1
|
Girardie O, Laloë D, Bonneau M, Billon Y, Bailly J, David I, Canario L. Primiparous sow behaviour on the day of farrowing as one of the primary contributors to the growth of piglets in early lactation. Sci Rep 2024; 14:18415. [PMID: 39117962 PMCID: PMC11310322 DOI: 10.1038/s41598-024-69358-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Large White and Meishan sows differ in maternal ability and early piglet growth. We investigated the relationships between 100 maternal traits, grouped into 11 blocks according to the biological function they describe and litter growth over three successive periods after birth (D0-D1, D1-D3 and D3-D7; D0 starting at the onset of farrowing), as a measure of sow investment in early piglet production. Within- and between-breed variation was exploited to cover a maximum of the variability existing in pig maternal populations. The objective was to quantify the contribution of maternal traits, including functional traits and behavioural traits, to early litter growth. Multivariate analyses were used to depict correlations among traits. A partial least square multiblock analysis allowed quantifying the effect of maternal traits on early growth traits. Partial triadic analyses highlighted how sow behaviour changed with days, and whether it resulted in changes in litter growth. Several behavioural traits (standing activity, reactivity to different stimuli, postural activity) and functional traits (body reserves, udder quality) at farrowing contributed substantially to litter growth from D0 to D7. Sow aggression towards piglets and time spent standing at D0 were unfavourably correlated to D1-D3 litter growth. Time spent lying with udder exposed at D0 was favourably correlated to D1-D3 litter growth. The farrowing duration was negatively correlated to D0-D1 and D1-D3 litter growth. Furthermore, D3-D7 litter growth was positively correlated to feed intake in the same period. Several behavioural traits and some functional traits influence early litter growth. The contribution of sow behaviour was greater in the critical period around farrowing than in later days.
Collapse
Affiliation(s)
- Océane Girardie
- UMR1388 GenPhySE, INRAE, Université de Toulouse, INPT, 31326, Castanet, Tolosan, France.
| | - Denis Laloë
- UMR1313 GABI, INRAE, Université Paris-Saclay, AgroParisTech, 78350, Jouy-en-Josas, France
| | | | - Yvon Billon
- UE GenESI, INRAE, Le Magneraud, 17700, Surgères, France
| | - Jean Bailly
- UE GenESI, INRAE, Le Magneraud, 17700, Surgères, France
| | - Ingrid David
- UMR1388 GenPhySE, INRAE, Université de Toulouse, INPT, 31326, Castanet, Tolosan, France
| | - Laurianne Canario
- UMR1388 GenPhySE, INRAE, Université de Toulouse, INPT, 31326, Castanet, Tolosan, France
| |
Collapse
|
2
|
Sarubbi J, Martínez-Burnes J, Ghezzi MD, Olmos-Hernandez A, Lendez PA, Ceriani MC, Hernández-Avalos I. Hypothalamic Neuromodulation and Control of the Dermal Surface Temperature of Livestock during Hyperthermia. Animals (Basel) 2024; 14:1745. [PMID: 38929364 PMCID: PMC11200636 DOI: 10.3390/ani14121745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Hyperthermia elicits several physiological and behavioral responses in livestock to restore thermal neutrality. Among these responses, vasodilation and sweating help to reduce core body temperature by increasing heat dissipation by radiation and evaporation. Thermoregulatory behaviors such as increasing standing time, reducing feed intake, shade-seeking, and limiting locomotor activity also increase heat loss. These mechanisms are elicited by the connection between peripheral thermoreceptors and cerebral centers, such as the preoptic area of the hypothalamus. Considering the importance of this thermoregulatory pathway, this review aims to discuss the hypothalamic control of hyperthermia in livestock, including the main physiological and behavioral changes that animals adopt to maintain their thermal stability.
Collapse
Affiliation(s)
- Juliana Sarubbi
- Department of Animal Science, Federal University of Santa Maria, Av. Independência, Palmeira das Missões 3751, RS, Brazil
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | - Marcelo Daniel Ghezzi
- Animal Welfare Area, Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), University Campus, Tandil 7000, Argentina;
| | - Adriana Olmos-Hernandez
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Pamela Anahí Lendez
- Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires, CIVETAN, UNCPBA-CICPBA-CONICET (UNCPBA), University Campus, Tandil 7000, Argentina
| | - María Carolina Ceriani
- Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires, CIVETAN, UNCPBA-CICPBA-CONICET (UNCPBA), University Campus, Tandil 7000, Argentina
| | - Ismael Hernández-Avalos
- Facultad de Estudios Superiores Cuautitlán (FESC), Universidad Nacional Autónoma de Mexico (UNAM), Cuautitlán 54714, Mexico
| |
Collapse
|
3
|
Mluba HS, Atif O, Lee J, Park D, Chung Y. Pattern Mining-Based Pig Behavior Analysis for Health and Welfare Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:2185. [PMID: 38610396 PMCID: PMC11013991 DOI: 10.3390/s24072185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
The increasing popularity of pigs has prompted farmers to increase pig production to meet the growing demand. However, while the number of pigs is increasing, that of farm workers has been declining, making it challenging to perform various farm tasks, the most important among them being managing the pigs' health and welfare. This study proposes a pattern mining-based pig behavior analysis system to provide visualized information and behavioral patterns, assisting farmers in effectively monitoring and assessing pigs' health and welfare. The system consists of four modules: (1) data acquisition module for collecting pigs video; (2) detection and tracking module for localizing and uniquely identifying pigs, using tracking information to crop pig images; (3) pig behavior recognition module for recognizing pig behaviors from sequences of cropped images; and (4) pig behavior analysis module for providing visualized information and behavioral patterns to effectively help farmers understand and manage pigs. In the second module, we utilize ByteTrack, which comprises YOLOx as the detector and the BYTE algorithm as the tracker, while MnasNet and LSTM serve as appearance features and temporal information extractors in the third module. The experimental results show that the system achieved a multi-object tracking accuracy of 0.971 for tracking and an F1 score of 0.931 for behavior recognition, while also highlighting the effectiveness of visualization and pattern mining in helping farmers comprehend and manage pigs' health and welfare.
