1
|
Thathapudi NC, Callai-Silva N, Malhotra K, Basu S, Aghajanzadeh-Kiyaseh M, Zamani-Roudbaraki M, Groleau M, Lombard-Vadnais F, Lesage S, Griffith M. Modified host defence peptide GF19 slows TNT-mediated spread of corneal herpes simplex virus serotype I infection. Sci Rep 2024; 14:4096. [PMID: 38374240 PMCID: PMC10876564 DOI: 10.1038/s41598-024-53662-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/03/2024] [Indexed: 02/21/2024] Open
Abstract
Corneal HSV-1 infections are a leading cause of infectious blindness globally by triggering tissue damage due to the intense inflammation. HSV-1 infections are treated mainly with antiviral drugs that clear the infections but are inefficient as prophylactics. The body produces innate cationic host defence peptides (cHDP), such as the cathelicidin LL37. Various epithelia, including the corneal epithelium, express LL37. cHDPs can cause disintegration of pathogen membranes, stimulate chemokine production, and attract immune cells. Here, we selected GF17, a peptide containing the LL37 fragment with bioactivity but with minimal cytotoxicity, and added two cell-penetrating amino acids to enhance its activity. The resulting GF19 was relatively cell-friendly, inducing only partial activation of antigen presenting immune cells in vitro. We showed that HSV-1 spreads by tunneling nanotubes in cultured human corneal epithelial cells. GF19 given before infection was able to block infection, most likely by blocking viral entry. When cells were sequentially exposed to viruses and GF19, the infection was attenuated but not arrested, supporting the contention that the GF19 mode of action was to block viral entry. Encapsulation into silica nanoparticles allowed a more sustained release of GF19, enhancing its activity. GF19 is most likely suitable as a prevention rather than a virucidal treatment.
Collapse
Affiliation(s)
- Neethi C Thathapudi
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Natalia Callai-Silva
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Kamal Malhotra
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, University of Ottawa, Ottawa, K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada
| | - Sankar Basu
- Department of Microbiology, Asutosh College, (Affiliated With University of Calcutta), Kolkata, 700026, India
| | - Mozhgan Aghajanzadeh-Kiyaseh
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Mostafa Zamani-Roudbaraki
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Marc Groleau
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | | | - Sylvie Lesage
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, H1T 2M4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - May Griffith
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, H1T 2M4, Canada.
- Department of Ophthalmology, Université de Montréal, Montreal, QC, H3C 3J7, Canada.
- Institute of Biomedical Engineering, Université de Montréal, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
2
|
Malhotra K, Buznyk O, Islam MM, Edin E, Basu S, Groleau M, Dégué DS, Fagerholm P, Fois A, Lesage S, Jangamreddy JR, Šimoliūnas E, Liszka A, Patra HK, Griffith M. Phosphorylcholine and KR12-Containing Corneal Implants in HSV-1-Infected Rabbit Corneas. Pharmaceutics 2023; 15:1658. [PMID: 37376106 DOI: 10.3390/pharmaceutics15061658] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Severe HSV-1 infection can cause blindness due to tissue damage from severe inflammation. Due to the high risk of graft failure in HSV-1-infected individuals, cornea transplantation to restore vision is often contraindicated. We tested the capacity for cell-free biosynthetic implants made from recombinant human collagen type III and 2-methacryloyloxyethyl phosphorylcholine (RHCIII-MPC) to suppress inflammation and promote tissue regeneration in the damaged corneas. To block viral reactivation, we incorporated silica dioxide nanoparticles releasing KR12, the small bioactive core fragment of LL37, an innate cationic host defense peptide produced by corneal cells. KR12 is more reactive and smaller than LL37, so more KR12 molecules can be incorporated into nanoparticles for delivery. Unlike LL37, which was cytotoxic, KR12 was cell-friendly and showed little cytotoxicity at doses that blocked HSV-1 activity in vitro, instead enabling rapid wound closure in cultures of human epithelial cells. Composite implants released KR12 for up to 3 weeks in vitro. The implant was also tested in vivo on HSV-1-infected rabbit corneas where it was grafted by anterior lamellar keratoplasty. Adding KR12 to RHCIII-MPC did not reduce HSV-1 viral loads or the inflammation resulting in neovascularization. Nevertheless, the composite implants reduced viral spread sufficiently to allow stable corneal epithelium, stroma, and nerve regeneration over a 6-month observation period.
Collapse
Affiliation(s)
- Kamal Malhotra
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
| | - Oleksiy Buznyk
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
- Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine, 65061 Odessa, Ukraine
| | - Mohammad Mirazul Islam
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - Elle Edin
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
- Institute of Biomedical Engineering, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Sankar Basu
- Department of Microbiology, Asutosh College, Affiliated with University of Calcutta, Kolkata 700026, India
| | - Marc Groleau
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Delali Shana Dégué
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Per Fagerholm
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - Adrien Fois
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Sylvie Lesage
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | | | - Egidijus Šimoliūnas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, 01513 Vilnius, Lithuania
| | - Aneta Liszka
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - Hirak K Patra
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
- Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
| | - May Griffith
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
- Institute of Biomedical Engineering, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
3
|
Hou Q, Rooman M, Pucci F. Enzyme Stability-Activity Trade-Off: New Insights from Protein Stability Weaknesses and Evolutionary Conservation. J Chem Theory Comput 2023. [PMID: 37276063 DOI: 10.1021/acs.jctc.3c00036] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A general limitation of the use of enzymes in biotechnological processes under sometimes nonphysiological conditions is the complex interplay between two key quantities, enzyme activity and stability, where the increase of one is often associated with the decrease of the other. A precise stability-activity trade-off is necessary for the enzymes to be fully functional, but its weight in different protein regions and its dependence on environmental conditions is not yet elucidated. To advance this issue, we used the formalism that we have recently developed to effectively identify stability strength and weakness regions in protein structures and applied it to a large set of globular enzymes with known experimental structure and catalytic sites. Our analysis showed a striking oscillatory pattern of free energy compensation centered on the catalytic region. Indeed, catalytic residues are usually nonoptimal with respect to stability, but residues in the first shell around the catalytic site are, on the average, stability strengths and thus compensate for this lack of stability; residues in the second shell are weaker again, and so on. This trend is consistent across all enzyme families. It is accompanied by a similar, but less pronounced, pattern of residue conservation across evolution. In addition, we analyzed cold- and heat-adapted enzymes separately and highlighted different patterns of stability strengths and weaknesses, which provide insight into the longstanding problem of catalytic rate enhancement in cold environments. The successful comparison of our stability and conservation results with experimental fitness data, obtained by deep mutagenesis scanning, led us to propose criteria for improving catalytic activity while maintaining enzyme stability, a key goal in enzyme design.
Collapse
Affiliation(s)
- Qingzhen Hou
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- National Institute of Health Data Science of China, Shandong University, Jinan, Shandong 250002, China
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
| |
Collapse
|