1
|
Ehrhardt B, Angstmann H, Höschler B, Kovacevic D, Hammer B, Roeder T, Rabe KF, Wagner C, Uliczka K, Krauss-Etschmann S. Airway specific deregulation of asthma-related serpins impairs tracheal architecture and oxygenation in D. melanogaster. Sci Rep 2024; 14:16567. [PMID: 39019933 PMCID: PMC11255251 DOI: 10.1038/s41598-024-66752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/03/2024] [Indexed: 07/19/2024] Open
Abstract
Serine proteases are important regulators of airway epithelial homeostasis. Altered serum or cellular levels of two serpins, Scca1 and Spink5, have been described for airway diseases but their function beyond antiproteolytic activity is insufficiently understood. To close this gap, we generated fly lines with overexpression or knockdown for each gene in the airways. Overexpression of both fly homologues of Scca1 and Spink5 induced the growth of additional airway branches, with more variable results for the respective knockdowns. Dysregulation of Scca1 resulted in a general delay in fruit fly development, with increases in larval and pupal mortality following overexpression of this gene. In addition, the morphological changes in the airways were concomitant with lower tolerance to hypoxia. In conclusion, the observed structural changes of the airways evidently had a strong impact on the airway function in our model as they manifested in a lower physical fitness of the animals. We assume that this is due to insufficient tissue oxygenation. Future work will be directed at the identification of key molecular regulators following the airway-specific dysregulation of Scca1 and Spink5 expression.
Collapse
Affiliation(s)
- Birte Ehrhardt
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
| | - Hanna Angstmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
| | - Beate Höschler
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
| | - Draginja Kovacevic
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Barbara Hammer
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Thomas Roeder
- Division of Molecular Physiology, Institute of Zoology, Christian-Albrechts University Kiel, Kiel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Klaus F Rabe
- Department of Pneumology, LungenClinic, Grosshansdorf, Germany
- Department of Medicine, Christian Albrechts University, Kiel, Germany
| | - Christina Wagner
- Division of Invertebrate Models, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
| | - Karin Uliczka
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
- Division of Invertebrate Models, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
| | - Susanne Krauss-Etschmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany.
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.
- Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany.
| |
Collapse
|
2
|
Fröhlich E. Animals in Respiratory Research. Int J Mol Sci 2024; 25:2903. [PMID: 38474149 DOI: 10.3390/ijms25052903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The respiratory barrier, a thin epithelial barrier that separates the interior of the human body from the environment, is easily damaged by toxicants, and chronic respiratory diseases are common. It also allows the permeation of drugs for topical treatment. Animal experimentation is used to train medical technicians, evaluate toxicants, and develop inhaled formulations. Species differences in the architecture of the respiratory tract explain why some species are better at predicting human toxicity than others. Some species are useful as disease models. This review describes the anatomical differences between the human and mammalian lungs and lists the characteristics of currently used mammalian models for the most relevant chronic respiratory diseases (asthma, chronic obstructive pulmonary disease, cystic fibrosis, pulmonary hypertension, pulmonary fibrosis, and tuberculosis). The generation of animal models is not easy because they do not develop these diseases spontaneously. Mouse models are common, but other species are more appropriate for some diseases. Zebrafish and fruit flies can help study immunological aspects. It is expected that combinations of in silico, in vitro, and in vivo (mammalian and invertebrate) models will be used in the future for drug development.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| |
Collapse
|
3
|
Papadopoulos NG, Apostolidou E, Miligkos M, Xepapadaki P. Bacteria and viruses and their role in the preschool wheeze to asthma transition. Pediatr Allergy Immunol 2024; 35:e14098. [PMID: 38445451 DOI: 10.1111/pai.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024]
Abstract
Wheezing is the cardinal symptom of asthma; its presence early in life, mostly caused by viral infections, is a major risk factor for the establishment of persistent or recurrent disease. Early-life wheezing and asthma exacerbations are triggered by common respiratory viruses, mainly rhinoviruses (RV), and to a lesser extent, respiratory syncytial virus, parainfluenza, human metapneumovirus, coronaviruses, adenoviruses, influenza, and bocavirus. The excess presence of bacteria, several of which are part of the microbiome, has also been identified in association with wheezing and acute asthma exacerbations, including haemophilus influenza, streptococcus pneumoniae, moraxella catarrhalis, mycoplasma pneumoniae, and chlamydophila pneumonia. While it is not clear when asthma starts, its characteristics develop over time. Airway remodeling already appears between the ages of 1 and 3 years of age even prior to the presence of atopic inflammation or an asthma diagnosis. The role of genetic defect or variations hampering the airway epithelium in response to environmental stimuli and severe disease morbidity are now considered as major determinants for early structural changes. Repeated viral infections can induce and perpetuate airway hyperresponsiveness. Allergic sensitization, that often precedes infection-induced wheezing, shifts inflammation toward type-2, while common respiratory infections themselves promote type-2 inflammation. Nevertheless, most children who wheeze with viral infections during infancy and during preschool years do not develop persistent asthma. Multiple factors, including illness severity, viral etiology, allergic sensitization, and the exposome, are associated with disease persistence. Here, we summarize current knowledge and developments in infection epidemiology of asthma in children, describing the known impact of each individual agent and mechanisms of transition from recurrent wheeze to asthma.
