1
|
McComish BJ, Charleston MA, Parks M, Baroni C, Salvatore MC, Li R, Zhang G, Millar CD, Holland BR, Lambert DM. Ancient and Modern Genomes Reveal Microsatellites Maintain a Dynamic Equilibrium Through Deep Time. Genome Biol Evol 2024; 16:evae017. [PMID: 38412309 PMCID: PMC10972684 DOI: 10.1093/gbe/evae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/22/2023] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Microsatellites are widely used in population genetics, but their evolutionary dynamics remain poorly understood. It is unclear whether microsatellite loci drift in length over time. This is important because the mutation processes that underlie these important genetic markers are central to the evolutionary models that employ microsatellites. We identify more than 27 million microsatellites using a novel and unique dataset of modern and ancient Adélie penguin genomes along with data from 63 published chordate genomes. We investigate microsatellite evolutionary dynamics over 2 timescales: one based on Adélie penguin samples dating to ∼46.5 ka and the other dating to the diversification of chordates aged more than 500 Ma. We show that the process of microsatellite allele length evolution is at dynamic equilibrium; while there is length polymorphism among individuals, the length distribution for a given locus remains stable. Many microsatellites persist over very long timescales, particularly in exons and regulatory sequences. These often retain length variability, suggesting that they may play a role in maintaining phenotypic variation within populations.
Collapse
Affiliation(s)
- Bennet J McComish
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7001, Australia
| | | | - Matthew Parks
- Australian Research Centre for Human Evolution, Griffith University, Nathan, QLD 4111, Australia
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA
| | - Carlo Baroni
- Dipartimento di Scienze della Terra, University of Pisa, Pisa, Italy
- CNR-IGG, Institute of Geosciences and Earth Resources, Pisa, Italy
| | - Maria Cristina Salvatore
- Dipartimento di Scienze della Terra, University of Pisa, Pisa, Italy
- CNR-IGG, Institute of Geosciences and Earth Resources, Pisa, Italy
| | - Ruiqiang Li
- Novogene Bioinformatics Technology Co. Ltd., Beijing 100083, China
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
- Department of Biology, Centre for Social Evolution, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Craig D Millar
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Barbara R Holland
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - David M Lambert
- Australian Research Centre for Human Evolution, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
2
|
Verbiest M, Maksimov M, Jin Y, Anisimova M, Gymrek M, Bilgin Sonay T. Mutation and selection processes regulating short tandem repeats give rise to genetic and phenotypic diversity across species. J Evol Biol 2023; 36:321-336. [PMID: 36289560 PMCID: PMC9990875 DOI: 10.1111/jeb.14106] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 02/03/2023]
Abstract
Short tandem repeats (STRs) are units of 1-6 bp that repeat in a tandem fashion in DNA. Along with single nucleotide polymorphisms and large structural variations, they are among the major genomic variants underlying genetic, and likely phenotypic, divergence. STRs experience mutation rates that are orders of magnitude higher than other well-studied genotypic variants. Frequent copy number changes result in a wide range of alleles, and provide unique opportunities for modulating complex phenotypes through variation in repeat length. While classical studies have identified key roles of individual STR loci, the advent of improved sequencing technology, high-quality genome assemblies for diverse species, and bioinformatics methods for genome-wide STR analysis now enable more systematic study of STR variation across wide evolutionary ranges. In this review, we explore mutation and selection processes that affect STR copy number evolution, and how these processes give rise to varying STR patterns both within and across species. Finally, we review recent examples of functional and adaptive changes linked to STRs.
Collapse
Affiliation(s)
- Max Verbiest
- Institute of Computational Life Sciences, School of Life Sciences and Facility ManagementZürich University of Applied SciencesWädenswilSwitzerland
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Mikhail Maksimov
- Department of Computer Science & EngineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ye Jin
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of BioengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Maria Anisimova
- Institute of Computational Life Sciences, School of Life Sciences and Facility ManagementZürich University of Applied SciencesWädenswilSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Melissa Gymrek
- Department of Computer Science & EngineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Tugce Bilgin Sonay
- Institute of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|