Collapse
Affiliation(s)
- Hassan Seif Mluba
- Department of Computer and Information Science, Korea University, Sejong City 30019, Republic of Korea; (H.S.M.); (O.A.)
| | - Othmane Atif
- Department of Computer and Information Science, Korea University, Sejong City 30019, Republic of Korea; (H.S.M.); (O.A.)
| | - Jonguk Lee
- Department of Computer Convergence Software, Sejong Campus, Korea University, Sejong City 30019, Republic of Korea;
| | - Daihee Park
- Department of Computer Convergence Software, Sejong Campus, Korea University, Sejong City 30019, Republic of Korea;
| | - Yongwha Chung
- Department of Computer Convergence Software, Sejong Campus, Korea University, Sejong City 30019, Republic of Korea;
| |
Collapse
|
4
|
Ghezzi MD, Napolitano F, Casas-Alvarado A, Hernández-Ávalos I, Domínguez-Oliva A, Olmos-Hernández A, Pereira AMF. Utilization of Infrared Thermography in Assessing Thermal Responses of Farm Animals under Heat Stress. Animals (Basel) 2024; 14:616. [PMID: 38396584 PMCID: PMC10886350 DOI: 10.3390/ani14040616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Heat stress is a condition that can affect the health, performance, and welfare of farm animals. The perception of thermal stress leads to the activation of the autonomic nervous system to start a series of physiological and behavioral mechanisms to restore thermostability. One of these mechanisms is vasodilation of peripheral blood vessels to increase heat loss through the skin. Due to this aspect, infrared thermography has been suggested as a method to assess the thermal state of animals and predict rectal temperature values noninvasively. However, it is important to consider that predicting rectal temperature is challenging, and its association with IRT is not always a direct linear relationship. The present review aims to analyze the neurobiological response associated with heat stress and how thermal imaging in different thermal windows can be used to recognize heat stress in farmed ungulates.
Collapse
Affiliation(s)
- Marcelo Daniel Ghezzi
- Faculty of Veterinary Sciences, Veterinary Research Center (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), CONICET-CICPBA, Tandil 7000, Argentina
| | - Fabio Napolitano
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico
| | - Ismael Hernández-Ávalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlan Izcalli 54714, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Alfredo M. F. Pereira
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
5
|
Girardie O, Bonneau M, Billon Y, Bailly J, David I, Canario L. Analysis of image-based sow activity patterns reveals several associations with piglet survival and early growth. Front Vet Sci 2023; 9:1051284. [PMID: 36699323 PMCID: PMC9868430 DOI: 10.3389/fvets.2022.1051284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/12/2022] [Indexed: 01/10/2023] Open
Abstract
An activity pattern describes variations in activities over time. The objectives of this study are to automatically predict sow activity from computer vision over 11 days peripartum and estimate how sow behavior influences piglet's performance during early lactation. The analysis of video images used the convolutional neural network (CNN) YOLO for sow detection and posture classification of 21 Large White and 22 Meishan primiparous sows housed in individual farrowing pens. A longitudinal analysis and a clustering method were combined to identify groups of sows with a similar activity pattern. Traits under study are as follows: (i) the distribution of time spent daily in different postures and (ii) different activities while standing. Six postures were included along with three classes of standing activities, i.e., eating, drinking, and other, which can be in motion or not and root-pawing or not. They correspond to a postural budget and a standing-activity budget. Groups of sows with similar changes in their budget over the period (D-3 to D-1; D0 and D1-D7) were identified with the k-means clustering method. Next, behavioral traits (time spent daily in each posture, frequency of postural changes) were used as explanatory variables in the Cox proportional hazards model for survival and in the linear model for growth. Piglet survival was influenced by sow behavior on D-1 and during the period D1-D7. Piglets born from sows that were standing and doing an activity other than drinking and eating on D-1 had a 26% lower risk of dying than other piglets. Those born from sows that changed posture more frequently on D1-D7 had a 44% lower risk of dying. The number of postural changes, which illustrate sow restlessness, influenced piglet growth in the three periods. The average daily gain of piglets born from sows that were more restless on D1-D7 and that changed posture more frequently to hide their udder on D0 decreased by 22 and 45 g/d, respectively. Conversely, those born from sows that changed posture more frequently to hide their udder during the period of D1-D7 grew faster (+71 g/d) than the other piglets. Sow restlessness at different time periods influenced piglet performance.
Collapse
Affiliation(s)
- Océane Girardie
- UMR1388 GenPhySE, INRAE, Université de Toulouse, INPT, Castanet-Tolosan, France
| | | | | | | | - Ingrid David
- UMR1388 GenPhySE, INRAE, Université de Toulouse, INPT, Castanet-Tolosan, France
| | - Laurianne Canario
- UMR1388 GenPhySE, INRAE, Université de Toulouse, INPT, Castanet-Tolosan, France
| |
Collapse
|