Collapse
Affiliation(s)
- Nikolaos G Papadopoulos
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | | | - Michael Miligkos
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevi Xepapadaki
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Ji S, Zhou X, Hoffmann JA. Toll-mediated airway homeostasis is essential for fly survival upon injection of RasV12-GFP oncogenic cells. Cell Rep 2024; 43:113677. [PMID: 38236774 DOI: 10.1016/j.celrep.2024.113677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/08/2023] [Accepted: 01/01/2024] [Indexed: 03/02/2024] Open
Abstract
Toll signaling is well known for its pivotal role in the host response against the invasion of external pathogens. Here, we investigate the potential involvement of Toll signaling in the intersection between the host and oncogenic cells. We show that loss of myeloid differentiation factor 88 (Myd88) leads to drastic fly death after the injection of RasV12-GFP oncogenic cells. Transcriptomic analyses show that challenging flies with oncogenic cells or bacteria leads to distinct inductions of Myd88-dependent genes. We note that downregulation of Myd88 in the tracheal system accounts for fly mortality, and ectopic tracheal complementation of Myd88 rescues the survival defect in Myd88 loss-of-function mutants following RasV12-GFP injection. Further, molecular and genetic evidence indicate that Toll signaling modulates fly resistance to RasV12-GFP cells through mediating airway function in a rolled-dependent manner. Collectively, our data indicate a critical role of Toll signaling in tracheal homeostasis and host survival after the injection of oncogenic cells.
Collapse
Affiliation(s)
- Shanming Ji
- Insect Models of Innate Immunity (M3I; 9022), Institute of Molecular and Cellular Biology, CNRS, 67084 Strasbourg, France
| | - Xiaojing Zhou
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Jules A Hoffmann
- Insect Models of Innate Immunity (M3I; 9022), Institute of Molecular and Cellular Biology, CNRS, 67084 Strasbourg, France; Institute for Advanced Study, University of Strasbourg, 67000 Strasbourg, France; Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
5
|
Valamparamban GF, Spéder P. Homemade: building the structure of the neurogenic niche. Front Cell Dev Biol 2023; 11:1275963. [PMID: 38107074 PMCID: PMC10722289 DOI: 10.3389/fcell.2023.1275963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Neural stem/progenitor cells live in an intricate cellular environment, the neurogenic niche, which supports their function and enables neurogenesis. The niche is made of a diversity of cell types, including neurons, glia and the vasculature, which are able to signal to and are structurally organised around neural stem/progenitor cells. While the focus has been on how individual cell types signal to and influence the behaviour of neural stem/progenitor cells, very little is actually known on how the niche is assembled during development from multiple cellular origins, and on the role of the resulting topology on these cells. This review proposes to draw a state-of-the art picture of this emerging field of research, with the aim to expose our knowledge on niche architecture and formation from different animal models (mouse, zebrafish and fruit fly). We will span its multiple aspects, from the existence and importance of local, adhesive interactions to the potential emergence of larger-scale topological properties through the careful assembly of diverse cellular and acellular components.
Collapse
Affiliation(s)
| | - Pauline Spéder
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| |
Collapse
|
6
|
Bossen J, Kühle JP, Roeder T. The tracheal immune system of insects - A blueprint for understanding epithelial immunity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 157:103960. [PMID: 37235953 DOI: 10.1016/j.ibmb.2023.103960] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
The unique design of respiratory organs in multicellular organisms makes them prone to infection by pathogens. To cope with this vulnerability, highly effective local immune systems evolved that are also operative in the tracheal system of insects. Many pathogens and parasites (including viruses, bacteria, fungi, and metazoan parasites) colonize the trachea or invade the host via this route. Currently, only two modules of the tracheal immune system have been characterized in depth: 1) Immune deficiency pathway-mediated activation of antimicrobial peptide gene expression and 2) local melanization processes that protect the structure from wounding. There is an urgent need to increase our understanding of the architecture of tracheal immune systems, especially regarding those mechanisms that enable the maintenance of immune homeostasis. This need for new studies is particularly exigent for species other than Drosophila.
Collapse
Affiliation(s)
- Judith Bossen
- Kiel University, Zoology, Dept, Molecular Physiology, Kiel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Jan-Philip Kühle
- Kiel University, Zoology, Dept, Molecular Physiology, Kiel, Germany
| | - Thomas Roeder
- Kiel University, Zoology, Dept, Molecular Physiology, Kiel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|