelic variation and survival ratio to infection with SE in specific-pathogen-free (SPF) White Leghorns. A total of 19 Single Nucleotide Polymorphisms (SNPs), of which 10 were novel, were found in chicken breeds. Seven newly identified amino acid variants (C68G, G674A, G782A, A896T, T959G, T986A, and A1104C) and previously reported important mutations (G247A, G1028A, C1147T, and A1832G) were demonstrated in the extracellular domain of the ChTLR4 gene. Significant changes in surface electrostatic potential of the ectodomain of TLR4, built by homology modeling, were observed at the Glu83Lys (G247A), Arg298Ser (A896T), Ser368Arg (A1104C), and Gln611Arg (A1832G) substitutions. Linkage analysis showed that one polymorphic locus G247A of TLR4 gene, common in all breeds examined, was significantly associated with increased resistance to SE in SPF White Leghorns chicks (log-rank P-value = 0.04). The genotypes from A1832G SNPs did not show statistically significant survival differences. This study has provided the first direct evidence that G247A substitution in ChTLR4 is associated with increased resistance to Salmonella Enteritidis.
Collapse
Affiliation(s)
- Peng Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,University of Liège, Gembloux Agro-Bio Tech, Precision Livestock and Nutrition Unit, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Huihua Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Xingwang Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhongyong Gou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Ranran Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongmei Song
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qinghe Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Maiqing Zheng
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huanxian Cui
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nadia Everaert
- University of Liège, Gembloux Agro-Bio Tech, Precision Livestock and Nutrition Unit, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Guiping Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Wen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
6
|
Wu G, Qi Y, Liu X, Yang N, Xu G, Liu L, Li X. Cecal MicroRNAome response to Salmonella enterica serovar Enteritidis infection in White Leghorn Layer. BMC Genomics 2017; 18:77. [PMID: 28086873 PMCID: PMC5237128 DOI: 10.1186/s12864-016-3413-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/12/2016] [Indexed: 01/27/2023] Open
Abstract
Background Salmonella enterica serovar Enteritidis (SE) is a food-borne pathogen and of great threat to human health through consuming the contaminated poultry products. MicroRNAs (miRNAs) play an important role in different biological activities and have been shown to regulate the innate immunity in the bacterial infection. The objective of this study is to identify miRNAs associated with SE infection in laying chicken cecum. Results Average number of reads of three libraries constructed from infected and non-infected chickens was 12,476,156 and 10,866,976, respectively. There were 598 miRNAs including 194 potential novel miRNAs identified in which 37 miRNAs were significantly differentially expressed between infected and non-infected chickens. In total, 2897 unique target genes regulated by differentially expressed miRNAs were predicted, in which, 841 genes were uniquely regulated by up-regulated miRNAs (G1), 636 genes were uniquely regulated by down-regulated miRNAs (G2), and 1420 were co-regulated by both up and down- regulated miRNAs (G3). There were 118, 73 and 178 GO (Gene ontology) BP (Biological process) terms significantly enriched in G1, G2 and G3 groups, respectively. More immune-related GO BP terms than metabolism-related terms were found in G1. Expression of 12 immune-related genes of four differentially expressed miRNAs was detected through qRT-PCR. The regulatory direction of gga-miR-1416-5p, gga-miR-1662, and gga-miR-34a-5p were opposite with the target genes of TLR21, BCL10, TLR1LA, NOTCH2 and THBS1, respectively. Conclusion The miRNAs contribute to the response to SE infection at the onset of egg laying through regulating the homeostasis between metabolism and immunity. The gga-miR-125b-5p, gga-miR-34a-5p, gga-miR-1416-5p and gga-miR-1662 could play an important role in SE infection through regulating their target genes. The finding herein will pave the foundation for the studies of microRNA regulation in SE infection in laying hens. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3413-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guixian Wu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yukai Qi
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiaoyi Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ning Yang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guiyun Xu
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Liying Liu
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Xianyao Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China. .,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China.
| |
Collapse
|
7
|
Ruan W, An J, Wu Y. Polymorphisms of chicken TLR3 and 7 in different breeds. PLoS One 2015; 10:e0119967. [PMID: 25781886 PMCID: PMC4364021 DOI: 10.1371/journal.pone.0119967] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/18/2015] [Indexed: 11/19/2022] Open
Abstract
Toll-like receptors (TLRs) mediate immune responses via the recognition of pathogen-associated molecular patterns (PAMPs), thus playing important roles in host defense. Among the chicken (Ch) TLR family, ChTLR3 and 7 have been shown to recognize viral RNA. In our earlier studies, we have reported polymorphisms of TLR1, 2, 4, 5, 15 and 21. In the present study, we amplified TLR3 and 7 genes from different chicken breeds and analyzed their sequences. We identified 7 amino acid polymorphism sites in ChTLR3 with 6 outer part sites and 1 inner part site, and 4 amino acid polymorphism sites in ChTLR7 with 3 outer part sites and 1 inner part site. These results demonstrate that ChTLR genes are polymorphic among different chicken breeds, suggesting a varied resistance across numerous chicken breeds. This information might help improve chicken health by breeding and vaccination.
Collapse
Affiliation(s)
- Wenke Ruan
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- * E-mail: (WR); (YW)
| | - Jian An
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yanhua Wu
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- * E-mail: (WR); (YW)
| |
Collapse
|
8
|
Vinkler M, Bainová H, Bryjová A, Tomášek O, Albrecht T, Bryja J. Characterisation of Toll-like receptors 4, 5 and 7 and their genetic variation in the grey partridge. Genetica 2015; 143:101-12. [PMID: 25626717 DOI: 10.1007/s10709-015-9819-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 01/18/2015] [Indexed: 12/21/2022]
Abstract
Toll-like receptors (TLRs) are a cornerstone of vertebrate innate immunity. In this study, we identified orthologues of TLR4, TLR5 and TLR7 (representing both bacterial- and viral-sensing TLRs) in the grey partridge (Perdix perdix), a European Galliform game bird species. The phylogeny of all three TLR genes follows the known phylogeny of Galloanserae birds, placing grey partridge TLRs (PePeTLRs) in close proximity to their turkey and pheasant orthologues. The predicted proteins encoded by the PePeTLR genes were 843, 862-863 and 1,047 amino acids long, respectively, and clearly showed all TLR structural features. To verify functionality in these genes we mapped their tissue-expression profiles, revealing generally high PePeTLR4 and PePeTLR5 expression in the thymus and absence of PePeTLR4 and PePeTLR7 expression in the brain. Using 454 next-generation sequencing, we then assessed genetic variation within these genes for a wild grey partridge population in the Czech Republic, EU. We identified 11 nucleotide substitutions in PePeTLR4, eight in PePeTLR5 and six in PePeTLR7, resulting in four, four and three amino acid replacements, respectively. Given their locations and chemical features, most of these non-synonymous substitutions probably have a minor functional impact. As the intraspecific genetic variation of the three TLR genes was low, we assume that either negative selection or a bottleneck may have reduced TLR population variability in this species.
Collapse
Affiliation(s)
- Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44, Prague, Czech Republic, EU,
| | | | | | | | | | | |
Collapse
|
9
|
Yu D, Xu L, Peng L, Chen SY, Liu YP, Yao YG. Genetic variations of mitochondrial antiviral signaling gene (MAVS) in domestic chickens. Gene 2014; 545:226-32. [DOI: 10.1016/j.gene.2014.05.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 12/30/2022]
|