1
|
Hu M, Dinh HV, Shen Y, Suthers PF, Foster CJ, Call CM, Ye X, Pratas J, Fatma Z, Zhao H, Rabinowitz JD, Maranas CD. Comparative study of two Saccharomyces cerevisiae strains with kinetic models at genome-scale. Metab Eng 2023; 76:1-17. [PMID: 36603705 DOI: 10.1016/j.ymben.2023.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
The parameterization of kinetic models requires measurement of fluxes and/or metabolite levels for a base strain and a few genetic perturbations thereof. Unlike stoichiometric models that are mostly invariant to the specific strain, it remains unclear whether kinetic models constructed for different strains of the same species have similar or significantly different kinetic parameters. This important question underpins the applicability range and prediction limits of kinetic reconstructions. To this end, herein we parameterize two separate large-scale kinetic models using K-FIT with genome-wide coverage corresponding to two distinct strains of Saccharomyces cerevisiae: CEN.PK 113-7D strain (model k-sacce306-CENPK), and growth-deficient BY4741 (isogenic to S288c; model k-sacce306-BY4741). The metabolic network for each model contains 306 reactions, 230 metabolites, and 119 substrate-level regulatory interactions. The two models (for CEN.PK and BY4741) recapitulate, within one standard deviation, 77% and 75% of the fitted dataset fluxes, respectively, determined by 13C metabolic flux analysis for wild-type and eight single-gene knockout mutants of each strain. Strain-specific kinetic parameterization results indicate that key enzymes in the TCA cycle, glycolysis, and arginine and proline metabolism drive the metabolic differences between these two strains of S. cerevisiae. Our results suggest that although kinetic models cannot be readily used across strains as stoichiometric models, they can capture species-specific information through the kinetic parameterization process.
Collapse
Affiliation(s)
- Mengqi Hu
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Hoang V Dinh
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Yihui Shen
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA; Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Patrick F Suthers
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Charles J Foster
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Catherine M Call
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA; Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Xuanjia Ye
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Jimmy Pratas
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA; Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Zia Fatma
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Huimin Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA; Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA.
| |
Collapse
|
2
|
Past, Present, and Future Perspectives on Whey as a Promising Feedstock for Bioethanol Production by Yeast. J Fungi (Basel) 2022; 8:jof8040395. [PMID: 35448626 PMCID: PMC9031875 DOI: 10.3390/jof8040395] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 12/10/2022] Open
Abstract
Concerns about fossil fuel depletion and the environmental effects of greenhouse gas emissions have led to widespread fermentation-based production of bioethanol from corn starch or sugarcane. However, competition for arable land with food production has led to the extensive investigation of lignocellulosic sources and waste products of the food industry as alternative sources of fermentable sugars. In particular, whey, a lactose-rich, inexpensive byproduct of dairy production, is available in stable, high quantities worldwide. This review summarizes strategies and specific factors essential for efficient lactose/whey fermentation to ethanol. In particular, we cover the most commonly used strains and approaches for developing high-performance strains that tolerate fermentation conditions. The relevant genes and regulatory systems controlling lactose utilization and sources of new genes are also discussed in detail. Moreover, this review covers the optimal conditions, various feedstocks that can be coupled with whey substrates, and enzyme supplements for increasing efficiency and yield. In addition to the historical advances in bioethanol production from whey, this review explores the future of yeast-based fermentation of lactose or whey products for beverage or fuel ethanol as a fertile research area for advanced, environmentally friendly uses of industrial waste products.
Collapse
|
3
|
Gohil N, Panchasara H, Patel S, Ramírez-García R, Singh V. Book Review: Recent Advances in Yeast Metabolic Engineering. Front Bioeng Biotechnol 2017. [PMCID: PMC5715319 DOI: 10.3389/fbioe.2017.00071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Nisarg Gohil
- Synthetic Biology Laboratory, Department of Microbiology, School of Biological Sciences and Biotechnology, Institute of Advanced Research, Gandhinagar, India
| | - Happy Panchasara
- Synthetic Biology Laboratory, Department of Microbiology, School of Biological Sciences and Biotechnology, Institute of Advanced Research, Gandhinagar, India
| | - Shreya Patel
- Synthetic Biology Laboratory, Department of Microbiology, School of Biological Sciences and Biotechnology, Institute of Advanced Research, Gandhinagar, India
| | - Robert Ramírez-García
- Synthetic Biology Laboratory, Department of Microbiology, School of Biological Sciences and Biotechnology, Institute of Advanced Research, Gandhinagar, India
| | - Vijai Singh
- Synthetic Biology Laboratory, Department of Microbiology, School of Biological Sciences and Biotechnology, Institute of Advanced Research, Gandhinagar, India
- *Correspondence: Vijai Singh, ,
| |
Collapse
|